首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Digenetic trematodes usually show a high degree of specificity for their molluscan intermediate hosts. A panel of 4 digenean species (Echinostoma paraensei, E. trivolvis, Schistosoma mansoni, and Schistosomatium douthitti) and 5 snail species (Biomphalaria glabrata, Helisoma trivolvis, Lymnaea stagnalis, Stagnicola elodes, and Helix aspersa representing 3 gastropod families) was used to assess the relative contributions of miracidial behavior, host plasma osmolality, and host plasma factors in dictating specificity. Additional experiments were undertaken with a fifth digenean, Echinoparyphium sp. Expected patterns of compatibility were first confirmed; each parasite species produced patent infections in its known snail host, but not in the other snail species. One exception was S. douthitti, which unexpectedly did not infect L. stagnalis. As judged by direct observation and by noting their disappearance after exposure to snails, miracidia were generally less likely to attach to or penetrate incompatible than compatible hosts. However, over half of the miracidia of each parasite species attached to or attempted penetration of both compatible and incompatible hosts, suggesting that under the experimental conditions used, miracidial host location and attachment behaviors were not of overriding importance in dictating observed patterns of specificity. For each digenean species, the percentage of larvae that became immobile, rounded, showed tegumental damage, or died over a 6-hr interval in plasma of the various snails was assessed. In no case was plasma from a compatible host harmful to sporocysts or rediae. In contrast, in 8 of 16 (50%) incompatible combinations, snail plasma had a significant negative effect on sporocyst condition. In 4 of 12 (33%) incompatible combinations, plasma had a significant negative effect on rediae. In 9 of 10 combinations tested, lymnaeid plasma was toxic for the parasites of planorbid snails and in 2 of 4 combinations, planorbid plasma was toxic for the parasites of lymnaeid snails. Toxicity was not attributable to differences in plasma osmolality between snail species. The ability of plasma from incompatible snails to affect viability of both sporocysts and rediae was surprisingly strong, suggesting that humoral factors play a greater role in dictating patterns of digenean-snail specificity than previously appreciated.  相似文献   

2.
The ability of M line strain Biomphalaria glabrata hemocytes to adhere to mother sporocysts (MS) of PR1 Schistosoma mansoni or to MS or daughter rediae (DR) of Echinostoma paraensei was studied using an in vitro hemocyte adherence assay. Hemocytes were significantly more likely to bind to S. mansoni MS than to E. paraensei MS or DR. Hemocyte adherence to E. paraensei MS or DR was significantly increased if glutaraldehyde-fixed larvae were used as targets. Also, E. paraensei MS pretreated with the lectin concanavalin A (Con A) were more likely to be bound by hemocytes than MS pretreated with Con A in the presence of the competing sugar, alpha-methyl mannoside. Pretreatment of hemocytes with Con A increased their ability to bind E. paraensei sporocysts, but the effect was small compared to that achieved by pretreatment of MS with Con A. The lectin probably did not function as a bridging molecule between hemocytes and MS but, rather, altered the MS surface in a way that facilitated adherence. Similarly, adherence to E. paraensei MS was significantly increased if the MS were pretreated with cell-free M line plasma prior to use in adherence assays. Our results indicate that the two parasites provoke fundamentally different responses from M line hemocytes in vitro and that the living tegument can be modified by host humoral factors and by lectins such that hemocyte binding is significantly increased.  相似文献   

3.
Abstract. Two fluorescent calcium indicators, Calcium Green AM (CG) and Fura Red AM (FR), were used in conjunction with confocal microscopy to monitor hemocyte calcium dynamics following exposure to digenetic trematode larvae or relevant bioactive compounds. Changes in intracellular calcium levels, as measured by fluctuations in the CG/FR ratio, were correlated with hemocyte morphological changes. Hemocytes exposed to culture medium remained spread and had few calcium transients. However, following exposure to sporocysts, sporocyst secretory-excretory products, or small rediae of Echinostoma paraensei in culture medium, significantly more hemocytes both rounded up and exhibited calcium transients, though some hemocytes showed one response or the other but not both. Hemocytes did not respond significantly to large rediae, to sporocysts of another digenean ( Schistosoma mansoni ), or to bacterial lipopolysaccharides. Exposure to either zymosan particles or mannose BSA provoked responses similar to those seen with sporocysts of E. paraensei Caffeine caused rounding but no calcium transients, and phorbol myristate acetate provoked calcium transients but no rounding. The results show that sporocysts and small rediae of E. paraensei have pronounced effects on hemocyte rounding and calcium dynamics, and that these two events can occur independently of one another. This suggests that parasites may influence hemocytes in at least two separate ways.  相似文献   

