首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Adipogenesis is characterized by early remodeling of the extracellular matrix, allowing preadipocytes to adopt a more spherical shape and optimize lipid accumulation as they mature. Aortic carboxypeptidase-like protein (ACLP), found in collagen-rich tissues including adipose tissue, is expressed in 3T3-L1 and 3T3-F442A preadipocytes, and is downregulated during adipogenesis. We now report that ACLP is found in medium conditioned by 3T3-L1 preadipocytes. Transforming growth factor (TGF) beta, a known modulator of fibrillar matrix protein production, increased ACLP expression by 2.4+/-0.4-fold (mean+/-SE; n=3) in 3T3-L1 preadipocytes, through a mechanism that requires p42/44 MAPK activity. Addition of TGFbeta to differentiation medium, which inhibits adipogenesis, raised ACLP levels in 3T3-L1 cells. However, sustained expression of ACLP in stable clones of 3T3-L1 or 3T3-F442A preadipocytes did not interfere with adipogenesis.  相似文献   

2.
Lee  Kyeong Won  An  Young Jun  Lee  Janet  Lee  Jung-Hyun  Yim  Hyung-Soon 《Amino acids》2021,53(4):587-596

α-Poly-l-lysine (PLL) has been used for various purposes such as cell attachment, immunization, and molecular delivery, and is known to be cytotoxic to several cell lines. Here, we studied the effect of PLL on the adipogenesis of 3T3-L1 cells and investigated the underlying mechanism. Differentiation media containing PLL with a molecular weight (MW) greater than 4 kDa enhanced lipid droplet formation and increased adipogenic marker levels, indicating an increase in adipocyte differentiation. PLL with a molecular weight between 30 and 70 kDa was more effective than PLL of other sizes in 3T3-L1 cell differentiation. Moreover, PLL induced 3T3-L1 adipogenesis in insulin-free adipocyte differentiation medium. Incubation with insulin and PLL exhibited greater adipogenesis than insulin treatment only even at a high concentration. PLL stimulated insulin signaling and augmented the signaling pathway when it was added with insulin. While PLL did not activate the glucocorticoid receptor, which is phosphorylated by dexamethasone (DEX), it showed a positive effect on the cAMP signal pathway when preadipocytes were treated with PLL and 3-isobutyl-1-methylxanthine (IBMX). Consistent with these results, incubation with PLL and DEX without IBMX induced adipocyte differentiation. We also observed that the mitotic clonal expansion phase was the critical stage in adipogenesis for inducing the effects of PLL. These results suggest that PLL functions as an adipogenic inducer in 3T3-L1 preadipocytes and PLL has a direct effect on insulin signaling, one of the main regulatory pathways.

  相似文献   

3.
Adipogenesis is the differentiation of preadipocytes to adipocytes which is marked by the accumulation of lipid droplets. Adipogenic differentiation of 3T3-L1 cells is achieved by exposing the cells to Insulin, Dexamethasone and IBMX for 5–7 days. Thiazolidinedione drugs, like rosiglitazone are potent insulin sensitizing agents and have been shown to enhance lipid droplet formation in 3T3-L1 cells, a model cell line for preadipocyte differentiation. Guggulsterone is a natural drug extracted from the gum resin of tree Commiphora mukul. Guggulsterone has been shown to inhibit adipogenesis and induce apoptosis in 3T3-L1 cells. In this study we treated the 3T3-L1 preadipocytes with rosiglitazone and guggulsterone and assessed the protein expression profile using 2D gel electrophoresis-based proteomics to find out differential target proteins of these drugs. The proteins that were identified upon rosiglitazone treatment generally regulate cell proliferation and/or exhibit anti-inflammatory effect which strengthens its differentiation-inducing property. Guggulsterone treatment resulted in the identification of the apoptosis-inducing proteins to be up regulated which rightly is in agreement with the apoptosis-inducing property of guggulsterone in 3T3-L1 cells. Some of the proteins identified in our proteomic screen such as Galectin1, AnnexinA2 & TCTP were further confirmed by Real Time qPCR. Thus, the present study provides a better outlook of proteins being differentially regulated/expressed upon treatment with rosiglitazone and guggulsterone. The detailed study of the differentially expressed proteins identified in this proteomic screen may further provide the better molecular insight into the mode of action of these anti-diabetic drugs rosiglitazone and guggulsterone.  相似文献   

