首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Hydroxyl radical footprinting and directed probing from Fe(II)-derivatized IF3 have been used to map the interaction of IF3 relative to 16S rRNA and tRNA(Met)(f) in the 30S ribosomal subunit. Our results place the two domains of IF3 on opposite sides of the initiator tRNA, with the C domain at the platform interface and the N domain at the E site. The C domain coincides with the location of helix 69 of 23S rRNA, explaining the ability of IF3 to block subunit association. The N domain neighbors proteins S7 and S11 and may interfere with E site tRNA binding. Our model suggests that IF3 influences initiator tRNA selection indirectly.  相似文献   

2.
Eukaryotic initiation factor 3 (eIF3) is a multisubunit complex that is required for binding of mRNA to 40 S ribosomal subunits, stabilization of ternary complex binding to 40 S subunits, and dissociation of 40 and 60 S subunits. These functions and the complex nature of eIF3 suggest multiple interactions with many components of the translational machinery. Recently, the subunits of mammalian and Saccharomyces cerevisiae eIF3 were identified, and substantial differences in the subunit composition of mammalian and S. cerevisiae were observed. Mammalian eIF3 consists of 11 nonidentical subunits, whereas S. cerevisiae eIF3 consists of up to eight nonidentical subunits. Only five of the subunits of mammalian and S. cerevisiae are shared in common, and these five subunits comprise a "core" complex in S. cerevisiae. eIF3 from wheat consists of at least 10 subunits, but their relationship to either the mammalian or S. cerevisiae eIF3 subunits is unknown. Peptide sequences derived from purified wheat eIF3 subunits were used to correlate each subunit with mammalian and/or S. cerevisiae subunits. The peptide sequences were also used to identify Arabidopsis thaliana cDNAs for each of the eIF3 subunits. We report seven new cDNAs for A. thaliana eIF3 subunits. A. thaliana eIF3 was purified and characterized to confirm that the subunit composition and activity of wheat and A. thaliana eIF3 were similar. We report that plant eIF3 closely resembles the subunit composition of mammalian eIF3, having 10 out of 11 subunits in common. Further, we find a novel subunit in the plant eIF3 complex not present in either mammalian or S. cerevisiae eIF3. These results suggest that plant and mammalian eIF3 evolved similarly, whereas S. cerevisiae has diverged.  相似文献   

3.
Mammalian mitochondrial translational initiation factor 3 (IF3(mt)) binds to the small subunit of the ribosome displacing the large subunit during the initiation of protein biosynthesis. About half of the proteins in mitochondrial ribosomes have homologs in bacteria while the remainder are unique to the mitochondrion. To obtain information on the ribosomal proteins located near the IF3(mt) binding site, cross-linking studies were carried out followed by identification of the cross-linked proteins by mass spectrometry. IF3(mt) cross-links to mammalian mitochondrial homologs of the bacterial ribosomal proteins S5, S9, S10, and S18-2 and to unique mitochondrial ribosomal proteins MRPS29, MRPS32, MRPS36 and PTCD3 (Pet309) which has now been identified as a small subunit ribosomal protein. IF3(mt) has extensions on both the N- and C-termini compared to the bacterial factors. Cross-linking of a truncated derivative lacking these extensions gives the same hits as the full length IF3(mt) except that no cross-links were observed to MRPS36. IF3 consists of two domains separated by a flexible linker. Cross-linking of the isolated N- and C-domains was observed to a range of ribosomal proteins particularly with the C-domain carrying the linker which showed significant cross-linking to several ribosomal proteins not found in prokaryotes.  相似文献   

4.
5.
The binding site for eIF-3 on the small ribosomal subunit was studied (a) by use of a complex of eIF-3 and derived 40 S ribosomal subunit from rat liver, and (b) by use of native small ribosomal subunits from rabbit reticulocytes. After treatment of both complexes with dimethyl 4,7-dioxo-5,6-dihydroxy-3,8-diazadecanbisimidate ribosomal proteins S3a, S4, S6, S7, S8, S9, S10, S23/24 and S27 became covalently linked to eIF-3 and were isolated together with the factor by gradient centrifugation. The ribosomal proteins were identified by two-dimensional polyacrylamide gel electrophoresis after periodate cleavage of the link(s).  相似文献   

