首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Rabbit kidney brush-border membrane vesicles were exposed to bacterial protease which cleaves off a large number of externally oriented proteins. Na+-dependent d-glucose transport is left intact in the protease-treated vesicles. The protease-treated membrane was solubilized with deoxycholate and the deoxycholate-extracted proteins were further resolved by passage through Con A-Sepharose columns. Sodium-dependent d-glucose activity was found to reside in a fraction containing a single protein band of Mr ? 165000 which is apparently a dimer of Mr ? 85 000. When reconstituted and tested for transport, this protein showed Na+-dependent, stereo-specific and phlorizin-inhibitable glucose transport. Transport activity is completely recovered and is 20-fold increased in specific activity. A similar isolate was obtained from rabbit small intestinal brush-border membranes and kidneys from several other species of animals.  相似文献   

2.
Abstract— The optic system of Scardinius erythrophthalmus has been used to study the axonal translocation of radioactivity from [3H]glucose. Intraocularly injected precursors were transported intra-axonally along the optic nerve towards the contralateral optic tectum. In comparison with the well known properties of axonal protein transport there were remarkable differences in the proximo-distal translocation of [3H]glucose. These were: (1) a delay in the labelling of the structures investigated, after tracer application; (2) only a rapid phase of transport; and (3) no accumulation of radioactivity in the region of nerve terminals in the optic tectum connected with the injected eye. The transported material was almost exclusively in the form of TCA-soluble compounds and was mainly glucose itself or its low molecular derivatives, but not glycogen. The rate of transport was decreased by lowered temperatures and was not immediately dependent on retinal protein synthesis. Colchicine blocked the axonal transport of glucose by up to 60–70 per cent.  相似文献   

3.
The stimulation of glucose transport in response to various types of stress has been studied. There is no relationship between effects of stress-inducing agents on glucose transport and their effects on cellular protein synthesis. Although the effect of stress on glucose transport appears analogous to its stimulation by insulin, cells that are slightly insulin-sensitive in terms of glucose transport (BHK cells) show a similar degree of stimulation as highly insulin-sensitive cells (differentiated 3T3-L1 cells). External labeling of the transporter protein with a photoactivatable derivative of mannose, 2-N-4-(1-azi-2,2,2-trifluoroethyl) benzoyl-1, 3-bis-(D-mannos-4-yloxy)-propylamine, shows that most of the increased glucose transport activity correlates with an increase in the amount of the transporter on the cell surface. Cells subjected to K+-depletion, which inhibits endocytosis and results in an accumulation of receptors at the cell surface, show the same increase in glucose transport as cells exposed to stress; stressed cells show no further increase in glucose transport when subjected to K+ depletion. These results support the view (Widnell, C.C., Baldwin, S.A., Davies, A., Martin, S., Pasternak, C.A. 1990. FASEB J 4:1634–1637) that cellular stress increases glucose transport by promoting the accumulation of glucose transporter molecules at the cell surface. Received: 20 June 1995/Revised: 29 September 1995  相似文献   

4.
The signaling mechanisms mediating myocardial glucose transport are not fully understood. Sucrose nonfermenting AMP-activated protein kinase (AMPK)-related kinase (SNARK) is an AMPK-related protein kinase that is expressed in the heart and has been implicated in contraction-stimulated glucose transport in mouse skeletal muscle. We first determined if SNARK is phosphorylated on Thr208, a site critical for SNARK activity. Mice were treated with exercise, ischemia, submaximal insulin, or maximal insulin. Treadmill exercise slightly, but significantly increased SNARK Thr208 phosphorylation. Ischemia also increased SNARK Thr208 phosphorylation, but there was no effect of submaximal or maximal insulin. HL1 cardiomyocytes were used to overexpress wild-type (WT) SNARK and to knockdown endogenous SNARK. Overexpression of WT SNARK had no effect on ischemia-stimulated glucose transport; however, SNARK knockdown significantly decreased ischemia-stimulated glucose transport. SNARK overexpression or knockdown did not alter insulin-stimulated glucose transport or glycogen concentrations. To study SNARK function in vivo, SNARK heterozygous knockout mice (SNARK+/−) and WT littermates performed treadmill exercise. Exercise-stimulated glucose transport was decreased by ~50% in hearts from SNARK+/− mice. In summary, exercise and ischemia increase SNARK Thr208 phosphorylation in the heart and SNARK regulates exercise-stimulated and ischemia-stimulated glucose transport. SNARK is a novel mediator of insulin-independent glucose transport in the heart.  相似文献   

