首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
  1. Download : Download high-res image (173KB)
  2. Download : Download full-size image
  相似文献   

2.
The chemical composition of the surface layers of synthetic biomaterials used for human medical devices and in biotechnology plays a key role in determining interfacial interactions between biological media (such as protein solutions, cells, tissue) and the synthetic material. Accordingly, considerable research efforts focus on improving the 'biocompatibility' of biomaterials by applying various surface modification and thin film coating approaches. Here we focus on the patterning of surface chemistries, often designed to exercise spatial control over events such as cell attachment and spreading. Secondly, we review recent developments in chemical characterisation of biomaterials surfaces, which is essential both for verifying the success of intended surface modification strategies and for reliable interpretation of observed biological responses. Biomaterials surface analysis by imaging ToF-SIMS and XPS and compositional depth profiling are discussed, as is the emerging complementary technique of Metastable Induced Electron Spectroscopy.  相似文献   

3.
4.
The utility of catalyst-free azide-alkyne [3 + 2] cycloaddition for the immobilization of a variety of molecules onto a solid surface and microbeads was demonstrated. In this process, the surfaces are derivatized with aza-dibenzocyclooctyne (ADIBO) for the immobilization of azide-tagged substrates via a copper-free click reaction. Alternatively, ADIBO-conjugated molecules are anchored to the azide-derivatized surface. Both immobilization techniques work well in aqueous solutions and show excellent kinetics under ambient conditions. We report an efficient synthesis of aza-dibenzocyclooctyne (ADIBO), thus far the most reactive cyclooctyne in cycloaddition to azides. We also describe convenient methods for the conjugation of ADIBO with a variety of molecules directly or via a PEG linker.  相似文献   

5.
  1. Download : Download high-res image (160KB)
  2. Download : Download full-size image
  相似文献   

6.
The adhesion of twenty nine Staphylococcus epidermidis strains to teflon, polyethylene, polycarbonate and bovine pericardium was studied in vitro and examined in relation to the surface free energies of both bacteria and biomaterials. All S. epidermidis strains had similar surface free energies, close to that of water, and adhered better to the materials with analogous surface free energies. There was a significant correlation (Kendall's Tau B = 1000) of biomaterial's surface free energy with the number of adhering bacteria. This correlation is inverse (Kendall's Tau B = -1000) when surface hydrophobicity is considered instead of surface free energy. This indicates that in Staphylococcus epidermidis adherence to biomaterials is inversely correlated to the surface hydrophobicity of the last, being so just the opposite of that occurring with other bacteria.  相似文献   

7.
A surface modification technique was developed for the functionalization of polypyrrole (PPY) film with glucose oxidase (GOD) and viologen moieties. The PPY film was first graft copolymerized with acrylic acid (AAc) and GOD was then covalently immobilized through the amide linkage formation between the amino groups of the GOD and the carboxyl groups of the grafted AAc polymer chains in the presence of a water-soluble carbodiimide. Viologen moieties could also be attached to the PPY film via graft-copolymerization of vinyl benzyl chloride with the PPY film surface followed by reaction with 4,4'-bipyridine and alpha,alpha'-dichloro-p-xylene. X-ray photoelectron spectroscopy (XPS) was used to characterize the PPY films after each surface modification step. Increasing the AAc graft concentration would allow a greater amount of GOD to be immobilized but this would decrease the electrical conductivity of the PPY film. The activity of the immobilized GOD was compared with that of free GOD and the kinetic effects were also studied. The immobilized GOD was found to be less sensitive to temperature deactivation as compared to the free GOD. The results showed that the covalent immobilization technique offers advantages over the technique involving the entrapment of GOD in PPY films during electropolymerization. The presence of viologen in the vicinity of the immobilized GOD also enabled the GOD-catalyzed oxidation of glucose to proceed under UV irradiation in the absence of O(2).  相似文献   

8.
9.
Commercial porous polypropylene membranes were chemically modified with polyaniline (PANI) using ammonium persulfate as the oxidizer. The influence of polymerization conditions on the membrane properties was studied by adsorption analysis and membrane permeability. The PANI-coated polypropylene (PANI/PP) membranes possessed high affinity toward the proteins, which can be immobilized onto the membrane surface through physical adsorption or covalent immobilization. The quantity of immobilized horseradish peroxidase (HRP) and its activity depended on the quantity and quality (oxidation level) of PANI. The storage conditions for PANI/PP membranes containing immobilized HRP were studied. HRP immobilized on the PANI/PP membrane was shown to retain 70% of its activity after 3-month storage at +5 degrees C, suggesting that this material can be used for practical application, such as in bioreactors as enzyme membranes.  相似文献   