4.
Biogenic amines like tyramine, methylamine and the non-naturally occuring amine, benzylamine, have been described to promote adipose conversion of murine 3T3 preadipocytes. To further investigate these novel effects of amines, we studied whether they selectively mimic the long-term adipogenic action of insulin. To this aim, we decided to use the 3T3-L1 cell line since this model needs a complex combination of inducers to trigger the differentiation programme: insulin, isobutylmethylxanthine (IBMX, an activator of cAMP-signal transduction pathway) and the synthetic glucocorticoid, dexamethasone. A cell culture protocol was designed, by which each component of the differentiation cocktail was replaced with either benzylamine or tyramine, in order to determine whether these amine oxidase substrates could substitute any of the differentiation inducers in 3T3-L1 cells. The incomplete lipid accumulation found in cells grown under IBMX- or dexamethasone-free conditions was not improved by the daily addition of amines to the culture medium. Insulin was the only component of adipose differentiation cocktail of 3T3-L1 that could be replaced, although partially, by tyramine or benzylamine. When used at 0.5 mM, these amines resulted in a significant increase of triacylglycerol accumulated eight days after confluence, when compared to cells kept without insulin. This partial insulin replacement was totally abolished by SSAO-inhibitors, while MAO-blockade did not reduce lipid accumulation. As previously reported for other insulin-sensitive processes, such as stimulation of glucose transport or lipolysis inhibition in mature adipocytes, the stimulation of adipogenesis by tyramine and benzylamine was an SSAO-dependent mechanism that apparently shared common signaling pathways with insulin.  相似文献   

5.
6.
7.
Do GM  Choi MS  Kim HJ  Woo MN  Lee MK  Jeon SM 《Genes & nutrition》2008,2(4):359-364
The blood glucose-lowering property of pinitol is mediated via the insulin signaling pathway. This study was carried out to evaluate the effects of soy pinitol on adipogenesis in a 3T3-L1 cell line; 3T3-L1 preadipocytes were treated with pinitol (0-1 mM) together with insulin for 9 days. The regulation of lipid metabolism was assessed by oil-red-O staining of intracellular lipids and real-time PCR of adipogenesis-related factors. The inhibition of cell proliferation was estimated by MTT assay. Pinitol treatment did not inhibit lipid accumulation, nor did it affect expression of adipogenesis-related factors, including ADD1, aP2 and FAS, in a dose-dependent manner. Expression of adiponectin, GLUT4, IRS, C/EBPalpha and PPARgamma mRNAs, however, increased in cells treated with 0.5 mM and/or 1 mM pinitol. Pinitol treatment did not affect the inhibition of cell growth and proliferation in a dose-dependent manner. Accordingly, we suggest that pinitol is nontoxic to this cell line, and that it enhances adipogenesis by acting as an insulin sensitizer or insulin mediator via the upregulation of adiponectin, GLUT4, IRS, C/EBPalpha and PPARgamma in 3T3-L1 preadipocytes.  相似文献   

8.
Previous microarray analyses revealed that LMO4 is expressed in 3T3-L1 preadipocytes, however, its roles in adipogenesis are unknown. In the present study, using RT-PCR sequencing and quantitative real-time RT-PCR, we confirmed that LMO4 gene is expressed in 3T3-L1 preadipocytes and its expression peaks at the early stage of 3T3-L1 preadipocyte differentiation. Further analyses showed that LMO4 knockdown decreased the proliferation of 3T3-L1 preadipocytes, and attenuated the differentiation of 3T3-L1 preadipocytes, as evidenced by reduced lipid accumulation and down-regulation of PPARγ gene expression. Collectively, our findings indicate that LMO4 is a novel modulator of adipogenesis.  相似文献   

9.
The role of the inositol lipid 5-phosphatase (SHIP2) in preadipocyte signaling is not known. Although overexpression of SHIP2 inhibited proliferation and (3)H-thymidine incorporation in 3T3-L1 preadipocytes, there was no effect on insulin-induced adipogenesis. Insulin promoted SHIP2 tyrosine phosphorylation in differentiated 3T3-L1 adipocytes, but did not do so in preadipocytes. The absence of SHIP2 tyrosine phosphorylation suggests a potential explanation for the isolated rise in PI(3,4,5)P3, without any changes in PI(3,4)P2, previously observed following insulin treatment of these cells. Lack of SHIP2 tyrosine phosphorylation by insulin was also observed in primary cultures of human abdominal subcutaneous preadipocytes. These cells also produced PI(3,4,5)P3, but not PI(3,4)P2, in response to insulin. Comparison of insulin vs. PDGF treatment on SHIP2 tyrosine phosphorylation in 3T3-L1 and human preadipocytes revealed that only PDGF, which stimulates the accumulation of PI(3,4,5)P3 as well as PI(3,4)P2, was active in this regard, and only PDGF promoted the association of 52 kDa form of Shc with SHIP2. Nevertheless, both insulin and PDGF were equally effective in translocating SHIP2 to the plasma membrane in 3T3-L1 preadipocytes. Lack of SHIP2 tyrosine phosphorylation may account for the insulin-specific inositol phospholipid pattern of accumulation in preadipocytes.  相似文献   