5.
Properties so far studied of the protein that incorporates tyrosine show remarkable similarities with those of the microtubule proteins. The molecular weight of proteinyl-14C-tyrosine determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis was 54,000. The acceptor protein and proteinyl-14C-tyrosine were found in different states of aggregation; one of these states is apparently a dimer of molecular weight approximately 110,000. From a single preparation of proteinyl-14C-tyrosine variable proportions of dimer and higher molecular weight aggregates were obtained by incubating in different conditions. Proteinyl-14C-tyrosine was eluted from DEAE-Sephadex A-50 similarly to 3H-colchicine-tubulin complex. The pattern of elution from Sephadex G-200 of dimer proteinyl-14C-tyrosine was similar to that of 3H-colchicine-tubulin complex. Proteinyl-14C-tyrosine was precipitated with vinblastine sulfate.  相似文献   

6.
The usefulness of chemical cross-linking and 125I-labeling techniques in the analysis of protein-protein interactions and membrane polarity was evaluated on sarcoplasmic reticulum membranes. Treatment of fragmented sarcoplasmic reticulum vesicles with glutaraldehyde, dimethylsuberimidate, or copper-phenanthroline leads to the formation of high molecular weight aggregates of the Ca2+ transport ATPase; intermediate polymers of functionally and structurally interesting sizes accumulated only occasionally and in amounts of questionable significance. Coupling of membrane proteins with tolylene 2,4-diisocyanate-albumin inhibited tht ATPase activity and caused the appearance of high molecular weight aggregates and a band of about 160 000 dalton which corresponds to the ATPase-albumin complex.Even after the 100 000 dalton band of the Ca2+-transport ATPase was severely diminished by cross-linking with copper-phenanthroline or toluene diisocyanate-albumin, the Ca2+ binding proteins of sarcoplasmic reticulum remained unreacted. A consistent finding was the presence of dimers of the Ca2+ transport ATPase in aged preparations of sarcoplasmic reticulum which were converted upon reduction with β-mercaptoethanol into 100 000 dalton units.Microsomes were labeled with 125I in the presence of lactoperoxidase, glucose oxidase, and glucose and the radioactivity oft he various protein components was measured after sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The specific activity of calsequestrin was many times greater than that of the Ca+ transport ATPase suggesting that it is exposed on the outside surface may be sterically hindered from access by bulky reagents (tolylene diisocyanate-albumin, ferritin-labeled anti-calsequestrin antibodies, proteolytic enzymes, etc.), as calsequestin becomes highly reactive with these agents only after its release from the membrane.  相似文献   

7.
Transport through lipids and aquaporins is osmotic and entirely driven by the difference in osmotic pressure. Water transport in cotransporters and uniporters is different: Water can be cotransported, energized by coupling to the substrate flux by a mechanism closely associated with protein. In the K+/Cl and the Na+/K+/2Cl cotransporters, water is entirely cotransported, while water transport in glucose uniporters and Na+-coupled transporters of nutrients and neurotransmitters takes place by both osmosis and cotransport. The molecular mechanism behind cotransport of water is not clear. It is associated with the substrate movements in aqueous pathways within the protein; a conventional unstirred layer mechanism can be ruled out, due to high rates of diffusion in the cytoplasm. The physiological roles of the various modes of water transport are reviewed in relation to epithelial transport. Epithelial water transport is energized by the movements of ions, but how the coupling takes place is uncertain. All epithelia can transport water uphill against an osmotic gradient, which is hard to explain by simple osmosis. Furthermore, genetic removal of aquaporins has not given support to osmosis as the exclusive mode of transport. Water cotransport can explain the coupling between ion and water transport, a major fraction of transepithelial water transport and uphill water transport. Aquaporins enhance water transport by utilizing osmotic gradients and cause the osmolarity of the transportate to approach isotonicity.  相似文献   