10.
This review describes the design, synthesis and evaluation of novel catechol based anchors for surface modification. The anachelin chromophore, the catecholate fragment of the siderophore anachelin from the cyanobacterium Anabaena cylindrica, allows for the immobilization of polyethylene glycol (PEG) on titania and glass surfaces thus rendering them protein resistant and antifouling. It is proposed that catecholate siderophores constitute a class of natural products useful for surface modification similar to dihydroxyphenylalanine and dopamine derived compounds found in mussel adhesive proteins. Second-generation dopamine derivatives featuring a quaternary ammonium group were found to be equally efficient in generating antifouling surfaces. The anachelin chromophore, merged via a PEG linker to the glycopeptide antibiotic vancomycin, allowed for the generation of antimicrobial surfaces through an operationally simple dip-and-rinse procedure. This approach offers an option for the prevention of nosocomial infections through antimicrobial implants, catheters and stents. Consequences for the mild generation of functional biomaterials are discussed and novel strategies for the immobilization of complex natural products, proteins and DNA on surfaces are presented.  相似文献   

11.
We present a cell-free protein synthesis (CFPS) platform and a one-step, direct conjugation scheme for producing virus-like particle (VLP) assemblies that display multiple ligands including proteins, nucleic acids, and other molecules. Using a global methionine replacement approach, we produced bacteriophage MS2 and bacteriophage Qβ VLPs with surface-exposed methionine analogues (azidohomoalanine and homopropargylglycine) containing azide and alkyne side chains. CFPS enabled the production of VLPs with yields of ~ 300 μg/mL and with 85% incorporation of methionine analogues without requiring a methionine auxotrophic production host. We then directly conjugated azide- and alkyne-containing proteins (including an antibody fragment and the granulocyte-macrophage colony stimulating factor, or GM-CSF), nucleic acids and poly(ethylene glycol) chains to the VLP surface using Cu(I) catalyzed click chemistry. The GM-CSF protein, after conjugation to VLPs, was shown to partially retain its ability to stimulate the proliferation of cells. Conjugation of GM-CSF to VLPs resulted in a 3-5-fold reduction in its bioactivity. The direct attachment scheme facilitated conjugation of three different ligands to the VLPs in a single step, and enabled control of the relative ratios and surface abundance of the attached species. This platform can be used for the production of novel VLP bioconjugates for use as drug delivery vehicles, diagnostics, and vaccines.  相似文献   

12.
13.
Class I fungal hydrophobins are small surface‐active proteins that self‐assemble to form amphipathic monolayers composed of amyloid‐like rodlets. The monolayers are extremely robust and can adsorb onto both hydrophobic and hydrophilic surfaces to reverse their wettability. This adherence is particularly strong for hydrophobic materials. In this report, we show that the class I hydrophobins EAS and HYD3 can self‐assemble to form a single‐molecule thick coating on a range of nanomaterials, including single‐walled carbon nanotubes (SWCNTs), graphene sheets, highly oriented pyrolytic graphite, and mica. Moreover, coating by class I hydrophobin results in a stable, dispersed preparation of SWCNTs in aqueous solutions. No cytotoxicity is detected when hydrophobin or hydrophobin‐coated SWCNTs are incubated with Caco‐2 cells in vitro. In addition, we are able to specifically introduce covalently linked chemical moieties to the hydrophilic side of the rodlet monolayer. Hence, class I hydrophobins provide a simple and effective strategy for controlling the surfaces of a range of materials at a molecular level and exhibit strong potential for biomedical applications. © 2012 Wiley Periodicals, Inc.  相似文献   

14.
To address the need for a bright, photostable labeling tool that allows long-term in vivo imaging in whole organisms, we recently introduced second harmonic generating (SHG) nanoprobes. Here we present a protocol for the preparation and use of a particular SHG nanoprobe label, barium titanate (BT), for in vivo imaging in living zebrafish embryos. Chemical treatment of the BT nanoparticles results in surface coating with amine-terminal groups, which act as a platform for a variety of chemical modifications for biological applications. Here we describe cross-linking of BT to a biotin-linked moiety using click chemistry methods and coating of BT with nonreactive poly(ethylene glycol) (PEG). We also provide details for injecting PEG-coated SHG nanoprobes into zygote-stage zebrafish embryos, and in vivo imaging of SHG nanoprobes during gastrulation and segmentation. Implementing the PROCEDURE requires a basic understanding of laser-scanning microscopy, experience with handling zebrafish embryos and chemistry laboratory experience. Functionalization of the SHG nanoprobes takes ~3 d, whereas zebrafish preparation, injection and imaging setup should take approximately 2-4 h.  相似文献   

