首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
[35S]--70S ribosomes (150 Ci/mmol) were isolated from E. coli MRE-600 cells grown on glucose-mineral media in the presence of [35S] ammonium sulfate. The labeled 30S and 50S subunits were obtained from [35S] ribosomes by centrifugation in a sucrose density gradient of 10--30% under dissociating conditions (0.5 mM Mg2+). The activity of [35S]--70S ribosomes obtained by reassociation of the labeled subunits during poly(U)-dependent diphenylalanine synthesis was not less than 70%. The activity of [35S]--70S ribosomes during poly(U)-directed polyphenylalanine synthesis was nearly the same as that of the standard preparation of unlabeled ribosomes. The 23S, 16S and 5S RNAs isolated from labeled ribosomes as total rRNA contained no detectable amounts of their fragments as revealed by polyacrylamide gel electrophoresis. The [35S] ribosomal proteins isolated from labeled ribosomes were analyzed by two-dimensional gel electrophoresis. The [35S] label was found in all proteins, with the exception of L20, L24 and L33 which did not contain methionine or cysteine residues.  相似文献   

2.
Abstract— The transport of two cyclohexitol stereoisomers, myo-inositol (inositol) and scyllo-inositol (scyllitol), from blood into the CNS in vivo and into the choroid plexus in vitro was studied. In vitro , the uptake of [3H]scyllitol or [3H]inositol by choroid plexuses, isolated from rabbits and incubated in artificial CSF, was measured. Both scyllitol and inositol inhibited [3H]scyllitol or [3H]inositol accumulation by the choroid plexus. Inositol competitively inhibited [3H]scyllitol accumulation and both isomers had a comparable affinity (Kt= 0.1 m m ) for the single cyclohexitol accumulation system. The other 6 stereoisomers tested had an order of magnitude less affinity for the cyclohexitol accumulation system of choroid plexus. Thiol reagents that penetrate cells inhibited inositol accumulation by choroid plexus more effectively than nonpenetrating thiol reagents. In vivo , in unanesthetized rabbits. the transport of unmetabolized [3H]inositol from blood into CSF, choroid plexus and brain was readily saturated by increasing the plasma levels of myo-inositol but not by the stereoisomer d -chiroinositol. Similarly, the transport of unmetabolized [3H]scyllitol into CSF, brain and choroid plexus was readily saturated by increasing the plasma levels of myo-inositol. Beside documenting the stereospecificity and thiol reagent sensitivity of the inositol transport mechanism of the choroid plexus, these results provide further evidence that the choroid plexus is a locus for cyclohexitol transport between blood and CSF. Moreover, they show that scyllitol, which, like inositol, is present at a higher concentration in brain than plasma, can be transported from blood into CSF and brain by the same system that transports inositol.  相似文献   

3.
beta-Amyloid (Abeta) concentration in the cerebrospinal fluid (CSF) of the brain may be regulated by the choroid plexus, which forms a barrier between blood and brain CSF. Abeta uptake from CSF was determined as its volume of distribution (V(D)) into isolated rat choroid plexus tissue. The V(D) of [125I]Abeta1-40 was corrected by subtraction of the V(D) of [14C]sucrose, a marker for extracellular space and diffusion. Abeta uptake into choroid plexus was time and temperature dependent. Uptake of [125I]Abeta was saturable. Abeta uptake was not affected by addition of transthyretin or apolipoprotein E3. In studies with primary culture monolayers of choroidal epithelial cells in Transwells, Abeta permeability across cells, corrected by [(14)C]sucrose, was greater from the CSF-facing membrane than from the blood-facing membrane. Similarly, cellular accumulation of [125I]Abeta was concentrative from both directions and was greater from the CSF-facing membrane, suggesting a bias for efflux. Overall, these results suggest the choroid plexus selectively cleanses Abeta from the CSF by an undetermined mechanism(s), potentially reducing Abeta from normal brains and the brains of Alzheimer's disease patients.  相似文献   