8.
The uptake of 2-ketogluconate is inducible in Pseudomonas putida: 2-ketogluconate, glucose, gluconate, glycerol and glycerate were each good nutritional inducers of this ability. 2-Ketogluconate uptake obeyed saturation kinetics (apparent K min 2-ketogluconate-grown cells was 0.4 mM). 2-Ketogluconate was transported against a concentration gradient, apparently in an unchanged state, and the process required metabolic energy, all of which indicate an active transport system.A number of independently isolated mutants with deranged activity of a common glucose-gluconate uptake system were found to be also defective in 2-ketogluconate transport. Strains unable to transport 2-ketogluconate which grew readily on glucose and gluconate were also isolated. These results suggest that 2-ketogluconate transport is governed by at least two genetic elements: one which is also required to take up glucose and gluconate and another which appears to be specific for 2-ketogluconate transport. Similarly glucose and gluconate transport appears to require at least one factor which is not necessary for 2-ketogluconate transport, as suggested by the lack of induction of the common glucose-gluconate uptake system by glycerol and glycerate, substrates which are good inducers of 2-ketogluconate uptake.Abbreviations CCCP carbonyl-cyanide-m-chlorophenyl-hydrazone - cpm radioactivity counts per minute - GGU glucose-gluconate uptake - PFU plaque forming units - U.V. ultraviolet Dedicated to Prof. Roger Y. Stainer on the occasion of his 60th birthday  相似文献   

9.
The cytochalasin B binding component of the human erythrocyte monosaccharide transport system has been purified. The preparation appears to contain one major protein with an apparent polypeptide chain molecular weight of 55 000 and about 0.4 binding sites per chain. Cytochalasin B binds to the reconstituted preparation with a dissociation constant of 1.3·10?7 M, a value which is similar to that reported for the transport system in the intact erythrocyte.  相似文献   

10.
JAK2 (Janus kinase-2) overactivity contributes to survival of tumor cells and the V617FJAK2 mutant is found in the majority of myeloproliferative diseases. Tumor cell survival depends on availability of glucose. Concentrative cellular glucose uptake is accomplished by Na+ coupled glucose transport through SGLT1 (SLC5A1), which may operate against a chemical glucose gradient and may thus be effective even at low extracellular glucose concentrations. The present study thus explored whether JAK2 activates SGLT1. To this end, SGLT1 was expressed in Xenopus oocytes with or without wild type JAK2, V617FJAK2 or inactive K882EJAK2 and electrogenic glucose transport determined by dual electrode voltage clamp experiments. In SGLT1-expressing oocytes but not in oocytes injected with water or JAK2 alone, the addition of glucose to the extracellular bath generated a current (Ig), which was significantly increased following coexpression of JAK2 or V617FJAK2, but not by coexpression of K882EJAK2. Kinetic analysis revealed that coexpression of JAK2 enhanced the maximal transport rate without significantly modifying the affinity of the carrier. The stimulating effect of JAK2 expression was abrogated by preincubation with the JAK2 inhibitor AG490. Chemiluminescence analysis revealed that JAK2 enhanced the carrier protein abundance in the cell membrane. The decline of Ig during inhibition of carrier insertion by brefeldin A was similar in the absence and presence of JAK2. Thus, JAK2 fosters insertion rather than inhibiting retrieval of carrier protein into the cell membrane. In conclusion, JAK2 upregulates SGLT1 activity which may play a role in the effect of JAK2 during ischemia and malignancy.  相似文献   

