首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using transposon Tn5-mediated mutagenesis, an essential Rhizobium meliloti nitrogen fixation (nif) gene was identified and located directly downstream of the regulatory gene nifA. Maxicell and DNA sequence analysis demonstrated that the new gene is transcribed in the same direction as nifA and codes for a 54-kilodalton protein. In Klebsiella pneumoniae, the nifBQ operon is located directly downstream of a gene which is structurally and functionally homologous to the R. meliloti nifA gene. The DNA sequences of the K. pneumoniae nifB and nifQ genes (which code for 51- and 20-kilodalton proteins, respectively) were determined. The DNA sequence of the newly identified R. meliloti gene was approximately 50% homologous to the K. pneumoniae nifB gene. R. meliloti does not contain a gene homologous to nifQ directly downstream of nifB. The R. meliloti nifB product shares approximately 40% amino acid homology with the K. pneumoniae nifB product, and 10 of the 12 cysteine residues of the R. meliloti nifB product are conserved with 10 of the 17 cysteine residues of the K. pneumoniae nifB product.  相似文献   

2.
Metronidazole is a critical ingredient for combination therapies of Helicobacter pylori infection, the major cause of peptic ulcer and gastric cancer. It has been recently reported that metronidazole resistance from H. pylori ATCC43504 is caused by the insertion of a mini-IS605 sequence and deletion of sequences in an oxygen insensitive NAD(P)H nitroreductase encoding gene (rdxA). We also found that an additional gene (frxA) encoding NAD(P)H flavin oxidoreductase in the same strain was truncated by frame-shift mutations. To assess whether the frxA truncation is also involved in metronidazole resistance, metronidazole sensitive H. pylori strains ATCC43629 and SS1 were transformed by the truncated frxA gene cloned from strain ATCC43504. All transformed cells grew on agar plates containing 16 microg ml(-1) of metronidazole. The involvement of the frxA gene in metronidazole resistance was also confirmed by insertion inactivation of frxA and/or rdxA genes from strain ATCC43629 and one metronidazole sensitive clinical isolate H. pylori 2600. In addition, the frxA gene cloned from the H. pylori 2600 showed metronidazole nitroreductase activity in Escherichia coli and rendered ordinary metronidazole resistant E. coli to metronidazole sensitive cell. These results indicate that the frxA gene may also be involved in metronidazole resistance among clinical H. pylori isolates.  相似文献   

3.
Previously, several mutants which nodulated peas but which failed to fix nitrogen were isolated following Tn5 mutagenesis of pRL 1JI, a symbiotic plasmid of Rhizobium leguminosarum. Two of these alleles, fix52::Tn5 and fix137::Tn5 were in a region of pRL 1JI which hybridized to a probe that contained the nifA gene and the amino-terminal region of the nifB gene of Klebsiella pneumoniae. The nitrogen fixation defect of the fix52::Tn5 mutant strain was corrected by a 2.0kb fragment of the corresponding wild-type DNA cloned in a wide host-range plasmid. The DNA sequence of this region revealed an open reading frame corresponding to the gene within which the fix52::Tn5 allele was located. The polypeptide corresponding to this open reading frame had a deduced molecular weight of 39,936 and the gene was termed fixZ. The deduced amino acid sequence of the fixZ gene product contained two clusters of cysteine residues, suggesting that the protein may contain an iron-sulphur cluster. The sequence of the fixZ polypeptide was very similar to the sequence of the K. pneumoniae nifB gene (provided by W. Arnold and A. Pühler) which is required for the synthesis of the FeMo-cofactor of nitrogenase. It was shown that the previously observed hybridization was due to homology between the amino terminal regions of fixZ and nifB. Upstream from fixZ was found another open reading frame whose 5' terminus was not established, but within which was located the fix137::Tn5 allele. This gene was termed fixY. The deduced amino acid sequence of the sequenced part of fixY showed similarity to that of the regulatory nifA gene of K. pneumoniae (provided by W. J. Buikema and F. M. Ausubel). Thus in R. leguminoarum the fix genes that correspond to the nifA and nifB genes are in the same relative orientation as in K. pneumoniae.  相似文献   