15.
Pro-cathepsin L is an inactive zymogen that has been shown previously to undergo autolysis at pH 3.0 to give mature forms of the enzyme. We have now been able to demonstrate that this enzyme can undergo activation at pH 5.5 in the presence of negatively charged surfaces. Activation could also be measured at pH 6.0, but no activation occurred at pH 6.5 or higher. The initiation of activation depends upon the presence of a small percentage of active pro-enzyme, and this is then followed by a more rapid activation to give mature forms of the enzyme. No significant intermediate molecular forms of the enzyme were seen. The time taken for processing of the pro-enzyme to single-chain mature enzyme is comparable to that seen in biosynthetic pulse-chase experiments.  相似文献   

16.
17.
18.
Mini-review: Proactive biomaterials and bone tissue engineering   总被引:1,自引:0,他引:1  
Recent advances in cell isolation and culture procedures, combined with growing understanding and use of molecular biology and biochemistry techniques, have resulted in the establishment of a new field of biological/biomedical research: cellular and tissue engineering. In the biomaterials field, cell and tissue bioengineers are investigating the development of proactive biomaterials (for example, bioceramics, chemically modified implant metals, and biodegradable tissue scaffolds) which utilize cellular- or molecular-level methods of manipulating cell/tissue behavior in order to encourage clinically desirable biological events at the tissue-implant interface. In vitro investigations utilizing osteoblasts, osteoclasts, and appropriate precursor cells, combined with long-term (i.e., years) tissue engineering studies in vivo are needed to enhance current understanding of the many mechanisms involved in bone formation and regulation. Such understanding will allow the development of proactive biomaterials for use in bone, which can elicit specific, timely, and clinically desirable responses from surrounding cells and tissues. (c) 1996 John Wiley & Sons, Inc.  相似文献   

19.
In this study, central composite design (CCD) was used to develop predictive models to optimize operating conditions of plasma surface modification. It was concluded that out of the two process variables, power and duration of plasma exposure, the latter was significantly affecting the surface energy (γ(s) ), chemistry, and topography of polyhedral oligomeric silsesquioxane-poly(carbonate-urea)urethane (POSS-PCU) films. On the basis of experimental data, CCD was used to model the γ(s) using a quadratic modeling of the process variables to achieve optimum surface energy to improve the interaction between endothelial cells (ECs). It was found that optimal water θ for EC adhesion and retention, which was reported 55° from supporting literature (equivalent to γ(s) = 51 mN/m), was easily achievable using the following experimental conditions: (1) power output at 30 W for 75 Sec, (2) 90 W for 40 Sec, and (3) 90 W for 55 Sec in oxygen. In vitro cell culture and metabolic activity studies on optimized films [as in (1)] demonstrate increased adhesion, coverage, and growth of human umbilical vein endothelial cells that were confluent over a shorter time period (<24 H) than controls. Such materials enhanced the EC response and promoted endothelialization on optimized films, thus demonstrating their use as bypass graft materials.  相似文献   

20.
Stem cell‐based approaches offer great application potential in tissue engineering and regenerative medicine owing to their ability of sensing the microenvironment and respond accordingly (dynamic behavior). Recently, the combination of nanobiomaterials with stem cells has paved a great way for further exploration. Nanobiomaterials with engineered surfaces could mimic the native microenvironment to which the seeded stem cells could adhere and migrate. Surface functionalized nanobiomaterial‐based scaffolds could then be used to regulate or control the cellular functions to culture stem cells and regenerate damaged tissues or organs. Therefore, controlling the interactions between nanobiomaterials and stem cells is a critical factor. However, surface functionalization or modification techniques has provided an alternative approach for tailoring the nanobiomaterials surface in accordance to the physiological surrounding of a living cells; thereby, enhancing the structural and functional properties of the engineered tissues and organs. Currently, there are a variety of methods and technologies available to modify the surface of biomaterials according to the specific cell or tissue properties to be regenerated. This review highlights the trends in surface modification techniques for nanobiomaterials and the biological relevance in stem cell‐based tissue engineering and regenerative medicine. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:554–567, 2016  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号