11.
In skeletal muscle, the molecular mechanisms by which insulin stimulates glucose transport remains incompletely understood. Our study investigated the cellular dynamics of intracellular Ca2+ mobilisation and Ca2+/calmodulin-dependent protein kinase II (CaMKII) activation on insulin-induced skeletal muscle glucose transport. L6 myotubes were treated without or with insulin [100 nM] for 15 min and subsequently monitored for glucose uptake using isotope-labelled 2-deoxyglucose (I-2DOG), intracellular Ca2+ (Cai2+) release using Fluo-4AM and protein phosphorylation using Western blotting. Acute exposure of myotubes to insulin increased both Akt substrate-160 kDa (AS160) phosphorylation and I-2DOG uptake. Insulin concurrently increased Cai2+ and activated CaMKII. Exposing myotubes to either BAPTA/AM to sequester Cai2+ or KN-93 to inhibit CaMKII activity, decreased insulin-induced glucose uptake without affecting AS160 phosphorylation. On the other hand, blocking either calmodulin or the autoregulatory domain of CaMKII blocked the effect of insulin on both AS160 phosphorylation and glucose transport. Likewise, genetic knockdown of CaMKII in myotubes using siRNA completely abolished insulin-mediated glucose uptake. These results illustrate impairments in Cai2+ mobilisation and CaMKII activation are sufficient to negatively influence insulin-dependent glucose transport by L6 myotubes. Additionally, our results show for the first time that Cai2+ and domain-dependent CaMKII signalling differentially affect insulin-induced AS160 phosphorylation, and establish that Ca2+ and CaMKII are components of the insulin signalling pathway in L6 myotubes.  相似文献   

12.
Studies were performed to determine whether decreases in transport of calcium and glucose might be among the earliest changes triggered by the antigen-antibody reactions occurring on the cell surface of murine leukemia L5178Y cells after treatment with rabbit antisera. After treatment with antisera, in the absence of complement, these cells exhibited a decreased uptake of 45Ca, 2-deoxy[3H]glucose, and 3-0-methyl[3H]glucose. These changes occurred rapidly, within 2 minutes after the addition of antiserum, in contrast to the previously reported inhibitory effects of antiserum on DNA, RNA, and protein synthesis, which became demonstrable only after 4 to 8 hours. The kinetics of uptake of the radioactive substrates was biphasic, with a very rapid initial uptake followed by less rapid linear uptake. The precise mechanism of cell growth inhibition remains to be elucidated, but one of the initial effects of antiserum treatment may be a perturbation at the cell membrane such that transport of specific nutrients is decreased, resulting in the observed effects on macromolecular synthesis.  相似文献   

13.
In most streptococci, glucose is transported by the phosphoenolpyruvate (PEP):glucose/mannose phosphotransferase system (PTS) via HPr and IIABMan, two proteins involved in regulatory mechanisms. While most strains of Streptococcus thermophilus do not or poorly metabolize glucose, compelling evidence suggests that S. thermophilus possesses the genes that encode the glucose/mannose general and specific PTS proteins. The purposes of this study were to determine (i) whether these PTS genes are expressed, (ii) whether the PTS proteins encoded by these genes are able to transfer a phosphate group from PEP to glucose/mannose PTS substrates, and (iii) whether these proteins catalyze sugar transport. The pts operon is made up of the genes encoding HPr (ptsH) and enzyme I (EI) (ptsI), which are transcribed into a 0.6-kb ptsH mRNA and a 2.3-kb ptsHI mRNA. The specific glucose/mannose PTS proteins, IIABMan, IICMan, IIDMan, and the ManO protein, are encoded by manL, manM, manN, and manO, respectively, which make up the man operon. The man operon is transcribed into a single 3.5-kb mRNA. To assess the phosphotransfer competence of these PTS proteins, in vitro PEP-dependent phosphorylation experiments were conducted with purified HPr, EI, and IIABMan as well as membrane fragments containing IICMan and IIDMan. These PTS components efficiently transferred a phosphate group from PEP to glucose, mannose, 2-deoxyglucose, and (to a lesser extent) fructose, which are common streptococcal glucose/mannose PTS substrates. Whole cells were unable to catalyze the uptake of mannose and 2-deoxyglucose, demonstrating the inability of the S. thermophilus PTS proteins to operate as a proficient transport system. This inability to transport mannose and 2-deoxyglucose may be due to a defective IIC domain. We propose that in S. thermophilus, the general and specific glucose/mannose PTS proteins are not involved in glucose transport but might have regulatory functions associated with the phosphotransfer properties of HPr and IIABMan.  相似文献   

