首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plasminogen activator inhibitor-1 (PAI-1), the primary physiological inhibitor of tissue-type plasminogen activator (t-PA) in plasma, is a serine proteinase inhibitor (serpin) that forms a 1:1 stoichiometric complex with its target proteinase leading to the formation of a stable inactive complex. The active, inhibitory form of PAI-1 spontaneously converts to a latent form that can be reactivated by protein denaturants. In the present study we have isolated another molecular form of intact PAI-1 that, in contrast with active PAI-1, does not form stable complexes with t-PA but is cleaved at the P1-P1' bond (Arg346-Met347). Other serine proteinases, e.g. urokinase-type plasminogen activator and thrombin, also cleaved this "substrate" form of PAI-1. Fluorescence spectroscopy revealed conformational differences between the latent, active, and substrate forms of PAI-1. This observation confirms our hypothesis that the three functionally different forms of PAI-1 are the consequence of conformational transitions. Thus PAI-1 may occur in three interconvertible conformations: latent, inhibitor, and substrate PAI-1. The identification of two distinct conformations of PAI-1 which interact with their target protease either as an inhibitor or as a substrate is a previously unrecognized phenomenon among the serpins. Conversion of substrate PAI-1 to its inactive degradation product may constitute a pathway for the physiological regulation of PAI-1 activity.  相似文献   

2.
We have previously demonstrated that plasminogen activator inhibitor (PAI-1) is associated with the extracellular matrix of cultured bovine smooth muscle cells (Knudsen, B.S., Harpel, P.C., Nachman, R.L. (1987) J. Clin. Invest. 80, 1082-1089). In this report we describe the physiologic role of PAI-1 during the interaction of the tissue plasminogen activator (t-PA) secreting Bowes human melanoma cell line with endothelial extracellular matrices. In addition we have characterized the t-PA.PAI complexes formed during this interaction in the presence and absence of plasminogen. In the absence of plasminogen, a 104-kDa complex between Bowes t-PA and PAI-1 appears in the supernatant. In the presence of plasminogen, PAI initially prevents plasmin formation on the matrix and protects the matrix from degradation by plasmin. The 104-kDa t-PA.PAI complex is degraded into a 68 and a 47-kDa complex by small amounts of plasmin generated from secreted Bowes t-PA and plasminogen. Analysis of these complexes revealed that t-PA is rapidly cleaved by plasmin within the complex whereas complexed PAI-1 is not further degraded. Matrix-associated PAI-1 may play an important role in the protection of extracellular matrices from remodeling and degradation by cellular t-PA and plasminogen.  相似文献   

3.
4.
利用PCR扩增和合成突变引物的方法,将PAL-1的Glu350和Glu351分别突变为Gly和Lys,在大肠杆菌中表达并分离纯化突变体PAL-1(E350G,E351K),用盐酸胍激活并以ELISA法确定它与野生型rPAI-1的相对含量。通过对u-PA,t-PA抑制的动力学研究表明,突变体与野生型rPAI-1相比,对u-PA和t-PA的抑制活性都有明显下降,由活性态向潜伏态转变的半寿期也由0.83h缩短为0.57h。  相似文献   

5.
The "serpin" plasminogen activator inhibitor 1 (PAI-1) is the fast acting inhibitor of plasminogen activators (tissue-type (t-PA) and urokinase type-PA) and is an essential regulatory protein of the fibrinolytic system. Its P1-P1' reactive center (R346 M347) acts as a "bait" for tight binding to t-PA/urokinase-type PA. In vivo, PAI-1 is encountered in complex with vitronectin, an interaction known to stabilize its activity but not to affect the second-order association rate constant (k1) between PAI-1 and t-PA. Nevertheless, by using PAI-1 reactive site variants (R346M, M347S, and R346M M347S), we show that the binding of vitronectin to the PAI-1 mutant proteins improves plasminogen activator inhibition. In the absence of vitronectin the PAI-1 R346M mutants are virtually inactive toward t-PA (k1 less than 1 x 10(3) M-1 s-1). In contrast, in the presence of vitronectin the rate of association increases about 1,000-fold (k1 of 6-8 x 10(5) M-1 s-1). This inhibition coincides with the formation of serpin-typical, sodium dodecyl sulfide-stable t-PA.PAI-1 R346M (R346M M347S) complexes. As evidenced by amino acid sequence analysis, the newly created M346-M/S347 peptide bond is susceptible to attack by t-PA, similar to the wild-type R346-M347 peptide bond, indicating that in the presence of vitronectin M346 functions as an efficient P1 residue. In addition, we show that the inhibition of t-PA and urokinase-type PA by PAI-1 mutant proteins is accelerated by the presence of the nonprotease A chains of the plasminogen activators.  相似文献   