6.
Complexes of 30 S subunits and [14C]IF3 were allowed to react with the protein cross-linking reagents, N,N′-p-phenylenedimaleimide or dimethylsuberimidate. Non-cross-linked IF3 was removed from the complex by centrifugation in a buffer containing a high salt concentration, and the total protein was extracted from the pelleted particles. The mixture of cross-linked products was analyzed by radioimmunodiffusion with antisera prepared against all of the individual 30 S ribosomal proteins. Radioactivity was found in the precipitin bands formed with antisera against ribosomal proteins S1, S11, S12, S13, S19 and S21. The results show that IF3 was present in covalent cross-linked complexes containing those 30 S ribosomal proteins and imply that they comprise or are near the binding site for initiation factor IF3.  相似文献   

7.
Complexes of purified 40S ribosomal subunits and initiation factor 3 from rabbit reticulocytes were crosslinked using the reversible protein crosslinking reagent, 2-iminothiolane, under conditions shown previously to lead to the formation of dimers between 40S proteins but not higher multimers. The activity of both the 40S subunits and initiation factor 3 was maintained. Protein crosslinked to the factor was purified by sucrose density gradient centrifugation following nuclease digestion of the ribosomal subunit: alternatively, the total protein was extracted from 40S: factor complexes. The protein obtained by either method was analyzed by two-dimensional diagonal polyacrylamide/sodium dodecyl sulfate gel electrophoresis. Ribosomal proteins were found in multimeric complexes of high molecular weight due to their crosslinking to components of eIF3. Identification of the ribosomal proteins appearing below the diagonal was accomplished by elution, radioiodination, two-dimensional polyacrylamide/urea gel electrophoresis, and radioautography. Proteins S2, S3, S3a, S4, S5, S6, S8, S9, S11, S12, S14, S15, S16, S19, S24, S25, and S26 were identified. Because many of the proteins in this group form crosslinked dimers with each other, it was impossible to distinguish proteins directly crosslinked to eIF3 from those crosslinked indirectly through one bridging protein. The results nonetheless imply that the 40S ribosomal proteins identified are at or near the binding site for initiation factor 3.  相似文献   

8.
Infection of mouse L cells with mengovirus resulted in the activation of a protein kinase (PK) that selectively phosphorylated the small, 38,000-molecular-weight alpha subunit of eucaryotic initiation factor 2 (eIF-2) in vitro. The mengovirus-activated kinase was detected in vitro approximately 3 h after virus adsorption. The ratio of phosphorylated to unphosphorylated eIF-2 also increased in vivo between 3 and 7 h after adsorption. The virus-activated kinase fractionated with the ribosomal pellet and had a high affinity for DEAE-cellulose and Mono Q ion-exchange columns. Gel electrophoresis of the kinase activity eluting from the Mono Q column and silver staining of the gel revealed only one protein band with a molecular mass of 70 kilodaltons. The optimal assay conditions for the mengovirus-activated kinase paralleled those of the double-stranded RNA-activated PK (dsRNA-PK). Lysates from infected cells contained elements capable of activating partially purified dsRNA-PK. These elements were identified as double-stranded RNA by their sensitivity to double-stranded RNase. The phosphorylation of the alpha subunit of eIF-2 coincided with the synthesis of dsRNA in infected cells, suggesting that the mengovirus-activated kinase is the dsRNA-PK. The phosphorylation of the alpha subunit of eIF-2 correlated with the global inhibition of protein synthesis that occurs at late times after infection.  相似文献   

9.
Extracts from poliovirus-infected HeLa cells are unable to translate vesicular stomatitis virus or cellular mRNAs in vitro, probably reflecting the poliovirus-induced inhibition of host cell protein synthesis which occurs in vivo. Crude initiation factors from uninfected HeLa cells are able to restore translation of vesicular stomatitis virus mRNA in infected cell lysates. This restoring activity separates into the 0 to 40% ammonium sulfate fractional precipitate of ribosomal salt wash. Restoring activity is completely lacking in the analogous fractions prepared from poliovirus-infected cells. The 0 to 40% ammonium sulfate precipitates from both uninfected and infected cells contain eucaryotic initiation factor 3 (eIF-3), eIf-4B, and the cap-binding protein (CBP), which is detected by means of a cross-linking assay, as well as other proteins. The association of eIF-3 and cap binding protein was examined. The 0 to 40% ammonium sulfate precipitate of ribosomal salt wash from uninfected and infected cells was sedimented in sucrose gradients. Each fraction was examined for the presence of eIF-3 antigens by an antibody blot technique and for the presence of the CBP by cross-linking to cap-labeled mRNAs. From uninfected cells, a major proportion of the CBP cosedimented with eIF-3; however, none of the CBP from infected cells sedimented with eIF-3. The results suggest that the association of the CBP with eIF-3 into a functional complex may have been disrupted during the course of poliovirus infection.  相似文献   