4.
The deduced amino acid sequence derived from the sequence of a fragment of DNA from the free-living diazotroph Herbaspirillum seropedicae was aligned to the homologous protein sequences encoded by the nifA genes from Azorhizobium caulinodans, Rhizobium leguminosarum, Rhizobium meliloti and Klebsiella pneumoniae. High similarity was found in the central domain and in the C-terminal region. The H. seropedicae putative NifA sequence was also found to contain an interdomain linker similar to that conserved among rhizobial NifA proteins, but not K. pneumoniae or Azotobacter vinelandii. Analysis of the regulatory sequences found 5' from nifA indicated that the expression of this gene in H. seropedicae is likely to be controlled by NifA, NtrC and RpoN, as judged by the presence of specific NifA- and NtrC-binding sites and characteristic -24/-12 promoters. Possible additional regulatory features included an 'anaerobox' and a site for integration host factor. The N-terminus of another open reading frame was found 3' from nifA and tentatively identified as nifB by amino acid sequence comparison. The putative nifB promoter sequence suggests that expression of H. seropedicae nifB may be activated by NifA and dependent on RpoN.  相似文献   

5.
Very few examples of metabolic regulation are known in the gastric pathogen Helicobacter pylori. An unanticipated case was suggested, however, upon finding two types of metronidazole (Mtz)-susceptible strains: type I, in which frxA (which encodes a nitroreductase that contributes to Mtz susceptibility) is quiescent, and type II, in which frxA is well expressed. Here we report that inactivation of the fdxA ferredoxin gene (hp277) in type I strains resulted in high-level frxA expression (in effect, making them type II). However, fdxA null derivatives were obtained from only 6 of 32 type I strains tested that were readily transformed with an frxA::aphA marker. This suggested that fdxA is often essential. This essentiality was overcome in 4 of 20 strains by inactivating frxA, which suggested both that frxA overexpression is potentially deleterious and also that fdxA has additional, often vital roles. With type II strains, in contrast, fdxA null derivatives were obtained in 20 of 23 cases tested. Thus, fdxA is dispensable in most strains that normally exhibit (and tolerate) strong frxA expression. We propose that restraint of frxA expression helps maintain balanced metabolic networks in most type I strains, that other homeostatic mechanisms predominate in type II strains, and that these complex results constitute a phenotypic manifestation of H. pylori's great genetic diversity.  相似文献   

6.
7.
Lee YC  Lee SY  Pyo JH  Kwon DH  Rhee JC  Kim JJ 《Helicobacter》2005,10(3):240-248
BACKGROUND: Antibiotic-susceptible and -resistant Helicobacter pylori can be present simultaneously in the same host. The aim of this study was to evaluate the genomic diversity of H. pylori strains resulting in heteroresistant antibacterial phenotypes. MATERIALS AND METHODS: Twenty-one pairs of H. pylori strains isolated from the antrum and body displaying heteroresistant antibacterial phenotypes were included. We compared the genotypes of paired-isolates by random arbitrarily primed polymerase chain reaction (PCR), flagella gene PCR-based restriction fragment length polymorphism, and flaA gene sequencing. In metronidazole-heteroresistant isolates, the sequence variation of rdxA and frxA genes was analyzed using phylogenetic analysis. RESULTS: The DNA fingerprinting patterns of the paired isolates revealed that 12 pairs (57.1%) were identical, whereas one pair (3.8%) was different. The remaining eight pairs (38.1%) of isolates showed minor heterogenecity in fingerprinting patterns. In flaA gene sequencing, these identical and similar isolates showed close sequence similarity between the antrum and body, whereas different isolate showed 31 points of different nucleotide sequences. Phylogenetic analysis of the metronidazole-heteroresistant pairs showed consistent genetic relatedness of each paired isolates despite the sequence variation of the rdxA or frxA genes in five pairs (71.4%). CONCLUSIONS: These results suggest that continuing genomic diversities in the same strain may play an important role in modulating the antibiotic-heteroresistant H. pylori in vivo.  相似文献   