4.
M line Biomphalaria glabrata snails of 4-, 6-, 8-, 10-, 12-, or 20-mm shell diameter were individually exposed to 10 miracidia each of Echinostoma paraensei. Snails 10 mm in size or larger were found to be significantly less likely to harbor intraventricular sporocysts than snails in smaller size categories. The percentage of snails with intraventricular sporocysts that also developed hemocyte encapsulation responses generally increased with snail size, whereas the number of snails that ultimately became heavily parasitized with large numbers of daughter rediae decreased significantly with snail size. However, at least some snails in each size category developed such disseminated infections. Comparative histological study of 6- and 12-mm snails revealed that parasites readily penetrated both groups of snails, but were more likely to be encapsulated and destroyed in larger snails. Encapsulation reactions were noted from 1 to 15 days postexposure (dpe) in 12-mm snails, indicating that unlike other commonly studied models of trematode-gastropod interactions, snail resistance is not always manifested during the first few days following exposure. Upon infection with E. paraensei, both 6- and 12-mm snails showed significant increases in the number of circulating hemocytes/mm3 of hemolymph. In 6-mm snails, such increases occurred concurrently with successful parasite development. Hemocyte counts in 6-mm snails were significantly elevated from 4 to 15 dpe whereas in 12-mm snails they were significantly elevated from 2 to 30 dpe. A significant degree of resistance to E. paraensei develops as B. glabrata grows and attains sexual maturity. A mechanistic understanding of this phenomenon awaits further investigation.  相似文献   

5.
Earlier in vivo work by Lie et al. (1977) indicated that the innate resistance of the 10R2 strain of Biomphalaria glabrata to PR1 Schistosoma mansoni could be interfered with if the snails were infected previously with another trematode, Echinostoma paraensei. We have studied this interference phenomenon using in vitro methods in an attempt to understand its mechanistic basis. Hemolymph, derived from 10R2 snails infected with E. paraensei for 14-28 days, killed 25% of S. mansoni sporocysts in vitro, significantly less (P less than 0.001) than the 90% killing rate observed with hemolymph from uninfected, control 10R2 snails. Hemolymph from the infected 10R2 snails and from schistosome susceptible M line snails did not differ significantly (P greater than 0.1) in their relative inability to kill S. mansoni sporocysts in vitro. The defect in sporocyst killing exhibited by echinostome infected 10R2 snails was traced to the cellular, rather than the humoral, component of the hemolymph. Preparations containing uninfected 10R2 snail hemolymph and echinostome daughter rediae exhibited significantly less (P less than 0.001) killing of S. mansoni sporocysts than did controls containing only 10R2 hemolymph and S. mansoni sporocysts. Our results suggest that echinostome larvae release factors that interfere with the ability of B. glabrata hemocytes to kill S. mansoni sporocysts.  相似文献   

6.
Responses of the hematopoietic organ (HO) in Biomphalaria glabrata snails to extracts and excretory-secretory (E-S) products of Echinostoma paraensei larvae were studied to understand the HO-activating mechanism. M-line B. glabrata snails were injected with materials from E. paraensei larvae, and the size of the HO was ascertained in histological sections. The size of HO in snails injected with extracts and E-S products from sporocysts and rediae was significantly larger than that in snails injected with culture medium. E-S products of sporocysts were fractionated using ultrafiltration membranes, polyacrylamide gel electrophoresis, and electrophoretic elution. Examination of fractionated E-S products of sporocysts revealed that specific components of E-S products were responsible for HO-stimulating activity.  相似文献   