10.
Initiation factor IF-3 is required in addition to IF-1 and IF-2 for maximal initial rate of poly(U)-directed binding of AcPhe-tRNA to 30S ribosomal subunits of E. coli. Incubation periods longer than 10 sec, by which time the reaction is virtually over, progressively obscure the requirement for IF-3 in AcPhe-tRNA binding. IF-3 also stimulates the poly(A, G, U)-directed binding of fMet-tRNA to the 30S ribosomal subunit, but in this case, significant stimulation can still be observed even with extended incubation. These results indicate that IF-3 functions similarly in the translation of synthetic mRNA, as it does with natural mRNA, participating in ribosome dissociation and in the formation of the initiation complex from the 30S ribosomal subunit.  相似文献   

11.
Bovine mitochondrial translational initiation factor 2 (IF-2(mt)) is organized into four domains, an N-terminal domain, a central G-domain and two C-terminal domains. These domains correspond to domains III-VI in the six-domain model of Escherichia coli IF-2. Variants in IF-2(mt) were prepared and tested for their abilities to bind the small (28S) subunit of the mitochondrial ribosome. The binding of wild-type IF-2(mt) was strong (K(d) approximately 10-20 nM) and was not affected by fMet-tRNA. Deletion of the N-terminal domain substantially reduced the binding of IF-2(mt) to 28S subunits. However, the addition of fMet-tRNA stimulated the binding of this variant at least 2-fold demonstrating that contacts between fMet-tRNA and IF-2(mt) can stabilize the binding of this factor to 28S subunits. No binding was observed for IF-2(mt) variants lacking the G-domain which probably plays a critical role in organizing the structure of IF-2(mt). IF-2(mt) contains a 37-amino acid insertion region between domains V and VI that is not found in the prokaryotic factors. Mutations in this region caused a significant reduction in the ability of the factor to promote initiation complex formation and to bind 28S subunits.  相似文献   

12.
The formation of 30-S initiation complexes depends strongly on initiation factor IF-3; at molar ratios of IF-3 to 30-S ribosomes up to one a stimulation is observed, whereas at ratios higher than one, initiation complex formation declines strongly. The target of the observed inhibition of fMet-tRNA binding at high concentrations of IF-3 is the 30-S initiation complex itself. On the one hand addition of IF-3 to preformed 30-S initiation complexes leads to a release of bound fMet-tRNA which is linear with the amount of factor added, whereas no effect on isolated 70-S initiation complexes is seen. The release of fMet-tRNA from preformed 30-S initiation complexes is accompanied by a release of IF-2 in a one-to-one molar ratio which is in agreement with our previous findings showing that binding of fMet-tRNA takes place via a binary complex: IF-2 . fMet-tRNA (Eur. J. Biochem. 66, 181--192 and 77, 69--75). On the other hand increasing amounts of both IF-2 and fMet-tRNA relieve the IF-3-induced inhibition of 30-S initiation complex formation. From these findings it is concluded that IF-3 and the IF-2 . fMet-tRNA complex are mutually exclusive on the 30-S ribosome. This implies that under our experimental conditions MS2 RNA binding precedes fMet-tRNA binding if one accepts that the presence of IF-3 on the 30-S subunit is obligatory for messenger binding.  相似文献   

13.
Initiation factor eIF-3 from rat liver forms a binary complex with the small ribosomal subunit. Within this complex, 18S ribosomal RNA can be cross-linked to the 66 000 dalton subunit of eIF-3 by treating the complex with a short bifunctional reagent, diepoxybutane, with a distance of 4A between the reactive groups. In binary complexes containing eIF-3 premodified with the heterobifunctional reagent, methyl-p-azido-benzoylaminoacetimidate (10A), the 66 000 dalton subunit of eIF-3 became covalently bound to 18S rRNA after irradiation of the complex with ultraviolet light. The involvement of only one of the eight eIF-3 subunits in the formation of the covalent RNA-protein complexes indicates a highly specific interaction between 18S rRNA and eIF-3 at the attachment site of the factor on the 40S subunit.  相似文献   

14.
A mutation in the infA gene encoding initiation factor 1 (IF1) gives rise to a cold-sensitive phenotype. An Escherichia coli strain with this mutation was used as a tool to select for second-site suppressors that compensate for the cold sensitivity and map specifically to rRNA. Several suppressor mutants with altered 16S rRNA that partially restore growth of an IF1 mutant strain in the cold were isolated and characterized. Suppressor mutations were found in helix (h)18, h32, h34 and h41 in 16S rRNA. These mutations are not clustered to any particular region in 16S rRNA and none overlap previously reported sites of interaction with IF1. While the isolated suppressors are structurally diverse, they are functionally related because all affect ribosomal subunit association in vivo. Furthermore, in vitro subunit-association experiments indicate that most of the suppressor mutations directly influence ribosomal subunit association even though none of these are confined to any of the known intersubunit bridges. These results are consistent with the model that IF1 is an rRNA chaperone that induces large-scale conformational changes in the small ribosomal subunit, and as a consequence modulates initiation of translation by affecting subunit association.  相似文献   