4.
The role of aquaporins in cerebrospinal fluid (CSF) secretion was investigated in this study. Western analysis and immunocytochemistry were used to examine the expression of aquaporin 1 (AQP1) and aquaporin 4 (AQP4) in the rat choroid plexus epithelium. Western analyses were performed on a membrane fraction that was enriched in Na(+)/K(+)-ATPase and AE2, marker proteins for the apical and basolateral membranes of the choroid plexus epithelium, respectively. The AQP1 antibody detected peptides with molecular masses of 27 and 32 kDa in fourth and lateral ventricle choroid plexus. A single peptide of 29 kDa was identified by the AQP4 antibody in fourth and lateral ventricle choroid plexus. Immunocytochemistry demonstrated that AQP1 is expressed in the apical membrane of both lateral and fourth ventricle choroid plexus epithelial cells. The immunofluorescence signal with the AQP4 antibody was diffusely distributed throughout the cytoplasm, and there was no evidence for AQP4 expression in either the apical or basolateral membrane of the epithelial cells. The data suggest that AQP1 contributes to water transport across the apical membrane of the choroid plexus epithelium during CSF secretion. The route by which water crosses the basolateral membrane, however, remains to be determined.  相似文献   

5.
Golgi and endoplasmic-reticulum fractions were prepared from the lactating guinea-pig mammary gland. The endoplasmic-reticulum fraction was highly active in the processing and sequestration of milk-protein primary translation products. Explants from the lactating gland in organ culture were used to identify milk-protein intermediates present in the secretory pathway, and the timing of the events leading to their post-translational modification. With [35S]methionine, the milk proteins labelled after a short pulse (3 min) were represented by the partially processed (but not phosphorylated) caseins and alpha-lactalbumin sequestered within membrane-bound vesicles. After a 30 min labelling period, higher-Mr caseins with electrophoretic mobilities identical with those of the phosphorylated caseins isolated from milk were identified in the incubation medium, and sequestered within membrane-bound vesicles. Pulse-chase experiments established a precursor-product relationship between these forms. Secretion is apparent approx. 30 min after sequestration. Caseins are highly phosphorylated; removal of the phosphate residues with acid phosphatase results in proteins with increased electrophoretic mobility, similar to those of the partially processed early casein intermediates found sequestered in explants after a 3 min pulse with [35S]methionine, and those sequestered within microsomal membranes after mRNA-directed cell-free protein synthesis. A comparison of the proteins labelled during both short (5 min) and long (30 min) pulses with [35S]methionine and [32P]Pi shows that, in contrast with the 35S-labelled caseins, those labelled with [32P]Pi exhibit only electrophoretic mobilities identical with those of the mature caseins isolated from milk and those identified after long labelling periods with [35S]methionine. No phosphorylated early intermediate forms of caseins were identified. We conclude that the synthesis and post-translational modification of guinea-pig caseins occurs in two stages, (i) an early event involving synthesis and sequestration within the endoplasmic reticulum, an event that involves signal-peptide removal, followed (ii) 10-20 min later by phosphorylation at a different point in the secretory pathway, probably in the Golgi complex. Secretion of the phosphorylated caseins occurs 10-20 min later.  相似文献   

6.
Active Transport of Nicotine by the Isolated Choroid Plexus In Vitro   总被引:2,自引:1,他引:1  
Abstract: In vitro , the transport of [14C]nicotine into the isolated choroid plexus, the anatomical locus of the blood–CSF barrier, was studied. The isolated rabbit choroid plexus accumulated [14C]nicotine by two processes: an active saturable transport process and a nonsaturable process. The [14C]nicotine accumulation process by choroid plexus was not due to binding or intracellular metabolism of the [14C]nicotine. The [14C]nicotine accumulation process in isolated choroid plexus was inhibited by weak bases, including tolazoline and lidocaine, but not by the weak acid probenecid. The accumulation process was decreased 60% by iodoacetate and dinitrophenol and by low temperatures. These results are consistent with previous autoradiographic evidence showing the choroid plexus concentrated [14C]nicotine in vivo , and suggest that the choroid plexus may transfer nicotine between blood and CSF in vivo .  相似文献   