7.
Hemocytes derived from a strain (13-16-R1) of Biomphalaria glabrata resistant to Schistosoma mansoni were significantly more likely to bind untreated latex beads than hemocytes from the schistosome-susceptible M line strain. Beads preincubated in 13-16-R1 plasma were more readily bound by both 13-16-R1 and M line hemocytes than beads preincubated in M line plasma. Beads preincubated in plasma derived from snails of either strain infected with the trematode Echinostoma paraensei were more readily bound by hemocytes than beads preincubated in plasma from control snails of the corresponding strain. Plasma from snails exposed to S. mansoni did not have a similar effect. Throughout these experiments, beads receiving a particular treatment were consistently bound at higher rates by 13-16-R1 than M line hemocytes. SDS-PAGE of plasma components eluted from beads revealed differences between treatments, particularly in diffuse bands falling into two groups, of 75-130 and 150-220 kDa. The results indicate that both hemocytes and plasma components from the two host strains differ and identify plasma molecules deserving of additional study as possible modulators of hemocyte effector functions. Also, S. mansoni and E. paraensei provoked different responses in the same host snail.  相似文献   

8.
As carbohydrates on the surfaces of sporocysts of digenetic trematodes may be targets of attack by the molluscan internal defense system, the lectin-binding patterns of living, in vitro-transformed sporocysts of Schistosoma mansoni and Echinostoma paraensei were characterized. Schistosoma mansoni sporocysts specifically bound 8 and E. paraensei 6 of 11 lectins examined. Sporocysts of the 2 species responded differently to 7 of the 11 lectins. Lectins inhibitable by mannose, galactose, and N-acetylgalactosamine were bound by both species. Lectins inhibited by fucose and N-acetylglucosamine bound uniquely to S. mansoni, and an N-acetylneuraminic acid (NeuNAc)-inhibitable lectin bound only to E. paraensei. Preincubation of sporocysts of either species in the plasma of the host snail Biomphalaria glabrata for as long as 24 hr only marginally altered the subsequent binding of lectins. Pretreatment of S. mansoni sporocysts with pronase E and trypsin substantially altered subsequent lectin binding, but similar treatment of E. paraensei sporocysts had little effect. A neuraminidase enzyme derived from Clostridium perfringens diminished binding of the NeuNAc-inhibitable lectin to E. paraensei sporocysts. This study indicates that lectin-binding monosaccharides are expressed abundantly on sporocyst surfaces, they vary considerably between 2 species parasitizing the same host, and they are not obscured readily or altered by exposure to host plasma.  相似文献   

9.
Sixteen species of aquatic snails of four families were tested by quantitative technique under standardized conditions for their suitability as intermediate hosts for Angiostrongylus cantonensis. These species were the planorbid snails Biomphalaria glabrata, Biomphalaria alexandrina, Planorbis planorbis, Planorbis intermixtus, Bulinus truncatus, Bulinus contortus, Bulinus africanus, Bulinus tropicus and Helisoma sp.; the lymnaeid snails Lymnaea natalensis, Lymnaea tomentosa, Lymnaea stagnalis, and Stagnicola elodes; the physid snail Physa acuta (an Egyptian and a German strain) and the ampullariid snails Marisa cornuarietis and Lanistes carinatus. All these snail species proved to be susceptible to infection with A. cantonensis, and first stage larvae reached the infective third stage in all of them. However, the rate and intensity of infection varied with different species. B. glabrata was the most susceptible snail species with a 100% infection rate and an average percentage recovery of third stage larvae of 26.1. This was followed by S. elodes and B. africanus, with a 100% infection rate and an average percentage recovery of third stage larvae of 15.6 and 14.6 respectively. The rest of snail species proved to be less susceptible. For comparative evaluation of the suitability of the various snail species as intermediate hosts of A. cantonensis a "Capacity Index" was determined. This index should provide a useful method for the evaluation of the suitability of various snails as intermediate hosts of nematode parasites under standardized conditions in the laboratory.  相似文献   