15.
S J Lauer  E A Burks  J M Ravel 《Biochemistry》1985,24(12):2924-2928
Wheat germ initiation factor 3 (eIF-3) is a large (15 S) particle containing 10 subunits with molecular weights ranging from 28 000 to 116 000. Two forms of wheat germ eIF-3 which differ in ability to support polypeptide synthesis in vitro have been obtained by chromatography on carboxymethyl-Sephadex (CM-Sephadex). The less active form is not retained on CM-Sephadex in 50 mM KCl and contains lower amounts of two subunits, the 116 000-dalton polypeptide (pp116) and the 36 000-dalton polypeptide (pp36). The more active form is retained on CM-Sephadex in 50 mM KCl and is eluted by 150 mM KCl. Treatment of the more active form with small amounts of trypsin results in a rapid degradation of four of the subunits (pp116, pp107, pp87, and pp36) and in a rapid loss in the ability to support polypeptide synthesis. Trypsin treatment also diminishes the ability of eIF-3 to support the binding of mRNA to 40S ribosomal subunits. These findings indicate that pp116, pp107, pp87, and pp36 are in exposed positions in the eIF-3 particle and that pp116 and/or pp36 are essential for activity.  相似文献   

16.
The circular dichroism spectra of Escherichia coli 30 S ribosomal subunits have been determined between 200 and 320 nm in the presence and in the absence of initiation factor IF-3. The addition of IF-3 did not produce any major alteration of the circular dichroism spectrum of the 30 S subunits between 320 and 240 nm, but resulted in an increase of the negative ellipticity between 240 and 205 nm. The effect was maximal for an IF-3:30 S molar ratio of approximately one, and further addition of IF-3 did not lead to a further increase of ellipticity. A similar effect was not seen when the 30 S ribosomal subunits were previously heat-inactivated to destroy their IF-3 binding capacity. These data indicate that the ribosomal binding of IF-3 may be accompanied by an increase in the secondary structure of the ribosomal proteins, but does not involve any major net change in the secondary structure of the rRNA.  相似文献   

17.
18.
Nature of the ribosomal binding site for initiation factor 3 (IF-3)   总被引:2,自引:0,他引:2  
In vitro labelled IF-3 binds to both 16S and 23S rRNA but while one molecule of IF-3 binds to each 30S particle, binding to 50S particles is negligible. If proteins are removed by LiCl or CsCl treatment from either ribosomal subunit, however, binding specificity is lost and new “binding sites” appear on both ribosomal particles. Controlled RNase digestion of the 30S subunits does not cause the loss of any r-protein while controlled trypsin digestion results in the loss or degradation of several r-proteins; compared to the Phe-tRNA binding site, the binding site of IF-3 seems to be more sensitive to RNase than to trypsin digestion. Antibodies against single 30S r-proteins, which inhibit other ribosomal functions, do not prevent the binding of IF-3. RNA-binding dyes (acridine orange and pyronine) inhibit the binding of IF-3 to 30S ribosomal subunits. It is proposed that a segment of the 16S rRNA provides the binding site for IF-3 and that r-proteins confer specificity, restricting the number of available “binding sites”, and stabilize the 30S-IF-3 interaction.  相似文献   

19.
The cauliflower mosaic virus reinitiation factor TAV interacts with host translation initiation factor 3 (eIF3) and the 60S ribosomal subunit to accomplish translation of polycistronic mRNAs. Interaction between TAV and eIF3g is critical for the reinitiation process. Here, we show that eIF4B can preclude formation of the TAV/eIF3 complex via competition with TAV for eIF3g binding; indeed, the eIF4B- and TAV-binding sites on eIF3g overlap. Our data indicate that eIF4B interferes with TAV/eIF3/40S ribosome complex formation during the first initiation event. Consequently, overexpression of TAV in plant protoplasts affects only second initiation events. Transient overexpression of eIF4B in plant protoplasts specifically inhibits TAV-mediated reinitiation of a second ORF. These data suggest that TAV enters the host translation machinery at the eIF4B removal step to stabilize eIF3 on the translating ribosome, thereby allowing translation of polycistronic viral RNA.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号