首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Plants of tomato (Lycopersicon esculentum Mill. cv. T5) were transformed with an antisense endo-1,4--glucanase (cellulase, EC 3.2.1.4) Cel2 transgene under the control of the constitutive cauliflower mosaic virus 35S promoter in order to suppress mRNA accumulation of Cel2. In two independent transgenic lines, Cel2 mRNA abundance was reduced by >95% in ripe fruit pericarp and ca. 80% in fruit abscission zones relative to non-transgenic controls. In both transgenic lines the softening of antisense Cel2 fruit pericarp measured using stress-relaxation analysis was indistinguishable from control fruit. No differences in ethylene evolution were observed between fruit of control and antisense Cel2 genotypes. However, in fruit abscission zones the suppression of Cel2 mRNA accumulation caused a significant (P<0.001) increase in the force required to cause breakage of the abscission zone at 4 days post breaker, an increase of 27% in one transgenic line and of 46% in the other transgenic line. Thus the Cel2 gene product contributes to cell wall disassembly occurring in cell separation during fruit abscission, but its role, if any, in softening or textural changes occurring in fruit pericarp during ripening was not revealed by suppression of Cel2 gene expression.  相似文献   

3.
The tomato (Lycopersicon esculentum Mill.) endo--1,4-glucanase (EGase) Cel1 protein was characterized in fruit using specific antibodies. Two polypeptides ranging between 51 and 52 kDa were detected in the pericarp, and polypeptides ranging between 49 and 51 kDa were detected in locules. The polypeptides recognized by Cel1 antiserum in fruit are within the size range predicted for Cel1 protein and could be derived from heterogeneous glycosylation. Cel1 protein accumulation was examined throughout fruit ripening. Cel1 protein appears in the pericarp at the stage in which many ripening-related changes start, and remains present throughout fruit ripening. In locules, Cel1 protein is already present at the onset of fruit ripening and remains constant during fruit ripening. This pattern of expression supports a possible role for this EGase in the softening of pericarp tissue and in the liquefaction of locules that takes place during ripening. The accumulation of Cel1 protein was also analyzed after fungal infection. Cel1 protein and mRNA levels are down-regulated in pericarp after Botrytis cinerea infection but are not affected in locular tissue. The same behavior was observed when fruits were infected with Penicillium expansum, another fungal pathogen. Cel1 protein and mRNA levels do not respond to wounding. These results support the idea that the tomato Cel1 EGase responds to pathogen infection and supports a relationship between EGases, plant defense responses and fruit ripening.This revised version was published online in August 2004 with corrections to Fig. 1 and Fig. 5.  相似文献   

4.
Effect of 1-methylcyclopropene on ethylene-induced abscission in citrus   总被引:1,自引:0,他引:1  
Pre-treatment of citrus leaves and leaf explants ( Citrus sinensis [L.] Osbeck cv. Shamouti), with 1-methylcyclopropene (1-MCP), induced endogenous ethylene production when leaves were further incubated in air. The induction of ethylene production was 1-MCP concentration-dependent. Abscission was concomitantly delayed. In leaves pre-treated with 1-MCP followed by exposure to ethylene, abscission was significantly delayed in comparison with those without 1-MCP pre-treatment. When leaf explants were co-treated for 24 h with ethylene and 1-MCP, abscission was delayed quite efficiently. The Lineweaver-Burke plot yielded a half-maximal value of 0.234 μl l−1 for the effect of ethylene on abscission. 1-MCP−1 competed kinetically with ethylene with a Ki value of approximately 1.4−5.5 nl l−1 1-MCP. Under these experimental conditions there was some competition between 1-MCP and ethylene. However, ethylene was not able to completely counteract the inhibitory effect of 1-MCP. Pre-treatment with 1-MCP, followed by exogenous ethylene treatment, suppressed the induction of endo- β -glucanase (EG) activity at the laminar abscission zone. The ethylene-dependent accumulation of the hydrolyse gene was demonstrated by blocking the accumulation of CsCel a1 mRNA by 1-MCP. Six hours of exposure of leaves to 1-MCP at various times during a total of 24 h ethylene treatment efficiently reversed ethylene induction of CsCel a1 gene at mRNA level up to 18 h. The results demonstrate that the induction of abscission by ethylene is controlled at mRNA level at the abscission zone.  相似文献   