10.
Miracidia of Echinostoma paraensei were cultured in medium containing 14C-labeled amino acids, allowed to transform into sporocysts, and their excretory/secretory products (E-S) were collected and characterized by sodium dodecyl sulfate polyacrylamide gel electrophoresis and autoradiography. Effects of E-S on hemocytes of Biomphalaria glabrata were also assessed. E-S collected during day 1 of culture (E-S1) contained several polypeptides, none of which were labeled, suggesting that E-S1 are largely preformed. E-S1 significantly depressed the ability of hemocytes to phagocytose sheep red blood cells (SRBC), but otherwise had little effect on hemocyte structure or behavior. E-S released by sporocysts in day-2 cultures (E-S2) and in older cultures generally were similar and also contained several polypeptides, many of which were labeled, indicating active synthesis of E-S in vitro. E-S2 strongly inhibited hemocyte uptake of SRBC. Also, hemocytes pretreated with E-S2 assumed a spherical shape and failed to spread normally. E-S obtained through 10 days of culture mediated this effect. Active components of E-S2 were greater than 100 kDa in their native configuration, were heat- and trypsin-labile, and were bound by anti-E-S antibodies. Both greater than 200- and 80-kDa bands were prominent in anti-E-S immunoprecipitates. Hemocytes derived from snails of the 13-16-R1 strain of B. glabrata (a strain resistant to infection with Schistosoma mansoni), when pretreated with E-S2, bound to sporocysts of S. mansoni but lost their ability to damage such sporocysts. E-S2 interfered with hemocyte functions in ways inferred from earlier classic in vivo studies of trematode-snail interactions.  相似文献   

11.
Prior exposure of Biomphalaria glabrata to the eggs of an incompatible digenean, Plagiorchis elegans, rendered this snail host less suitable to a compatible species, Schistosoma mansoni. Although P. elegans failed to develop patent infections in B. glabrata, it reduced the production of S. mansoni cercariae by 88%. Concomitantly, host attributes such as reproduction, growth, and survival were compromised. The effect of P. elegans infection was most severe among snails that, in addition, had developed patent schistosome infections. Although few S. mansoni cercariae were produced, egg production by B. glabrata was only 4% of control values. Furthermore, no doubly infected snails survived for more than 3 wk after patency, whereas controls experienced no mortality during the same time period. The above effects were attributable to the establishment and persistence of P. elegans sporocysts in the tissues of the incompatible snail host. Their indirect antagonistic interaction with thelarval stages of S. mansoni may be mediated, in part, through their long-term stimulation of the host's internal defense mechanisms. These findings are discussed with a view to use P. elegans and other plagiorchiid digeneans as agents in the biological control of snails and snail-borne diseases.  相似文献   

12.
Among the large cells located in the posterior of Echinostoma caproni and E. paraensei miracidia are secretory cells, germinal cells (GC), and undifferentiated cells. Secretory cells do not give rise to progeny, whereas GC do. Undifferentiated cells develop into GC that can also divide to produce embryos. Cleavage of GC of E. caproni occurs only after the parasite has entered the snail host and develops into a sporocyst. With E. paraensei, GC are larger than noted for E. caproni, and in 3 of 23 miracidia examined, germinal cell cleavage had occurred in the miracidium such that an embryo containing 20-25 blastomeres was present. Observations on the germinal elements of miracidia help to explain previous results showing that (1) E. paraensei sporocysts release mother rediae a few days earlier than do sporocysts of E. caproni, and that (2) a single mother redia is produced ahead of all others by sporocysts of E. paraensei, but not by sporocysts of E. caproni. The present study adds support to the concept that E. caproni and E. paraensei are distinct species.  相似文献   

13.
Abstract. The cytokine interleukin-1β (IL-1β) mediates interactions of immune and inflammatory cells in mammals. Previous reports also have linked plasma (cell-free hemolymph) levels of IL-1β in the snail Biomphalaria glabrata to resistance against Schistosoma mansoni . In the present study, fluorescent probes were used to study larval schistosome and snail hemocyte viability during in vitro encounters. Hemolymph (plasma and hemocytes) from schistosome-susceptible (M-line) and resistant (13–16-R1) B. glabrata was added to sporocysts of S. mansoni and the viability of hemocytes and parasites was assessed. Next, IL-1β was added to sporocyst-hemolymph samples, the viability of sporocysts and hemocytes determined and then compared to control assays. The number of live sporocysts present after incubation for 1 h with hemolymph from M-line snails was significantly greater than the number seen when hemolymph from 13–16-R1 snails was tested. Nearly all sporocysts survived the 1 h incubation with M-line hemolymph, and most of the hemocytes attached to sporocysts were dead. In contrast, nearly all sporocysts were dead when hemolymph from 13–16-R1 snails was tested, and most attached hemocytes were alive. Addition of IL-1β to M-line hemolymph resulted in a dramatic increase in sporocyst death. Addition of IL-1β to 13–16-R1 hemolymph produced a small but significant increase in the rate of sporocyst death. These results indicate that the concentration of IL-1β present in hemolymph from B. glabrata is directly related to the ability of this snail to kill S. mansoni sporocysts in vitro.  相似文献   