14.
The mechanism of arsenate inhibition of the glucose active transport system in wild-type cells of Neurospora crassa has been examined. Arsenate treatment results in approximately 65% inhibition of the glucose active transport system with only a small depression of cellular ATP levels. The transport system is not inhibited in cells treated with sodium arsenate in the presence of sodium azide. The transport inhibition is suppressed when orthophosphate is present during arsenate treatment, but is not reversed by orthophosphate when added after the arsenate treatment. The transport inhibition is completely reversed by treatment of the cells with mercaptoethanol. Gel chromatography of sonicates of intact cells which had been treated with [74As]arsenate reveals three radioactive peaks, one with the elution volume of arsenate, one with the elution volume of arsenite, and a high molecular-weight radioactive fraction. Treatment of the high molecular-weight radioactive fraction with mercaptoethanol results in the production of radioactive arsenite. In view of these findings, it is proposed that arsenate inhibition of the glucose active transport system in Neurospora involves transport of arsenate into the cells, probably via the orthophosphate transport system, reduction of the transported arsenate to arsenite, and interaction of arsenite with some component of the glucose active transport system, presumably via covalent binding with vicinal thiol groups.  相似文献   

15.
The initial events in glucose metabolism by all cells are the transport and phosphorylation of glucose. To quantify the relative contributions of these two processes to overall glucose utilization, we have developed an experimental approach for their in situ measurement as parallel processes. The method is based on the use of intracellular [2-3H]glucose as a substrate for both the transporter and hexokinase, and involves simultaneous measurement of [2-3H]glucose efflux and of 3H2O released by phosphorylation. The Xenopus oocyte expression system was used to test the method, since in these cells transport and phosphory lation activities can be regulated by expression of mRNA or injection of foreign protein. Oocytes microinjected with [2-3H]glucose showed no release of injected glucose, but did have saturable phosphorylation kinetics, with a Km of 40 7μM and a Vmax of 0.1 nmol/min/oocyte. Co-injection of yeast hexokinase increased glucose phosphorylation by five-fold. Expression of human glucose transporter (GLUT1) mRNA resulted in a 25-30-fold increase in the rate of saturable efflux of microinjected glucose compared to control oocytes. The kinetics of transport and phosphorylation of [2-3H]glucose were analyzed by a multiple curve-fitting program that provided estimates of kinetic coefficients for both processes from a single time course. The analysis showed that expression of GLUT1 shifted the rate-limiting step in glucose utilization from transport to phosphorylation. A similar shift occurred at a three-fold lower extracellular concentration of 2-deoxyglucose. In a pancreatic beta cell line both transport and phosphorylation showed high Km values, with phosphorylation as the limiting step. The in situ measurement of glucose transport and phosphorylation as parallel processes should be useful in defining the relative contributions of each step to overall glucose metabolism in other cell and tissue models. © 1993 Wiley-Liss, Inc.  相似文献   

16.
17.
In several organisms solute transport is mediated by the simultaneous operation of saturable and non-saturable (diffusion-like) uptake, but often the nature of the diffusive component remains elusive. The present work investigates the nature of the diffusive glucose transport in Olea europaea cell cultures. In this system, glucose uptake is mediated by a glucose-repressible, H+-dependent active saturable transport system that is superimposed on a diffusional component. The latter represents the major mode of uptake when high external glucose concentrations are provided. In glucose-sufficient cells, initial velocities of d- and l-[U-14C]glucose uptake were equal and obeyed linear concentration dependence up to 100 mM sugar. In sugar starved cells, where glucose transport is mediated by the saturable system, countertransport of the sugar pairs 3-O-methyl-d-glucose/d-[U-14C]glucose and 3-O-methyl-d-glucose/3-O-methyl-d-[U-14C]glucose was demonstrated. This countertransport was completely absent in glucose-sufficient cells, indicating that linear glucose uptake is not mediated by a typical sugar permease. The endocytic inhibitors wortmannin-A and NH4Cl inhibited neither the linear component of d- and l-glucose uptake nor the absorption of the nonmetabolizable glucose analog 3-O-methyl-d-[U-14C]glucose, thus excluding the involvement of endocytic mediated glucose uptake. Furthermore, the formation of endocytic vesicles assessed with the marker FM1-43 proceeded at a very slow rate. Activation energies for glucose transport in glucose sufficient cells and plasma membrane vesicles were 7 and 4 kcal mol− 1, respectively, lower than the value estimated for diffusion of glucose through the lipid bilayer of phosphatidylethanolamine liposomes (12 kcal mol− 1). Mercury chloride inhibited both the linear component of sugar uptake in sugar sufficient cells and plasma membrane vesicles, and the incorporation of the fluorescent glucose analog 2-NBDG, suggesting protein-mediated transport. Diffusive uptake of glucose was inhibited by a drop in cytosolic pH and stimulated by the protein kinase inhibitor staurosporine. The data demonstrate that the low-affinity, high-capacity, diffusional component of glucose uptake occurs through a channel-like structure whose transport capacity may be regulated by intracellular protonation and phosphorylation/dephosphorylation.  相似文献   

18.