5.
6.
7.
Cel1 and Cel2 are members of the tomato (Solanum lycopersicum Mill) endo-beta-1,4-glucanase (EGase) family that may play a role in fruit ripening and organ abscission. This work demonstrates that Cel1 protein is present in other vegetative tissues and accumulates during leaf development. We recently reported the downregulation of both the Cel1 mRNA and protein upon fungal infection, suggesting the involvement of EGases in plant-pathogen interactions. This hypothesis was confirmed by assessing the resistance to Botrytis cinerea infection of transgenic plants expressing both genes in an antisense orientation (Anti-Cel1, Anti-Cel2 and Anti-Cel1-Cel2). The Anti-Cel1-Cel2 plants showed enhanced resistance to this fungal necrotroph. Microscopical analysis of infected leaves revealed that tomato plants accumulated pathogen-inducible callose within the expanding lesion. Anti-Cel1-Cel2 plants presented a faster and enhanced callose accumulation against B. cinerea than wild-type plants. The inhibitor 2-deoxy-d-glucose, a callose synthesis inhibitor, showed a direct relationship between faster callose accumulation and enhanced resistance to B. cinerea. EGase activity appears to negatively modulate callose deposition. The absence of both EGase genes was associated with changes in the expression of the pathogen-related genes PR1 and LoxD. Interestingly, Anti-Cel1-Cel2 plants were more susceptible to Pseudomonas syringae, displaying severe disease symptoms and enhanced bacterial growth relative to wild-type plants. Analysis of the involvement of Cel1 and Cel2 in the susceptibility to B. cinerea in fruits was done with the ripening-impaired mutants Never ripe (Nr) and Ripening inhibitor (rin). The data reported in this work support the idea that enzymes involved in cell wall metabolism play a role in susceptibility to pathogens.  相似文献   

8.
The mRNA accumulation of two endo-1,4-[beta]-D-glucanase genes, Cel1 and Cel2, was examined in the pericarp and locules throughout the development of normal tomato (Lycopersicon esculentum) fruit and the ripening-impaired mutants rin and Nr. Both Cel1 and Cel2 were expressed transiently at the earliest stages of fruit development during a period corresponding to cell division and early cell expansion. In the pericarp, the mRNA abundance of both genes increased markedly at the breaker stage; the level of Cel1 mRNA decreased later in ripening, and that of Cel2 increased progressively. Cel2 mRNA levels also increased at the breaker stage in locules but after initial locule liquefaction was already complete. In rin fruit mRNA abundance of Cel1 was reduced and Cel2 was virtually absent, whereas in Nr Cel1 was expressed at wild-type levels and Cel2 was reduced. In wild-type fruit ethylene treatment slightly promoted the mRNA accumulation of both genes. In rin fruit ethylene treatment strongly increased the mRNA abundance of Cel1 to an extent greater than in wild-type fruit, but Cel2 mRNA was absent even after ethylene treatment. These two endo-1,4-[beta]-D-glucanase genes, therefore, do not show coordinated expression during fruit development and are subject to distinct regulatory control. These results suggest that the product of the Cel2 gene contributes to ripening-associated cell-wall changes.  相似文献   

9.
10.
A cDNA (Cel1) encoding an endo-1,4-β-glucanase (EGase) was isolated from ripe fruit of strawberry (Fragaria × ananassa). The deduced protein of 496 amino acids contains a presumptive signal sequence, a common feature of cell wall-localized EGases, and one potential N-glycosylation site. Southern- blot analysis of genomic DNA from F. × ananassa, an octoploid species, and that from the diploid species Fragaria vesca indicated that the Cel1 gene is a member of a divergent multigene family. In fruit, Cel1 mRNA was first detected at the white stage of development, and at the onset of ripening, coincident with anthocyanin accumulation, Cel1 mRNA abundance increased dramatically and remained high throughout ripening and subsequent fruit deterioration. In all other tissues examined, Cel1 expression was invariably absent. Antibodies raised to Cel1 protein detected a protein of 62 kD only in ripening fruit. Upon deachenation of young white fruit to remove the source of endogenous auxins, ripening, as visualized by anthocyanin accumulation, and Cel1 mRNA accumulation were both accelerated. Conversely, auxin treatment of white fruit repressed accumulation of both Cel1 mRNA and ripening. These results indicate that strawberry Cel1 is a ripening-specific and auxin-repressed EGase, which is regulated during ripening by a decline in auxin levels originating from the achenes.  相似文献   