14.
Hemocytes taken from six different gastropod snails, Achatina achatina, A. fulica, Biomphalaria glabrata, Bulinus natalensis, Helix aspersa, and Lymnaea stagnalis, were compared for morphology, peroxidase activity, and, using methods developed for L. stagnalis, the ability to generate reactive oxygen inermediates upon phagocytic stimulation. Numbers of hemocytes per milliliter hemolymph and hemocytes' microscopical morphology showed some variation among the snail species. Peroxidase activity was demonstrated in all snail hemocytes except in those of B. glabrata and A. fulica. Hemocytes of all species generated superoxide upon phagocytic stimulation with zymosan (tested by superoxide dismutase-inhibitable reduction of nitroblue tetrazolium). When tested, hemocytes of A. achatina and of A. fulica displayed luminol-dependent chemiluminescence activity.  相似文献   

15.
Eggs of Plagiorchis elegans were readily ingested by Stagnicola elodes of all ages, but were more infective to immature than mature snails. Infection enhanced the growth of the host in a dose-dependent manner. The number of cercariae released by immature snails increased with the age of the snail host; mature snails yielded fewer cercariae. Heavily infected snails tended to die prematurely, thereby reducing their total production of cercariae to levels below those of more lightly infected individuals. Even light infections castrated the snail host. Snails that acquired the infection as juveniles never produced eggs. Actively reproducing snails ceased egg laying within days of infection and never recovered. All parasite effects on the growth and reproduction of the snail host first manifested themselves during the early stages of infection, long before the development of daughter sporocysts and cercariae, and are therefore attributable to the effects of mother sporocysts. The study provides insight into how this natural enemy of mosquito larvae may be established in natural snail populations by means of strategically timed introductions of parasite eggs, with a goal of maximizing cercarial production for the biological control of sympatric mosquito larvae.  相似文献   

16.
Sporocysts of Schistosoma mansoni (PR1 strain) survive and grow in Biomphalaria glabrata PR albino strain snails, whereas they are encapsulated and die in B. glabrata 10R2 strain snails. These processes also occur in an in vitro system in which the only living cells are those of sporocysts and snail hemolymph. Hemocytes of the susceptible snail are normally not effective in damaging sporocysts. However, when the encounter occurred in the presence of cell-free plasma from resistant snails, previously impotent hemocytes severely damaged sporocysts in 24 hr. The cytotoxic capacity of resistant strain hemocytes was not altered by plasma from susceptible snails. Furthermore, it was retained even when plasma was replaced by culture medium free of snail components. The nature of the plasma factor(s) which facilitated damage by otherwise impotent hemocytes is discussed, and evidence is evaluated for the hypothesis that snail resistance is dependent upon the specificity of cytophilic factors present both in the plasma and on the hemocyte plasma membranes.  相似文献   

17.
Schistosoma mansoni modulation of phagocytosis in Biomphalaria glabrata   总被引:1,自引:0,他引:1  
Both short-term (3 hr) exposure of Biomphalaria glabrata snails (M-line and 13-16-R1) to Schistosoma mansoni (PR1) miracidia and in vitro incubation of parasite sporocysts with host hemolymph components altered host phagocytic ability. Hemocytes obtained from susceptible (M-line) snails that had been exposed to parasite miracidia for 3 hr showed reduced levels of phagocytosis of yeast cells in vitro compared to hemocytes from unexposed individuals. Incubation of whole hemolymph with sporocysts in vitro also reduced yeast phagocytosis in this susceptible strain. In contrast, resistant (13-16-R1) hemocytes showed increased levels of yeast phagocytosis after in vitro incubation with the parasite, and the opsonic properties of 13-16-R1 plasma were greater after exposure of snails to miracidia. These strain-specific effects of S. mansoni on host hemocyte phagocytosis and plasma opsonization were seen only when both plasma and hemocytes were present at the time of exposure to the parasite.  相似文献   