8.
A second nitrogen fixation (nif) operon in the cyanobacterium (blue-green alga) Anabaena (Nostoc) sp. strain PCC 7120 has been identified and sequenced. It is located just upstream of the nifHDK operon and consists of four genes in the order nifB, fdxN, nifS, and nifU. The three nif genes were identified on the basis of their similarity with the corresponding genes from other diazotrophs. The fourth gene, fdxN, codes for a bacterial type ferredoxin (Mulligan, M. E., Buikema, W. J., and Haselkorn, R. (1988) J. Bacteriol. 167, 4406-4410). The four genes are probably transcribed as a single operon, but are expressed at a lower level than the nifHDK operon, and only after a developmentally induced DNA rearrangement occurs that excises a 55-kilobase pair element from within the fdxN gene (Golden, J. W., Mulligan, M. E., and Haselkorn, R. (1987) Nature 327, 526-529; Golden, J. W., Carrasco, C. D., Mulligan, M. E., Schneider, G. J., and Haselkorn, R. (1988) J. Bacteriol. 170, 5034-5041). The promoter for the nifB operon was located by primer extension. Comparison of the nifB 5'-flanking sequence with the nifH 5'-flanking sequence did not reveal any consensus base pairs that would define a nif promoter for Anabaena. The operon contains two instances of 7-base pair directly repeated sequences: seven copies of the repeated sequence are found between the nifB and fdxN genes and six copies are found between the nifS and nifU genes. The function of these repeats is unknown.  相似文献   

9.
Yang YJ  Wu JJ  Sheu BS  Kao AW  Huang AH 《Helicobacter》2004,9(5):400-407
BACKGROUND: Metronidazole-resistant H. pylori associating with mutations of rdxA or frxA is still a debated topic. This study investigates whether rdxA and frxA mutations of H. pylori accounted for the high MIC value (>/= 64 micro g/ml) of metronidazole (Mtz). MATERIAL AND METHODS: From 126 clinical H. pylori isolates, we examined 14 Mtz-sensitive, 18 Mtz-resistant H. pylori, and eight pairs of Mtz-sensitive and Mtz-resistant colonies simultaneously present within a single gastric biopsy. The paired strains from one single biopsy were proven identical by PCR-RFLP. MICs of Mtz were checked by the E-test and agar dilution method. The mutations of rdxA and frxA sequencing were matched with the Mtz-susceptible ATCC 26695 and J99. RESULTS: There were 89% (16/18) of Mtz-resistant isolates with mutation of RdxA. Half of the 14 Mtz-sensitive strains, all without mutation of RdxA, still contained truncation of FrxA. Within the paired isolates from a single biopsy, rdxA mutation (86%) was more common than frxA mutation (43%) in those isolates with high-level Mtz-resistant H. pylori. RdxA truncation was more prevalent in Mtz-resistant strains with high MICs than in those with low to moderate MICs (75% vs. 20%, p =.01, OR: 12, 95% CI: 1.8-81.7). CONCLUSION: Mutations in the rdxA gene rather than the frxA gene generally determine a high MIC level of Mtz-resistant H. pylori in Taiwan.  相似文献   

10.
11.
The relative importance of the frxA and rdxA nitroreductase genes of Helicobacter pylori in metronidazole (MTZ) susceptibility and resistance has been controversial. Jeong et al. (J. Bacteriol. 182:5082--5090, 2000) had interpreted that Mtz(s) H. pylori were of two types: type I, requiring only inactivation of rdxA to became resistant, and type II, requiring inactivation of both rdxA and frxA to become resistant; frxA inactivation by itself was not sufficient to confer resistance. In contrast, Kwon et al. (Antimicrob. Agents Chemother. 44:2133--2142, 2000) had interpreted that resistance resulted from inactivation either of frxA or rdxA. These two interpretations were tested here. Resistance was defined as efficient colony formation by single cells from diluted cultures rather than as growth responses of more dense inocula on MTZ-containing medium. Tests of three of Kwon's Mtz(s) strains showed that each was type II, requiring inactivation of both rdxA and frxA to become resistant. In additional tests, derivatives of frxA mutant strains recovered from MTZ-containing medium were found to contain new mutations in rdxA, and frxA inactivation slowed MTZ-induced killing of Mtz(s) strains. Northern blot analyses indicated that frxA mRNA, and perhaps also rdxA mRNA, were more abundant in type II than in type I strains. We conclude that development of MTZ resistance in H. pylori requires inactivation of rdxA alone or of both rdxA and frxA, depending on bacterial genotype, but rarely, if ever, inactivation of frxA alone, and that H. pylori strains differ in regulation of nitroreductase gene expression. We suggest that such regulatory differences may be significant functionally during human infection.  相似文献   