6.
Several groups have demonstrated that radioiodinated tissue-type plasminogen activator (t-PA) binds to saturable sites on human umbilical vein endothelial cells (HUVECs) in culture (Hajjar, K. A., Hamel, N. M., Harpel, P. C., and Nachman, R. L. (1987) J. Clin. Invest. 80, 1712-1719; Beebe, D. P. (1987) Thromb. Res. 46, 241-254; Barnathan, E. S., Kuo, A., van der Keyl, H., McCrae, K. R., Larsen, G. L., and Cines, D. B. (1988) J. Biol. Chem. 263, 7792-7799). Here we report that most of the specific binding of 125I-t-PA to our HUVEC cultures is accounted for by binding to (i) plasminogen activator inhibitor type 1 (PAI-1), a t-PA inhibitor produced in abundance by HUVECs; and (ii) specific binding sites present on the plastic culture surface. The contribution of the sites on plastic can be eliminated by taking several precautions. Then, most or all of the specifically bound 125I-t-PA is present in a sodium dodecyl sulfate-stable 110-kDa 125I-t-PA.PAI-1 complex. Interestingly, a radioiodinated mutant form of t-PA, S478A, which is catalytically inactive and therefore unable to form the covalent complex with PAI-1, still binds to HUVECs. In fact, this ligand binds to HUVECs in 10-30-fold greater amounts than does wild-type 125I-t-PA (resulting in greater than 1 x 10(7) S478A 125I-t-PA molecules bound/cell at 12 nM ligand concentration). In contrast, diisopropyl fluorophosphate-treated t-PA binds to HUVECs in much smaller amounts than does wild-type t-PA. Several findings suggest that PAI-1 is a major binding site for S478A t-PA. The vast amount of binding observed with S478A t-PA, compared with wild-type t-PA, may be accounted for by an observed large scale release of wild-type 125I-t-PA.PAI-1 complexes from the solid phase (cells or extracellular matrix) into the culture medium. Immunoprecipitation experiments demonstrate that, in contrast to wild-type t-PA, S478A t-PA does not extract [35S]methionine-PAI antigen from metabolically labeled extracellular matrix. It is proposed that t-PA releases PAI-1 from the solid phase when it forms the irreversible covalent complex with the inhibitor, a process that does not occur with the catalytically inactive mutant form of t-PA.  相似文献   

7.
Summary Plasminogen activator inhibitor type-1 (PAI-1) was identified in extracts of rat adrenal medulla, and its immunohistochemical localization was studied together with that of tissue-type plasminogen activator (t-PA). By staining of adjacent sections and by doublestaining of the same section we demonstrate that the same cells of the adrenal medulla contain both PAI-1 and t-PA immunoreactivity in the cytoplasm. In addition a few ganglion cells of the adrenal medulla were found to contain PAI-1 but not t-PA. Neither of the components were found in the adrenal cortex. Analysis of extracts from isolated adrenal medulla using reverse zymography showed the presence of a plasminogen activator inhibitor with M r46000. The inhibitory activity disappeared when the extract was passed through a column with sepharose-coupled anti-PAI-1 IgG, while the run-through from a similar column coupled with preimmune IgG still contained the inhibitor. The present findings suggest that PAI-1 could play a role in the regulation of t-PA activity in the rat adrenal gland medullary cells.  相似文献   