Background

GLUT4 is a predominant insulin regulated glucose transporter expressed in major glucose disposal tissues such as adipocytes and muscles. Under the unstimulated state, GLUT4 resides within intracellular vesicles. Various stimuli such as insulin translocate this protein to the plasma membrane for glucose transport. In the absence of a crystal structure for GLUT4, very little is known about the mechanism of glucose transport by this protein. Earlier we proposed a homology model for GLUT4 and performed a conventional molecular dynamics study revealing the conformational rearrangements during glucose and ATP binding. However, this study could not explain the transport of glucose through the permeation tunnel.

Methodology/Principal Findings

To elucidate the molecular mechanism of glucose transport and its energetic, a steered molecular dynamics study (SMD) was used. Glucose was pulled from the extracellular end of GLUT4 to the cytoplasm along the pathway using constant velocity pulling method. We identified several key residues within the tunnel that interact directly with either the backbone ring or the hydroxyl groups of glucose. A rotation of glucose molecule was seen near the sugar binding site facilitating the sugar recognition process at the QLS binding site.

Conclusions/Significance

This study proposes a possible glucose transport pathway and aids the identification of several residues that make direct interactions with glucose during glucose transport. Mutational studies are required to further validate the observation made in this study.  相似文献   

19.
There is an increasing amount of experimental data on transport across biological membranes which cannot be readily accommodated by classical mobile carrier models. We propose models for membrane transport based upon current concepts in molecular enzymology, in which the membrane component involved in transport is an oligomeric protein which undergoes substrate-induced conformational changes. A number of paradoxical observations on glucose transport in the human erythrocyte are explained if the protein involved is a tetramer possessing two classes of binding sites with different affinities for glucose. We develop in detail a particular model of this type, the internal transfer model, in which transport occurs by transfer of substrate from one subunit to another of the protein. The fit of the predictions of the internal transfer model with most of the experimental data is very good. Those data which cannot be fitted by the model cannot be accounted for by any presently available model. We extend our model qualitatively to include the sodium-activated cotransport systems for sugars and amino acids.  相似文献   

20.
Trivalent chromium (Cr3+) is known to improve glucose homeostasis. Cr3+ has been shown to improve plasma membrane-based aspects of glucose transporter GLUT4 regulation and increase activity of the cellular energy sensor 5’ AMP-activated protein kinase (AMPK). However, the mechanism(s) by which Cr3+ improves insulin responsiveness and whether AMPK mediates this action is not known. In this study we tested if Cr3+ protected against physiological hyperinsulinemia-induced plasma membrane cholesterol accumulation, cortical filamentous actin (F-actin) loss and insulin resistance in L6 skeletal muscle myotubes. In addition, we performed mechanistic studies to test our hypothesis that AMPK mediates the effects of Cr3+ on GLUT4 and glucose transport regulation. Hyperinsulinemia-induced insulin-resistant L6 myotubes displayed excess membrane cholesterol and diminished cortical F-actin essential for effective glucose transport regulation. These membrane and cytoskeletal abnormalities were associated with defects in insulin-stimulated GLUT4 translocation and glucose transport. Supplementing the culture medium with pharmacologically relevant doses of Cr3+ in the picolinate form (CrPic) protected against membrane cholesterol accumulation, F-actin loss, GLUT4 dysregulation and glucose transport dysfunction. Insulin signaling was neither impaired by hyperinsulinemic conditions nor enhanced by CrPic, whereas CrPic increased AMPK signaling. Mechanistically, siRNA-mediated depletion of AMPK abolished the protective effects of CrPic against GLUT4 and glucose transport dysregulation. Together these findings suggest that the micronutrient Cr3+, via increasing AMPK activity, positively impacts skeletal muscle cell insulin sensitivity and glucose transport regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号