12.
The nucleotide sequence of a region located downstream of the nifB gene, both in the cyanobacterium Anabaena sp. strain PCC 7120 and in Rhizobium meliloti, has been determined. This region contains a gene (fdxN) whose predicted polypeptide product strongly resembles typical bacterial ferredoxins. Cyanobacteria have not previously been shown to contain bacterial-type ferredoxins. The presence of this gene suggests that nitrogen-fixing cyanobacteria have at least four distinct ferredoxins.  相似文献   

13.
14.
Anabaena variabilis ATCC 29413 is a heterotrophic, nitrogen-fixing cyanobacterium containing both a Mo-dependent nitrogenase encoded by the nif genes and V-dependent nitrogenase encoded by the vnf genes. The nifB, nifS, and nifU genes of A. variabilis were cloned, mapped, and partially sequenced. The fdxN gene was between nifB and nifS. Growth and acetylene reduction assays using wild-type and mutant strains indicated that the nifB product (NifB) was required for nitrogen fixation not only by the enzyme encoded by the nif genes but also by the enzyme encoded by the vnf genes. Neither NifS nor NifU was essential for nitrogen fixation in A. variabilis.  相似文献   

15.
16.
By hybridization and heteroduplex studies the fixABC and nifA genes of the Rhizobium leguminosarum symbiotic plasmid pRL6JI have been identified. DNA sequencing of the region containing nifA showed an open reading frame of 1557 bp encoding a protein of 56, 178 D. Based on sequence homology, this ORF was confirmed to correspond to the nifA gene. Comparison of three nifA proteins (Klebsiella pneumoniae, Rhizobium meliloti, Rhizobium leguminosarum) revealed only a weak relationship in their N-terminal regions, whereas the C-terminal parts exhibited strong homology. Sequence analysis also showed that the R. leguminosarum nifA gene is followed by nifB and preceded by fixC with an open reading frame inserted in between. This novel ORF of 294 bp was found to be highly conserved also in R. meliloti. No known promoter and termination signals could be defined on the sequenced R. leguminosarum fragment.  相似文献   

17.
18.
19.
We have examined three strains of Azotobacter vinelandii, which contain defined deletions within the nifH, nifB, or nifE genes. All three strains accumulate inactive FeMo cofactor-deficient forms of the MoFe protein of nitrogenase. These forms can be activated in vitro by addition of isolated FeMo cofactor in N-methylformamide. Although the phenotypes of these strains are superficially the same, our characterizations demonstrate that the FeMo cofactor-deficient MoFe protein synthesized by the delta nifH strain is quite different from that synthesized by either the delta nifB or delta nifE strains. These differences include the following: 1) the activation of the delta nifH protein requires MgATP, whereas the activation of the delta nifB and delta nifE proteins does not; 2) the delta nifH extracts can be activated with FeMo cofactor to wild-type levels of activity, whereas delta nifB and delta nifE extracts cannot; 3) the delta nifH protein is markedly less heat stable than the delta nifB and delta nifE proteins; and 4) the migration of the delta nifH protein on native gels is very different when compared with delta nifB and delta nifE, which look like each other. These data can be explained if the nifB and nifE gene products are only involved in FeMo cofactor biosynthesis, whereas the nifH gene product is involved in both the initial synthesis of FeMo cofactor and in the insertion of preformed FeMo cofactor into the MoFe protein. A model is presented that suggests that the FeMo cofactor-deficient MoFe protein synthesized by the delta nifH strain is the one that normally participates in MoFe protein assembly in wild-type cells.  相似文献   

20.
The putative nifB promoter region of Herbaspirillum seropedicae contained two sequences homologous to NifA-binding site and a -24/-12 type promoter. A nifB::lacZ fusion was assayed in the backgrounds of both Escherichia coli and H. seropedicae. In E. coli, the expression of nifB::lacZ occurred only in the presence of functional rpoN and Klebsiella pneumoniae nifA genes. In addition, the integration host factor (IHF) stimulated the expression of the nifB::lacZ fusion in this background. In H. seropedicae, nifB expression occurred only in the absence of ammonium and under low levels of oxygen, and it was shown to be strictly dependent on NifA. DNA band shift experiments showed that purified K. pneumoniae RpoN and E. coli IHF proteins were capable of binding to the nifB promoter region, and in vivo dimethylsulfate footprinting showed that NifA binds to both NifA-binding sites. These results strongly suggest that the expression of the nifB promoter of H. seropedicae is dependent on the NifA and RpoN proteins and that the IHF protein stimulates NifA activation of nifB promoter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号