8.
Highly purified plasminogen-activator inhibitors of type 1 (PAI-1) and type 2 (PAI-2), low-Mr form, were compared with respect to their kinetics of inhibition of tissue-type (t-PA) and urokinase-type plasminogen activator (u-PA). The time course of inhibition of plasminogen activator was studied under second-order or pseudo-first-order conditions. Residual enzyme activity was measured by the initial rate of hydrolysis of a chromogenic t-PA or u-PA substrate or by an immunosorbent assay for t-PA activity. PAI-1 rapidly reacted with single-chain t-PA as well as with two-chain forms of t-PA and u-PA. The second-order rate constant k for inhibition of single-chain t-PA (5.5 x 10(6) M-1 s-1) was about three times lower than k for inhibition of the two-chain activators. PAI-2 reacted slowly with single-chain t-PA, k = 4.6 x 10(3) M-1 s-1. The association rate was 26 times higher with two-chain t-PA and 435 times higher with two-chain u-PA. The k values for inhibition of single-chain t-PA, two-chain t-PA and two-chain u-PA were respectively, 1200, 150 and 8.5 times higher with PAI-1 than with PAI-2. The removal of the epidermal growth factor domain and the kringle domain from two-chain u-PA did not affect the kinetics of inhibition of the enzyme, suggesting that the C-terminal proteinase part of u-PA (B chain) is responsible for both the primary and the secondary interactions with PAI-1 and PAI-2. The k values for inhibition of single-chain t-PA and endogenous t-PA in plasma by PAI-1 or PAI-2 were identical indicating that t-PA in blood consists mainly in its single-chain form.  相似文献   

9.
Vitronectin endows plasminogen activator inhibitor 1 (PAI-1), the fast-acting inhibitor of both tissue-type plasminogen activator (t-PA) and urokinase-type plasminogen activator (u-PA), with additional thrombin inhibitory properties. In view of the apparent association between PAI-1 and vitronectin in the endothelial cell matrix (ECM), we analyzed the interaction between PAI-1 and thrombin in this environment. Upon incubating 125I-labeled alpha-thrombin with endothelial cell matrix (ECM), the protease formed SDS-stable complexes exclusively with PAI-1, with subsequent release of these complexes into the supernatant. Vitronectin was required as a cofactor for the association between PAI-1 and thrombin in ECM. Metabolic labeling of endothelial cell proteins, followed by incubation of ECM with t-PA, u-PA, or thrombin, indicated that all three proteases depleted PAI-1 from ECM by complex formation and proteolytic cleavage. Proteolytically inactive thrombin as well as anticoagulant thrombin, i.e., thrombin in complex with its endothelial cell surface receptor thrombomodulin, did not neutralize PAI-1, emphasizing that the procoagulant moiety of thrombin is required for a functional interaction with PAI-1. A physiological implication of our findings may be related to the mutual neutralization of both PAI-1 and thrombin, providing a new link between plasminogen activation and the coagulation system. Evidence is provided that in ECM, procoagulant thrombin may promote plasminogen activator activity by inactivating PAI-1.  相似文献   

10.
The synthesis of plasminogen activators and inhibitors in endothelial cells is highly regulated by hormones, drugs and growth factors. The present study evaluates the effect of retinoic acid on the synthesis of tissue-type plasminogen activator (t-PA) and of plasminogen activator inhibitor-1 (PAI-1) by cultured human umbilical vein endothelial cells (HUVEC). Retinoic acid produced a time- and concentration-dependent increase in the secretion of t-PA-related antigen but not of PAI-1 related antigen into the culture medium. A maximal sevenfold increase of t-PA antigen after 24 h was observed with 10 microM and a half-maximal increase with 0.1 microM retinoic acid. Retinoic acid induced a time-dependent increase of the t-PA mRNA, with a maximum at 8 h and returning to normal at 24 h. The protein kinase inhibitor H7 decreased the t-PA antigen induced by both retinoic acid and phorbol 12-myristate 13-acetate. These results suggest that treatment of HUVEC with retinoic acid increases t-PA production by a pathway which, at some level, involves protein kinases. Thus, retinoic acid induces t-PA synthesis in the absence of altered PAI-1 synthesis, which may enhance the fibrinolytic potential of the endothelium.  相似文献   