11.
Anatomical changes in the laminar abscission zone of primary leaves of Phaseolus vulgaris L. ‘Red Kidney’ have been examined in conjunction with the regulation of abscission by growth substances. Quantitative measurements were made of the frequency of vascular obstructions (tyloses, callose plugs). The development of abscission was correlated with an increasing frequency of tyloses and other plugging materials in the xylem of the abscission zone coupled with the dissolution of callose from the abscission zone sieve tubes. These changes were accelerated in petiole explants in which abscission was stimulated by either ethylene or auxin and were suppressed in explants in which abscission was inhibited by auxin.  相似文献   

12.
Treatment of bean pulvinar explants with auxin significantlydelayed abscission. The pattern of protein synthesis in beanexplants that were treated with and without auxin was investigatedby labelling the pulvinar segments with [35S]-methionine andanalyzing the polypeptides by one and two dimensional gel electrophoresis.One dimensional gel electrophoresis of labelled proteins revealedan increased synthesis of 63, 54 and 29 kDa polypeptides anddecreased synthesis of 60, 49, 30 and 23 kDa polypeptides inthe presence of auxin. Further analysis of proteins on two dimensionalgels revealed several differences in polypeptides between controland auxin-treated explants. These results provide evidence forthe alteration of protein synthesis by auxin in bean explantsand suggest that auxin delays abscission by regulating the synthesisof specific polypeptides. 1Scientific Paper No. 7934, College of Agriculture and HomeEconomics Research Center, Washington State University, Pullman,Washington, Project 0321. 2Supported by National Science Foundation grant DCB-8502215to BWP (Received September 11, 1987; Accepted November 12, 1987)  相似文献   

13.
The physiology and anatomy of abscission has been studied in considerable detail; however, information on the regulation of gene expression in abscission has been limited because of a lack of probes for specific genes. We have identified and sequenced a 595 nucleotide bean (Phaseolus vulgaris cv Red Kidney) abscission cellulase cDNA clone (pBACl). The bean cellulase cDNA has extensive nucleic and amino acid sequence identity with the avocado cellulase cDNA pAV363. The 2.0 kilobase bean mRNA complementary to pBACl codes for a polypeptide of approximately 51 kilodalton (shown by hybrid-selection followed by in vitro translation). Bean cellulase antiserum is shown to immunoprecipitate a 51 kilodalton polypeptide from the in vitro translation products of abscission zone poly(A)+ RNA. Ethylene initiates bean leaf abscission and tissue-specific expression of cellulase mRNA. If ethylene treatment of bean explants was discontinued after 31 h and then 2,5-norbornadiene given to inhibit responses resulting from endogenously synthesized ethylene, polysomal cellulase mRNA hybridizing to pBACl decreased. Thus, ethylene is required not only to initiate abscission and cellulase gene expression but also to maintain continued accumulation of cellulase mRNA. Explants treated with auxin 4 hours prior to a 48 hour treatment with ethylene showed no substantial accumulation of RNA hybridizing to pBACl or expression of cellulase activity.  相似文献   