7.
Summary Light (LM-ARG) and electron microscope (EM-ARG) autoradiographs were prepared from immature rat choroid plexus and ependyma at 5, 10, 30, and 60 min and 16 h following intraperitoneal administration of [3H]- labeled amino acid mixtures. Intracellular protein synthesis and transport were ascertained in lateral and fourth ventricle choroid plexus epithelium by quantitative EM-ARG at the several post-injection intervals. ARG were also prepared from choroid plexuses cultured for one day, pulse labeled for one hour and reincubated for various periods in nonradioactive media. Significant labeling of both attached and free apical protrusions (blebs) was observed in both choroid plexus and ependyma in vivo and in choroid plexus in vitro. This phenomenon was interpreted as a physiologically significant mechanism for protein transport (apocrine secretion) by epithelia into the cerebrospinal fluid (CSF).This study was supported in part by N.I.H. Research Grant NS 12906  相似文献   

8.
The role of aquaporins in cerebrospinal fluid (CSF) secretion was investigated in this study. Western analysis and immunocytochemistry were used to examine the expression of aquaporin 1 (AQP1) and aquaporin 4 (AQP4) in the rat choroid plexus epithelium. Western analyses were performed on a membrane fraction that was enriched in Na+/K+-ATPase and AE2, marker proteins for the apical and basolateral membranes of the choroid plexus epithelium, respectively. The AQP1 antibody detected peptides with molecular masses of 27 and 32 kDa in fourth and lateral ventricle choroid plexus. A single peptide of 29 kDa was identified by the AQP4 antibody in fourth and lateral ventricle choroid plexus. Immunocytochemistry demonstrated that AQP1 is expressed in the apical membrane of both lateral and fourth ventricle choroid plexus epithelial cells. The immunofluorescence signal with the AQP4 antibody was diffusely distributed throughout the cytoplasm, and there was no evidence for AQP4 expression in either the apical or basolateral membrane of the epithelial cells. The data suggest that AQP1 contributes to water transport across the apical membrane of the choroid plexus epithelium during CSF secretion. The route by which water crosses the basolateral membrane, however, remains to be determined.  相似文献   

9.
Hypoxanthine Transport and Metabolism in the Central Nervous System   总被引:1,自引:1,他引:0  
The mechanisms by which hypoxanthine, the principal purine in plasma and CSF, enters and leaves rabbit brain, choroid plexus, and CSF were investigated in the isolated choroid plexus in vitro and by injecting [14C]hypoxanthine intraventricularly and [3H]hypoxanthine intravenously. The isolated choroid plexus accumulated and extensively metabolized [14C]hypoxanthine; however, 14C was readily released from choroid plexus principally as [14C]-hypoxanthine. After infusion of [3H]hypoxanthine intravenously, [3H]hypoxanthine entered CSF and brain slowly and was converted in brain to nucleotides. Fewer than 5% of the acid-soluble purine nucleotides in brain entered rabbit brain from plasma hypoxanthine (and inosine) per 24 h. After intraventricular injection of [14C]hypoxanthine, the [14C]hypoxanthine was cleared from the CSF into the blood or accumulated by brain and largely converted into 14C-nucleotides. Little [14C]xanthine and no [14C]uric acid or allantoin were formed. These studies show that brain, unlike most other tissues, rapidly recycles hypoxanthine and converts it into purine nucleotides, and not unsalvageable purines.  相似文献   

10.
Summary Organ cultures of choroid plexus tissues from the lateral ventricle of juvenile rats have been maintained for periods up to 7 wk in a chemically defined, serum-free media. Of several media and various supplements evaluated, the best growth and survival was obtained with the Pasadena Foundation for Medical Research-4 media supplemented with three hormones: epidermal growth factor, insulin, and hydrocortisone. Autoradiographic studies demonstrated that the epithelial cells incorporated [3H]leucine and [3H]thymidine indicating active protein and DNA synthesis, respectively. The organ cultures were characterized by bulbous, vesicular outgrowths from the choroidal villi explants. The fluid-filled lumina of the vesccles reached diameters of 900 μm and were easily accessed by micropipettes. The walls of the vesicles were composed of single layers of epithelial cells in which the ultrastructural features in the in vivo tissue were well maintained. The in vivo polarity (apical end toward the media and basilar end of the cells toward the luminal cavity) was also maintained. This morphologically stable in vitro system seems to be a promising model for investigation of secretory mechanisms of choroidal tissue. This work was supported in part by National Institutes of Health Grant NS 12906-06.  相似文献   