10.
11.
Murine 3T3-L1 preadipocytes proliferate normally in medium containing fetal calf serum depleted of insulin, growth hormone, and insulin-like growth factor-I (IGF-I). However, the cells do not differentiate into adipocytes in the presence of the hormone-depleted serum. Supplementation of the growth medium with 10-20 nM IGF-I or 2 microM insulin restores the ability of 3T3-L1 cells to develop into adipocytes. The cells acquire an adipocyte morphology, accumulate triglycerides, and express a 450-fold increase in the activity of the lipogenic enzyme glycerol-3-phosphate dehydrogenase. The increase in glycerol-3-phosphate dehydrogenase activity is paralleled by the accumulation of glycerol-3-phosphate dehydrogenase mRNA and mRNA for the myelin P2-like protein aP2, another marker for fat cell development. IGF-I or insulin-stimulated adipogenesis in 3T3-L1 cells is not dependent on growth hormone. Occupancy of preadipocyte IGF-I receptors by IGF-I (or insulin) is implicated as a central step in the differentiation process. The IGF-I receptor binds insulin with a 70-fold lower affinity than IGF-I, and 30-70-fold higher levels of insulin are required to duplicate the effects of an optimal amount of IGF-I. The effects of 10-20 nM IGF-I are likely to be mediated by high affinity (KD = 5 nM) IGF-I receptors that are expressed at a density of 13,000 sites/preadipocyte. In undifferentiated cells the IGF-I receptor concentration is twice that of the insulin receptor. After adipocyte differentiation is triggered, the number and affinity of IGF-I receptors remain constant while insulin receptor number increases approximately 25-fold as developing adipocytes become responsive to insulin at the level of metabolic regulation. Thus, preadipocytes have the potential for a maximal response to IGF-I, whereas the accumulation of more than 95% of adipocyte insulin receptors and the appearance of responsiveness to insulin are consequences of differentiation. IGF-I or insulin is essential for the induction of a variety of abundant and nonabundant mRNAs characteristic of 3T3-L1 adipocytes.  相似文献   

12.
13.
14.
Peroxisome proliferator-activated receptor-gamma (PPARgamma) is a nuclear hormone receptor that is critical for adipogenesis and insulin sensitivity. Ligands for PPARgamma include some polyunsaturated fatty acids and prostanoids and the synthetic high affinity antidiabetic agents thiazolidinediones. However, the identity of a biologically relevant endogenous PPARgamma ligand is unknown, and limited insight exists into the factors that may regulate production of endogenous PPARgamma ligands during adipocyte development. To address this question, we created a line of 3T3-L1 preadipocytes that carry a beta-galactosidase-based PPARgamma ligand-sensing vector system. In this system, induction of adipogenesis resulted in elevated beta-galactosidase activity that signifies activation of PPARgamma via its ligand-binding domain (LBD) and suggests generation and/or accumulation of a ligand moiety. The putative endogenous ligand appeared early in adipogenesis in response to increases in cAMP, accumulated in the medium, and dissipated later in adipogenesis. Organically extracted and high pressure liquid chromatography-fractionated conditioned media from differentiating cells, but not from mature adipocytes, were enriched in this activity. One or more components within the organic extract activated PPARgamma through interaction with its LBD, induced lipid accumulation in 3T3-L1 cells as efficiently as the differentiation mixture, and competed for binding of rosiglitazone to the LBD of PPARgamma. The active species appears to be different from other PPARgamma ligands identified previously. Our findings suggest that a novel biologically relevant PPARgamma ligand is transiently produced in 3T3-L1 cells during adipogenesis.  相似文献   

15.
Stress hormone is known to play a vital role in lipolysis and adipogenesis in fat cells. The present study was carried out to evaluate the effect of epinephrine on adipogenesis in the 3T3-L1 cells. The investigation on adipogenesis was done in both mono and co-cultured 3T3-L1 cells. 3T3-L1 preadipocytes and C2C12 cells were grown independently on transwell plates and transferred to differentiation medium. Following differentiation, C2C12 cells transferred to 3T3-L1 plate and treated with medium containing 10 μg/ml of epinephrine. Adipogenic markers such as fatty acid binding protein 4, peroxisome proliferator activating receptor, CCAAT/enhancer-binding protein, adiponectin, lipoprotein lipase and fatty acid synthase mRNA expressions were evaluated in the 3T3-L1 cells. Epinephrine treatment reduced adipogenesis, evidenced by reducing adipogenic marker mRNA expression in the 3T3-L1 cells. In addition, glycerol accumulation and oil red-O staining supported the reduced rate of adipogenesis. Taking all together, it is concluded that the stress hormone, epinephrine reduces the rate of adipogenesis in the mono and co-cultured 3T3-L1 cells. In addition, the rate of adipogenesis is much reduced in the co-cultured 3T3-L1 cells compared monocultured 3T3-L1 cells.  相似文献   