11.
Plasminogen activator inhibitor type-1 (PAI-1) was identified in extracts of rat adrenal medulla, and its immunohistochemical localization was studied together with that of tissue-type plasminogen activator (t-PA). By staining of adjacent sections and by double-staining of the same section we demonstrate that the same cells of the adrenal medulla contain both PAI-1 and t-PA immunoreactivity in the cytoplasm. In addition a few ganglion cells of the adrenal medulla were found to contain PAI-1 but not t-PA. Neither of the components were found in the adrenal cortex. Analysis of extracts from isolated adrenal medulla using reverse zymography showed the presence of a plasminogen activator inhibitor with Mr approximately 46,000. The inhibitory activity disappeared when the extract was passed through a column with sepharose-coupled anti-PAI-1 IgG, while the run-through from a similar column coupled with preimmune IgG still contained the inhibitor. The present findings suggest that PAI-1 could play a role in the regulation of t-PA activity in the rat adrenal gland medullary cells.  相似文献   

12.
A binding protein for plasminogen activator inhibitor 1 (PAI-1-BP) was isolated from human plasma by a four-step procedure. 1) The 7 S globulin fraction of plasma was isolated by gel filtration on Sephacryl S-300. 2) Human endothelial cell-type plasminogen activator inhibitor (PAI-1), pretreated with 12 M urea, was added to this fraction (22 micrograms of PAI-1/ml of plasma), and a PAI-1 antigen peak with apparent mass 450 kDa (representing 65% of PAI-1 antigen and 85% of PAI activity) was isolated by gel filtration of this mixture. 3) The PAI-1.PAI-1-BP complex was further purified by immunoadsorption on an immobilized murine monoclonal antibody directed against PAI-1 (MA-7D4) and by elution with 4 M KSCN. 4) The complex was then dissociated by addition of excess human tissue-type plasminogen activator (t-PA), and t-PA and PAI-1 antigen (t-PA.PAI-1 complexes and free t-PA and PAI-1) were removed by immunoadsorption on monoclonal antibodies directed against t-PA (MA-62E8) and against PAI-1 (MA-7D4 and MA-12A4). Sodium dodecyl sulfate-gel electrophoresis of the purified material under nonreducing conditions revealed two bands with apparent mass approximately equal to 150 kDa and two bands with mass 74 and 68 kDa. Reduced sodium dodecyl sulfate-gel electrophoresis displayed two main bands with apparent masses of 73 and 64 kDa. The PAI-1-BP reacts with urea-treated, but not with inactive PAI-1. t-PA dissociates the complex between PAI-1 and PAI-1-BP. PAI-1 in complex with PAI-1-BP is 2-3-fold more stable at 37 degrees C than purified PAI-1, suggesting that PAI-1-BP may stabilize PAI-1 in blood. The concentration of PAI-1-BP in plasma determined by titration with PAI-1 is approximately 130 mg/liter. The isolated PAI-1-BP was shown to be identical to S protein (vitronectin) both by cross-reactivity with monospecific rabbit antisera and by NH2-terminal amino acid sequence analysis. The gel filtration behavior, mobility on sodium dodecyl sulfate-gel electrophoresis, and concentration in plasma suggest that PAI-1-BP is a multimer (presumably a dimer) of S protein accounting for approximately 35% of the S protein in plasma.  相似文献   

13.
We investigated the effect of agents which raise intracellular levels of cyclic AMP (cAMP) on the secretion of tissue-type plasminogen activator (t-PA) and type 1 plasminogen activator inhibitor (PAI-1) by cultured human umbilical-vein endothelial cells. Significant inhibition of baseline (unstimulated) t-PA and PAI-1 secretion was observed in response to several agents which, when added exogenously, cause increased intracellular cAMP: cholera toxin, 1-methyl-3-isobutylxanthine (MIX), dibutyryl-cAMP, and prostaglandin E1. These agents also significantly reduced or abolished the previously reported stimulatory effects of thrombin and histamine on t-PA secretion, and, with the exception of MIX, significantly reduced the previously reported stimulatory effect of thrombin on PAI-1 secretion. MIX at a concentration (10 microM) below that required to inhibit t-PA and PAI-1 secretion when tested alone, significantly increased the inhibitory effects of cholera toxin, dibutyryl-cAMP, and prostaglandin E1 on both t-PA and PAI-1 secretion. The data suggest that elevated intracellular levels of cAMP inhibit both spontaneous endothelial secretion of t-PA and PAI-1, and secretion induced by agents (thrombin and histamine) which stimulate endothelial phosphoinositide metabolism, consistent with bidirectional regulation of endothelial fibrinolytic protein secretion by the adenylate cyclase and phosphoinositide signal transduction pathways. The inhibitory effects of cAMP do not appear to be specific for t-PA and PAI-1, since cholera toxin and MIX also inhibited endothelial secretion of the adhesive protein, fibronectin. Significant inhibition of baseline endothelial t-PA and PAI-1 secretion was also caused by the stable prostacyclin analogue iloprost (ZK 36 374) and by arachidonic acid, which is converted by endothelial cells to prostacyclin, suggesting that prostacyclin produced endogenously by endothelial cells may inhibit secretion of fibrinolytic proteins by increasing intracellular cAMP.  相似文献   