11.
Although lentiviruses such as human, feline and simian immunodeficiency viruses (HIV, FIV, SIV) rapidly gain access to cerebrospinal fluid (CSF), the mechanisms that control this entry are not well understood. One possibility is that the virus may be carried into the brain by immune cells that traffic across the blood–CSF barrier in the choroid plexus. Since few studies have directly examined macrophage trafficking across the blood–CSF barrier, we established transwell and explant cultures of feline choroid plexus epithelium and measured trafficking in the presence or absence of FIV. Macrophages in co-culture with the epithelium showed significant proliferation and robust trafficking that was dependent on the presence of epithelium. Macrophage migration to the apical surface of the epithelium was particularly robust in the choroid plexus explants where 3-fold increases were seen over the first 24 h. Addition of FIV to the cultures greatly increased the number of surface macrophages without influencing replication. The epithelium in the transwell cultures was also permissive to PBMC trafficking, which increased from 17 to 26% of total cells after exposure to FIV. Thus, the choroid plexus epithelium supports trafficking of both macrophages and PBMCs. FIV significantly enhanced translocation of macrophages and T cells indicating that the choroid plexus epithelium is likely to be an active site of immune cell trafficking in response to infection.  相似文献   

12.
Riboflavin Homeostasis in the Central Nervous System   总被引:4,自引:2,他引:2  
Abstract: The mechanisms by which riboflavin, which is not synthesized in mammals, enters and leaves brain, CSF, and choroid plexus were investigated by injecting [14C]riboflavin intravenously or intraventricularly. Tracer amounts of [14C]riboflavin with or without FMN were infused intravenously at a constant rate into normal, starved, or probenecid-pretreated rabbits. At 3 h, [14C]riboflavin readily entered choroid plexus and brain, and, to a much lesser extent, CSF. Over 85% of the [14C]riboflavin in brain and choroid plexus was present as [14C]FMN and [14C]FAD. The addition of 0.2 mmol/kg FMN to the infusate markedly depressed the relative entry of [14C]riboflavin into brain, choroid plexus, and, less so, CSF, whereas starvation increased the relative entry of [14C]riboflavin into brain and choroid plexus. After intraventricular injection (2 h), most of the [14C]riboflavin was extremely rapidly cleared from CSF into blood. Some of the [14C]riboflavin entered brain, where over 85% of the 14C was present as [14C]FMN plus [14C]FAD. The addition of 1.23μmol FAD (which was rapidly hydrolyzed to riboflavin) to the injectate decreased the clearance of [14C]riboflavin from CSF and the phosphorylation of [14C]riboflavin in brain. Probenecid in the injectate also decreased the clearance of [14C]riboflavin from CSF. These results show that the control of entry and exit of riboflavin is the mechanism, at least in part, by which total riboflavin levels in brain cells and CSF are regulated. Penetration of riboflavin through the blood-brain barrier, saturable efflux of riboflavin from CSF, and saturable entry of riboflavin into brain cells are three distinct parts of the homeostatic system for total riboflavin in the central nervous system.  相似文献   

13.
On the basis of association with endoplasmic reticulum membranes, poyribosomes isolated from mouse myeloma MOPC-104E were separated into two classes, membrane bound and free. The membrane-bound and free polyribosomes were then compared for their capacity to incorporate [35S]methionine into A-particle proteins in vitro. As revealed by a radioimmunological assay method, labeling of A-particle protein occurred with the membrane-bound polyribosomes but not with the free polyribosomes. Peptide mapping of the immunoprecipitated, in vitro [35S]methionine-labeled product confirmed that A-particle protein had been synthesized in vitro.  相似文献   