14.
P Kalaitzis  T Solomos    M L Tucker 《Plant physiology》1997,113(4):1303-1308
Abscission, or organ separation, is accompanied by a marked increase in hydrolases, which are responsible for the degradation of the middle lamella and the loosening of the primary cell wall surrounding cells in the separation layer. We recently reported on the cloning of a tomato (Lycopersicon esculentum) polygalacturonase (PG) cDNA, TAPG1, expressed during leaf and flower abscission. In addition to TAPG1, we have cloned two more PG cDNAs (TAPG2 and TAPG4) that are also expressed during leaf and flower abscission. The peptide sequences for the three abscission PGs are relatively similar (76-93% identity) yet different from the those of tomato fruit PG (38-41% identity). None of the three abscission PG mRNAs are expressed in fruit, stems, petioles, or anthers of fully open flowers. An RNase protection assay revealed that all three PGs are expressed in leaf and flower abscission zones and in pistils of fully open flowers. TAPG4 mRNA is detected much earlier than TAPG1 and TAPG2 mRNA during both leaf and flower abscission.  相似文献   

15.
16.
Abscission is a natural process that occurs to facilitate shedding of no longer needed organs, but on the other hand, can be triggered by certain environmental conditions, e.g. biotic or abiotic stresses. Regardless of the stimuli, organ shedding takes place specifically at the abscission zone (AZ). A signaling pathway that controls this process in Arabidopsis thaliana from ligand to receptors has been proposed. However, knowledge concerning the influence of plant hormones on these molecular elements still remains enigmatic. Excessive and premature flower abscission in the crop species Lupinus luteus L. is a process of substantial interest to the agricultural industry, as it can affect yield. Our strategy combined molecular studies, comprehensive ultrastructural and histological analysis, as well as exogenous hormone treatment to describe the contribution of the Lupinus IDA-like gene in flower abscission. In the AZ of the naturally abscised flowers, the differentiation of morphologically distinct cells characterized by progressive degradation processes was accompanied by LlIDL mRNA accumulation. A similar effect was observed following early steps of AZ activation and after abscisic acid or ethylene treatments. These phytohormones, previously pointed out as key stimulators of flower separation, altered the temporal expression pattern of LlIDL. Exogenous EPIP peptide synthesized on the basis of LlIDL sequence, significantly increased flower abortion rate, which indicates that this motif governs protein activity. In conclusion, our data provide new evidence for LlIDA involvement in both the early and late events of flower abscission supported by detailed spatiotemporal characterization of AZ cell structure and ultrastructure.  相似文献   

17.
Two flower-specific cDNAs have been isolated after differential screening of an anther cDNA library. This library was constructed 48 h after GA(3) treatment of buds of the GA-deficient gib-1 mutant of tomato. Northern blot analysis during flower development in tomato demonstrated that the expression of both genes is regulated by gibberellins (GAs). Application of GA(3) to developmentally arrested gib-1 flower buds induced new expression of tgas100 mRNA 48 h post-treatment, while an increased accumulation of tgas105 mRNA was found after 8 h. In situ analyses showed the spatial distribution of the expression of both genes within the tomato flower. One of the deduced polypeptides (TGAS105) displays similarities to cysteine-rich extensin-like proteins, while the other (TGAS100) shows significant homology with a stamen-specific gene of Antirrhinum majus. Based on the deduced protein sequences, the possible function of the encoded proteins is discussed.  相似文献   

18.
19.
Developing seeds accumulate late embryogenesis abundant (LEA) proteins, a family of intrinsically disordered and hydrophilic proteins that confer cellular protection upon stress. Many different LEA proteins exist in seeds, but their relative contribution to seed desiccation tolerance or longevity (duration of survival) is not yet investigated. To address this, a reference map of LEA proteins was established by proteomics on a hydrophilic protein fraction from mature Medicago truncatula seeds and identified 35 polypeptides encoded by 16 LEA genes. Spatial and temporal expression profiles of the LEA polypeptides were obtained during the long maturation phase during which desiccation tolerance and longevity are sequentially acquired until pod abscission and final maturation drying occurs. Five LEA polypeptides, representing 6% of the total LEA intensity, accumulated upon acquisition of desiccation tolerance. The gradual 30-fold increase in longevity correlated with the accumulation of four LEA polypeptides, representing 35% of LEA in mature seeds, and with two chaperone-related polypeptides. The majority of LEA polypeptides increased around pod abscission during final maturation drying. The differential accumulation profiles of the LEA polypeptides suggest different roles in seed physiology, with a small subset of LEA and other proteins with chaperone-like functions correlating with desiccation tolerance and longevity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号