14.
The kinetics of inhibition of tissue-type plasminogen activator (t-PA) by the fast-acting plasminogen activator inhibitor-1 (PAI-1) was investigated in homogeneous (plasma) and heterogeneous (solid-phase fibrin) systems by using radioisotopic and spectrophotometric analysis. It is demonstrated that fibrin-bound t-PA is protected from inhibition by PAI-1, whereas t-PA in soluble phase is rapidly inhibited (K1 = 10(7) M-1.s-1) even in the presence of 2 microM-plasminogen. The inhibitor interferes with the binding of t-PA to fibrin in a competitive manner. As a consequence the Kd of t-PA for fibrin (1.2 +/- 0.4 nM) increases and the maximal velocity of plasminogen activation by fibrin-bound t-PA is not modified. From the plot of the apparent Kd versus the concentration of PAI-1 a Ki value of 1.3 +/- 0.3 nM was calculated. The quasi-similar values for the dissociation constants between fibrin and t-PA (Kd) and between PAI-1 and t-PA (Ki), as well as the competitive type of inhibition observed, indicate that the fibrinolytic activity of human plasma may be the result of an equilibrium distribution of t-PA between both the amount of fibrin generated and the concentration of circulating inhibitor.  相似文献   

15.
16.
17.
Structure and function of human tissue-type plasminogen activator (t-PA)   总被引:5,自引:0,他引:5  
Full-length tissue-type plasminogen activator (t-PA) cDNA served to construct deletion mutants within the N-terminal "heavy" (H)-chain of the t-PA molecule. The H-chain cDNA consists of an array of structural domains homologous to domains present on other plasma proteins ("finger," "epidermal growth factor," "kringles"). These structural domains have been located on an exon or a set of exons. The endpoints of the deletions nearly coincide with exon-intron junctions of the chromosomal t-PA gene. Recombinant t-PA deletion mutant proteins were obtained after transient expression in mouse Ltk- cells, transfected with SV40-pBR322-derived t-PA cDNA plasmids. It is demonstrated that the serine protease moiety of t-PA and its substrate specificity for plasminogen is entirely contained within the C-terminal "light" (L)-chain of the protein. The presence of cDNA, encoding the t-PA signal peptide preceding the remaining portion of t-PA, suffices to achieve secretion of (mutant) t-PA into the medium. The stimulatory effect of fibrin on the plasminogen activator activity of t-PA was shown to be mediated by the kringle K2 domain and, to a lesser extent, by the finger domain. The other domains on the H-chain, kringle K1, and the epidermal growth-factor-like domain, do not contribute to this property of t-PA. These findings correlate well with the fibrin-binding properties of the rt-PA deletion-mutant proteins, indicating that stimulation of the activity is based on aligning of the substrate plasminogen and its enzyme t-PA on the fibrin matrix. The primary target for endothelial plasminogen activator inhibitor (PAI) is located within the L-chain of t-PA. Deleting specific segments of t-PA H-chain cDNA and subsequent transient expression in mouse Ltk- cells of t-PA deletion-mutant proteins did not affect the formation of a stable complex between mutant t-PA and PAI.  相似文献   