14.
Our objectives were to compare proteins secreted by caprine oviductal explants and oviductal epithelial (OE) cells in vitro. Oviducts were collected from goats on Days 1 (n=5) and 5 (n=5) of the estrous cycle. Radiolabeled secretory proteins from tissue segments and cell cultures were visualized using SDS-PAGE and fluorography. After culture, media from ampulla oviduct segments collected on Days 1 and 5 of the estrous cycle contained an acidic 97 kDa protein, which was greatly reduced in culture medium obtained from infundibulum and isthmus oviduct segments. A complex of low molecular weight proteins (14-26 kDa) could be modulated by estradiol when OE cells were cultured on plastic. This complex was constitutively expressed when OE cells were cultured on Matrigel-coated filters. Polarized OE cells were also capable of compartment-specific secretion of [L-(35)S]-methionine-labeled proteins. A 45 kDa acidic protein was predominantly secreted into the apical compartment while a 66 kDa acidic protein was preferentially localized in the basal compartment. Proteins secreted by OE cells were similar to proteins secreted by tissue segments in vitro. Therefore, under well-defined culture conditions OE cells may be useful in enhancing in vitro fertilization or early embryonic development.  相似文献   

15.
The capacity of castor-bean endosperm tissue to incorporate [35S]methionine into proteins of the total particulate fraction increased during the first 3 days of germination and subsequently declined. At the onset of germination 66% of the incorporated 35S was found in the separated endoplasmic-reticulum fraction, with the remainder in mitochondria, whereas at later developmental stages an increasing proportion of 35S was recovered in glyoxysomes. The kinetics of [35S]methionine incorporation into the major organelle fractions of 3-day-old endosperm tissue showed that the endoplasmic reticulum was immediately labelled, whereas a lag period preceded the labelling of mitochondria and glyoxysomes. When kinetic experiments were interrupted by the addition of an excess of unlabelled methionine, incorporation of [35S]methionine into the endoplasmic reticulum rapidly ceased, but incorporation into mitochondia and glyoxysomes continued for a further 1h. Examination of isolated organelle membranes during this period showed that the addition of unlabelled methionine resulted in a stimulated incorporation of [35S]no methionine into the endoplasmic-reticulum membrane for 30 min, after which time the 35S content of this fraction declined, whereas that of the glyoxysomal membranes continued to increase slowly. The 35S-labelling kinetics of organelles and fractions derived therefrom are discussed in relation to the role of the endoplasmic reticulum in protein synthesis during glyoxysome biogenesis.  相似文献   

16.
The time-course of development of sulphate and iodide transport mechanisms in choroid plexus was studied by measuring uptake of [35S]sulphate and [125I]iodide from an incubating medium by isolated choroid plexuses of foetal and newborn rabbits and cats. Sulphate uptake by choroid plexus was poorly developed in rabbit foetuses just before term, but highly developed in newborn animals. Iodide uptake was already well developed in the most immature foetuses studied.  相似文献   

17.
VITAMIN B6 TRANSPORT IN THE CENTRAL NERVOUS SYSTEM: IN VITRO STUDIES   总被引:10,自引:10,他引:0  
Abstract— The transport into and release of tritium labeled vitamin B6 ([3H]B6) from rabbit brain slices and isolated choroid plexuses were studied. In vitro, both brain slices and choroid plexus concentrated [3H]B6 by an energy dependent uptake system when [3H]pyridoxine (PIN) was added to the incubation medium. Most of the [3H] within the tissues was phosphorylated [3H]B6. In each tissue, the nonphosphorylated vitamers inhibited the uptake of [3H]PIN from the medium significantly more than the phosphorylated vitamers. The concentrations of the nonphosphorylated B6 vitamers necessary to inhibit brain and choroid plexus uptake of [3H]PIN from the medium by 50% were approx 0.4 μm and 5–10μm respectively after a 30 min incubation. Both brain slices and choroid plexus readily released (46 and 56% respectively in 30 min) previously accumulated [3H]B6 into artificial CSF. However, brain slices released only nonphosphorylated [3H]B6, whereas the choroid plexus released predominantly phosphorylated [3H]B6. Addition of unlabeled PIN to the release media significantly increased the percentage of [3H]B6 released by both brain slices and choroid plexus. The results of these in vitro studies provide evidence that: (1) both brain slices and chloroid plexus possess specific uptake and release mechanisms for B6, and (2) these mechanisms tend to regulate intracellular B6 levels. These studies also suggest that the choroid plexus serves as a locus for the transfer of B6 from blood to CSF and is the source of most of the phosphorylated B6 in CSF.  相似文献   