18.
A retrospective study was undertaken on 70 French populations of Lymnaea truncatula experimentally infected with Fasciola hepatica to determine whether or not susceptibility of snails to infection influenced redial and cercarial production. Results were compared with those obtained from two control populations, known for prevalences higher than 60% when experimentally infected with F. hepatica. In the 70 other populations examined, the prevalences ranged from 2 to 75%. In 55 of these populations, where the prevalence was more than 20%, a high proportion (50.1-56.8%) of snails died after cercarial shedding, whereas in the other groups (non-shedding snails with the most differentiated larvae being free cercariae, rediae containing cercariae, immature rediae, or sporocysts, respectively), snail death was significantly less. In 11 populations, where the prevalence values were 5-19%, only 14% of snails died after cercarial shedding, whereas snails with free cercariae, rediae with cercariae, or immature rediae showed significant increases in snail mortality. In the remaining four snail populations, with prevalences of less than 5%, the most differentiated larval forms were only immature rediae and/or sporocysts. Overall, the number of rediae containing cercariae significantly decreased with decreasing prevalence values. The low prevalence of experimental infection in several populations of snails might be explained by the occurrence of natural infections with miracidia originating from a mammalian host other than cattle, and/or by genetic variability in the susceptibility of snails to infection.  相似文献   

19.
Zhang SM  Zeng Y  Loker ES 《Innate immunity》2008,14(3):175-189
A growing body of evidence suggests an important role for fibrinogen-like proteins in innate immunity in both vertebrates and invertebrates. It has been shown that fibrinogen-related proteins (FREPs), plasma proteins present in the freshwater snail Biomphalaria glabrata, the intermediate host for the human blood fluke Schistosoma mansoni, are diverse and involved in snail innate defense responses. To gain further insight into the functions of FREPs, recombinant FREP proteins (rFREPs) were produced in Escherichia coli and antibodies (Abs) were raised against the corresponding rFREPs. We first show that most FREP proteins exist in their native conformation in snail hemolymph as multimeric proteins. Western blot analyses reveal that expression of multiple FREPs including FREP4 in plasma from M line and BS-90 snails, which are susceptible and resistant to S. mansoni infection, respectively, is up-regulated significantly after infection with the trematode Echinostoma paraensei. Moreover, our assays demonstrate that FREPs are able to bind E. paraensei sporocysts and their secretory/excretory products (SEPs), and a variety of microbes (Gram-positive and Gram-negative bacteria and yeast). Furthermore, this binding capability shows evidence of specificity with respect to pathogen type; for example, 65-75-kDa FREPs (mainly FREP4) bind to E. paraensei sporocysts and their SEPs whereas 95-kDa and 125-kDa FREPs bind the microbes assayed. Our results suggest that FREPs can recognize a wide range of pathogens, from prokaryotes to eukaryotes, and different categories of FREPs seem to exhibit functional specialization with respect to the pathogen encountered.  相似文献   

20.
The fate of Schistosoma mansoni (Trematoda) sporocysts in its molluscan host Biomphalaria glabrata (Gastropoda) is determined by circulating phagocytes (hemocytes). When the parasite invades a resistant snail, it is attacked and destroyed by hemocytes, whereas in a susceptible host it remains unaffected. We used 3 inbred strains of B. glabrata: 13-16-R1 and 10-R2, which are resistant to the PR-1 strain of S. mansoni, and M-line Oregon (MO), which is susceptible to PR-1. In an in vitro killing assay using plasma-free hemocytes from these strains, the rate of parasite killing corresponded closely to the rate by which S. mansoni sporocysts are killed in vivo. Hemocytes from resistant snails killed more than 80% of S. mansoni sporocysts within 48 hr, whereas sporocyst mortality in the presence of hemocytes from susceptible snails was <10%. Using this in vitro assay, we assessed the involvement of reactive oxygen species (ROS) produced by resistant hemocytes, during killing of S. mansoni sporocysts. Inhibition of NADPH oxidase significantly reduced sporocyst killing by 13-16-R1 hemocytes, indicating that ROS play an important role in normal killing. Reduction of hydrogen peroxide (H2O2) by including catalase in the killing assay increased parasite viability. Reduction of superoxide (O2-), however, by addition of superoxide dismutase or scavenging of hydroxyl radicals (*OH) and hypochlorous acid (HOCl) by addition of hypotaurine did not alter the rate of sporocyst killing by resistant hemocytes. We conclude that H2O2 is the ROS mainly responsible for killing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号