18.
To define determinants of interactions of tissue-type plasminogen activator (t-PA) with plasminogen activator inhibitor type-1 (PAI-1), we utilized site-directed mutagenesis to substitute either threonine or glycine for the active-site serine of tissue-type plasminogen activator. Assays of conditioned media of transfected cells demonstrated that the threonine substitution markedly decreased but did not entirely abolish plasminogen activating activity. In contrast, the glycine substitution yielded a mutant with absolutely no detectable plasminogen activating activity. Wild-type t-PA formed stable complexes with PAI-1. However, even when exogenous inhibitor was present in the medium or purified mutant was added to plasma that had been rendered PAI-1-rich in vivo, the mutants were present in the free form exclusively judging from results of fibrin autography and Western blot analysis. Thus, despite maintenance of some residual plasminogen-activating activity associated with preservation of the hydroxyl group at the active site, the threonine mutant did not form stable complexes with inhibitor. The glycine mutant, developed so that steric hindrance or other unfavorable interactions at the modified active site would be minimal, was similarly incapable of forming complexes with PAI-1. These results show that the presence of an active site serine residue is necessary for formation of stable complexes between t-PA and PAI-1.  相似文献   

19.
Binding of plasminogen to extracellular matrix   总被引:17,自引:0,他引:17  
We have previously demonstrated that plasminogen immobilized on various surfaces forms a substrate for efficient conversion to plasmin by tissue plasminogen activator (t-PA) (Silverstein, R. L., Nachman, R. L., Leung, L. L. K., and Harpel, R. C. (1985) J. Biol. Chem. 260, 10346-10352). We now report the binding of human plasminogen to the extracellular matrix synthesized in vitro by cultured endothelial cell monolayers. The binding was specific, saturable at plasma plasminogen concentrations, reversible, and lysine-binding site-dependent. Functional studies demonstrated that matrix immobilized plasminogen was a much better substrate for t-PA than was fluid phase plasminogen as shown by a 100-fold decrease in Km. Activation of plasminogen by t-PA and urokinase on the matrix was equally efficient. The plasmin generated on the matrix, in marked contrast to fluid phase, was protected from its fast-acting inhibitor, alpha 2-plasmin inhibitor. Matrix-associated plasmin converted bound Glu- into Lys-plasminogen, which in turn is more rapidly activated to plasmin by t-PA. The extracellular matrix not only binds and localizes plasminogen but also improves plasminogen activation kinetics and prolongs plasmin activity in the subendothelial microenvironment.  相似文献   

20.
Complexes between tissue-type plasminogen activator (t-PA) and its rapidly acting inhibitor plasminogen activator inhibitor type 1 (PAI-1) are bound, internalized, and degraded by HepG2 cells. The mechanism involves endocytosis mediated by a specific high-affinity receptor. However, the particular domains of the complex that are recognized by the receptor have not been elucidated. To identify the determinants involved in ligand binding to the receptor, several variants of t-PA were assessed for their ability to form complexes with PAI-1 and thereby to inhibit specific cellular binding of complexes between structurally unmodified 125I-t-PA and PAI-1. Catalytically active variants lacking selected structural domains form complexes with PAI-1 and inhibit 125I-t-PA.PAI-1 binding to HepG2 cells. In addition, several forms of the plasminogen activator urokinase (u-PA), which shares partial structural homology with t-PA, were evaluated as competitors of cellular binding. The catalytically active two-chain forms of u-PA, but not the inactive proenzyme single-chain form, complex with PAI-1 and inhibit specific binding of 125I-t-PA.PAI-1, suggesting that the serine protease domain, rather than other domains, may confer the determinants required for cellular binding. However, a mutant t-PA with markedly reduced catalytic activity, resulting from replacement of the active site serine with threonine, not only forms complexes with PAI-1 but also inhibits specific cellular binding of unmodified 125I-t-PA.PAI-1. These data indicate that specific binding of t-PA.PAI-1 to HepG2 cells does not require a serine-containing catalytic site in the protease domain. To determine whether binding of the complex is mediated through other components of t-PA or through structural elements of PAI-1, both t-PA and PAI-1 were examined separately for capacity to bind directly to HepG2 cells. To exclude potential interactions with components of the extracellular matrix which contains binding sites for PAI-1, ligand binding to HepG2 cells in suspension was assessed. Although neither t-PA nor PAI-1 alone binds specifically to HepG2 cells, the preformed t-PA.PAI-1 complexes do. These findings suggest that specific binding of t-PA.PAI-1 requires elements of the PAI-1 moiety and/or parts of the protease domain of t-PA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号