18.
Amyloid-β peptide (Aβ) concentration in CSF is potentially a diagnostic and therapeutic target for Alzheimer's disease (AD). The purpose of this study was to clarify the elimination mechanism of human Aβ(1-40) [hAβ (1-40)] from CSF. After intracerebroventricular (ICV) administration, [(125) I]hAβ(1-40) was eliminated from the rat CSF with a half-life of 17.3 min. The elimination of [(125) I]hAβ(1-40) was significantly inhibited by human receptor-associated protein (RAP) and the elimination was attenuated in either anti-low-density lipoprotein receptor-related protein (LRP)1 antibody-treated or RAP-deficient mice, suggesting that a member(s) of the low-density lipoprotein receptor gene family is involved in the elimination of hAβ(1-40) from CSF. The amounts of LRP1 and LRP2 proteins were determined by means of liquid chromatography-tandem mass spectrometry, and the LRP1 content in rat choroid plexus was determined to be 3.7 fmol/μg protein, whereas the LRP2 content was below the detection limit (<0.2 fmol/μg protein). Conditionally, immortalized rat choroid plexus epithelial cells exhibited predominant apical-to-basal and apical-to-cell transport of [(125) I]hAβ(1-40). These results indicated that hAβ(1-40) is actively eliminated from CSF and this process is at least partly mediated by LRP1 expressed at choroid plexus epithelial cells, which therefore play a role in determining CSF concentrations of hAβ(1-40).  相似文献   

19.
During neurosurgery the freshly secreted extracellular fluid (ECF) from the choroid plexus was sampled with small pieces of application paper in three patients with intractable epilepsy. The samples were analyzed for free amino acids and for soluble proteins. The results were compared with corresponding data on extracellular fluid from the brain surface obtained with dialysis-perfusion as well as with the cerebrospinal fluid (CSF) acquired by lumbar punction. The dialysis data were calibrated against the paper results. The choroid plexus secretion had a high concentration of transthyretin as well as of an unidentified protein with an isoelectric point of 7.4. The cortical ECF exhibited high concentrations of tau-globulin and gamma-trace protein. Among the amino acids, glutamine had lower concentration in the choroid plexus secretion and higher concentrations in the ECF of the brain compared to the CSF. The amino acid derivative ethanolamine exhibited a similar pattern. This was interpreted to demonstrate that these compounds enter the CSF from the brain tissue. In contrast, alanine, serine, and taurine had a lower concentration in the CSF than in the plexus secretion which suggests that they are removed from the CSF by brain tissue.  相似文献   

20.
Translation of the large subunit of ribulose-1,5-bisphosphate carboxylase (LSU) was investigated by labeling of isolated barley plastids with [35S]-methionine. In both chloroplasts and etioplasts, labeling of LSU was severely impaired if plastid membranes were removed from the reaction mixtures. Removal of membrane-bound polysomes with high salt or puromycin greatly decreased translation of LSU. Pulse-labeled chloroplast membranes were shown to release LSU if chased with unlabeled methionine in the presence of stroma. Immunoprecipitation detected higher amounts of labeled LSU translation intermediates associated with the membrane fraction than in the soluble fraction. We therefore conclude that, in plastids, membrane-bound polysomes are required not only for translation of membrane-intrinsic proteins but also for translation of a soluble protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号