16.
17.
Mouse or human fibroblasts are commonly used as feeder cells to prevent differentiation in stem or primary cell culture. In the present study, we addressed whether fibroblasts can affect the differentiation of adipocytes. We found that the differentiation of 3T3-L1 preadipocytes was strongly suppressed when the cells were cocultured with human fibroblast (BJ) cells. BrdU incorporation analysis indicated that mitotic clonal expansion, an early event required for 3T3-L1 cell adipogenesis, was not affected by BJ cells. The 3T3-L1 cell expression levels of peroxisome proliferator-activated receptor γ2, CCAAT/enhancer-binding protein alpha (C/EBPα), sterol regulatory element binding protein-1c, and Krüppel-like factor 15, but not those of C/EBPβ or C/EBPδ, were decreased by coculture with BJ cells. When mature 3T3-L1 adipocytes were cocultured with BJ cells, their lipid contents were significantly reduced, with decreased fatty acid synthase expression and increased phosphorylated form of acetyl-CoA carboxylase 1. Our data indicate that coculture with BJ fibroblast cells inhibits the adipogenesis of 3T3-L1 preadipocytes and decreases the lipogenesis of mature 3T3-L1 adipocytes.  相似文献   

18.
We report here that octanoate, a medium chain fatty acid, induces adipocyte differentiation in 3T3-L1 cells by co-treatment with dexamethasone, although octanoate has been known not to stimulate 3T3-L1 adipogenesis. A low concentration of exogenous glucose prevented 3T3-L1 adipogenesis induced by 1-methyl 3-isobutylxanthine, dexamethasone, and insulin (MDI) treatment (a common protocol for adipocyte differentiation). In contrast, co-treatment with dexamethasone and octanoate (D-OCT) induced adipogenesis under the same conditions. These findings imply that octanoate, rather than glucose, is the source of accumulated lipids in D-OCT-induced adipogenesis. D-OCT increased expression of the differentiation markers peroxisome proliferator-activated receptor (PPAR)gamma2 and caveolin-1. A specific inhibitor of p38 mitogen-activated protein (MAP) kinase inhibited D-OCT-induced adipogenesis. These results suggest that the p38 MAP kinase pathway followed by up-regulation of PPARgamma2 may be involved in 3T3-L1 adipocyte differentiation induced by D-OCT, as well as by MDI.  相似文献   

19.
Sodium butyrate arrests the growth of actively proliferating Swiss 3T3 cells. A previous report from our laboratory describes the pattern of expression of a representative group of growth-associated genes following treatment of Swiss 3T3 cells with sodium butyrate. The results of this study suggest that sodium butyrate-induced growth arrest involves events which lead to adipocyte differentiation (Toscani, A., Soprano, D.R., and Soprano, K.J. (1988) Oncogene Res. 3, 233-238). However, while sodium butyrate by itself could apparently initiate adipogenesis, it alone was not sufficient to maintain this differentiation state. We now wish to further characterize the role of sodium butyrate in adipocyte differentiation. Subconfluent cultures of Swiss 3T3 cells were treated with sodium butyrate in combination with other agents known to induce Swiss 3T3 cell adipogenesis (e.g. 1-methyl-3-isobutylxanthine, insulin, and dexamethasone) and then analyzed at various times thereafter for: (a) the presence of high concentrations of intracellular lipid as detected by microscopic examination of treated cells following staining with lipid-specific dyes and (b) the expression of four genes known to be modulated during the differentiation of preadipocytes into mature adipocytes (actin, adipsin, lipoprotein lipase, and adipocyte P2). Our results show that sodium butyrate in combination with either insulin or dexamethasone can fully differentiate Swiss 3T3 cells into adipocytes, at least as determined by accumulation of high levels of intracellular lipid. Moreover, the sodium butyrate-mediated process of differentiation can occur in subconfluent, actively proliferating cells. Thus, these experiments describe a new, previously unidentified activity of sodium butyrate and also suggest that this model system may be a useful one to study the relationship between growth arrest and differentiation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号