首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Summary A cycle of full-sib selection is completed in three seasons while that of a modified method is completed in two seasons. In modified full-sib selection, selected families can be recombined and new families generated following a partial-diallel cross. The components of genetic variance can be estimated from the partial-diallel analysis of such families. Thus, in addition to performing selection, genetic parameters can be estimated.  相似文献   

2.
On the evolution of cytoplasmic incompatibility in haplodiploid species   总被引:1,自引:0,他引:1  
The most enigmatic sexual manipulation by Wolbachia endosymbionts is cytoplasmic incompatibility (CI): infected males are reproductively incompatible with uninfected females. In this paper, we extend the theory on population dynamics and evolution of CI, with emphasis on haplodiploid species. First, we focus on the problem of the threshold to invasion of the Wolbachia infection in a population. Simulations of the dynamics of infection in small populations show that it does not suffice to assume invasion by drift alone (or demographic "accident"). We propose several promising alternatives that may facilitate invasion of Wolbachia in uninfected populations: sex-ratio effects, meta population structure, and other fitness-compensating effects. Including sex-ratio effects of Wolbachia allows invasion whenever infected females produce more infected daughters than uninfected females produce uninfected daughters. Several studies on haplodiploid species suggest the presence of such sex-ratio effects. The simple metapopulation model we analyzed predicts that, given that infecteds are better "invaders," uninfecteds must be better "colonizers" to maintain coexistence of infected and uninfected patches. This condition seems more feasible for species that suffer local extinction due to predation (or parasitization) than for species that suffer local extinction due to overexploiting their resource(s). Finally, we analyze the evolution of CI in haplodiploids once a population has been infected. Evolution does not depend on the type of CI (female mortality or male production), but hinges solely on decreasing the fitness cost and/or increasing the transmission efficiency. Our models offer new perspectives for increasing our understanding of the population and evolutionary dynamics of CI.  相似文献   

3.
Mouton L  Henri H  Boulétreau M  Vavre F 《Heredity》2005,94(2):187-192
Cytoplasmic incompatibility (CI) is a sperm-egg incompatibility commonly induced by the intracellular endosymbiont bacterium Wolbachia that, in diploid species, results in embryo mortality. In haplodiploid species, two types of CI exist depending on whether the incompatible fertilized eggs develop into males (male development (MD)) or abort (female mortality (FM)). CI allows multiple infections to be maintained in host populations, and thus allows interactions to occur between co-infecting strains. In Leptopilina heterotoma, three Wolbachia strains coexist naturally (wLhet1, wLhet2, wLhet3). When these three strains are all present, they induce a CI of FM type, whereas wLhet1 alone expresses a CI phenotype intermediate between MD and FM. Here, we compare CI effects in crosses involving insect lines sharing the same nuclear background, but harboring different mixtures of strains. Mating experiments showed that: (i) wLhet2 and wLhet3 also induce an intermediate CI when acting alone, and show a bidirectional incompatibility; (ii) there is no interaction between the co-infecting strains in CI expression; (iii) the diversity of Wolbachia present within a male host influences the expression of CI: an increase in the number of strains is correlated with a decrease in the proportion of the MD type, which is also correlated with an increase in bacterial density. All these data suggest that the CI of FM type results from a stronger effect than the MD type, which conflicts with the conventional hypotheses used to explain CI diversity in haplodiploids, and could provide some new information about CI mechanisms in insects.  相似文献   

4.
MOTIVATION: The problem of reconstructing full sibling groups from DNA marker data remains a significant challenge for computational biology. A recently published heuristic algorithm based on Mendelian exclusion rules and the Simpson index was successfully applied to the full sibship reconstruction (FSR) problem. However, the so-called SIMPSON algorithm has an unknown complexity measure, questioning its applicability range. RESULTS: We present a modified version of the SIMPSON (MS) algorithm that behaves as O(n(3)) and achieves the same or better accuracy when compared with the original algorithm. Performance of the MS algorithm was tested on a variety of simulated diploid population samples to verify its complexity measure and the significant improvement in efficiency (e.g. 100 times faster than SIMPSON in some cases). It has been shown that, in theory, the SIMPSON algorithm runs in non-polynomial time, significantly limiting its usefulness. It has been also verified via simulation experiments that SIMPSON could run in O(n(a)), where a > 3. AVAILABILITY: Computer code written in Java is available upon request from the first author. CONTACT: Dmitry.Konovalov@jcu.edu.au.  相似文献   

5.
With the advent of sophisticated genetic markers, studies on mating systems and reproductive apportionment have become increasingly feasible. In particular, paternity analyses in haplodiploid species have gained in power as hemizygous paternal genotypes allow maternal and paternal genotypes to be directly inferred from offspring genotypes. The computer program matesoft offers both newly developed algorithms for inferring maternal and paternal genotypes, and integrated estimation and correction procedures for calculating mating frequency statistics. Standard data are offspring genotypes of male‐haplodiploid organisms, including social Hymenoptera.  相似文献   

6.

Purpose  

This paper aims at spelling out the area of protection (AoP), namely the general concept of human well-being and the impact categories in social life cycle assessment (SLCA). The applicability of the so-called capabilities approach—a concept frequently used for evaluating human lives—is explored. It is shown how the principles of the capabilities approach can be transferred to the impact assessment within SLCA.  相似文献   

7.
Sibling species pairs of sweat bees (Halictus confusus andH. tumulorum) and pine sawflies (Neodiprion pratti andN. maurus) were surveyed for genetic variability using enzyme electrophoresis. Levels of heterozygosity were found to be within the ranges earlier recorded for Hymenoptera. Expected heterozygosities were not significantly higher in the sawflies than in the sweat bees. Estimates of genetic identity between the sibling species were not lower than those generally found for diplodiploid insect species: no evidence was found for an increased rate of evolution in these haplodiploids. Genetic identity data among populations ofH. confusus and betweenHalictus species were within the range expected for conspecific populations and sibling species, respectively. InNeodiprion all genetic distances were low but the two populations ofN. pratti had similar genetic distances as each did toN. maurus, indicating the necessity for further systematic studies of the genus. The research reported here was supported by NSERC operating grants to the junior author. Collections of samples were made through NSERC funding previously available to Drs. R. E. Owen and G. Knerer, L. R. was supported by an Internationaliserringsstipendium from the University of Copenhagen, and L. P. by an NSERC University Research Fellowship.  相似文献   

8.
Population genetics of haplodiploid insects   总被引:1,自引:0,他引:1       下载免费PDF全文
Lester LJ  Selander RK 《Genetics》1979,92(4):1329-1345
Genic variation of seven species of Hymenoptera is described, using electrophoretic techniques. The heterozygosities range from 0.033 to 0.084. An average heterozygosity is calculated for 23 species of haplodiploid insects, and this value is significantly different from the same value for 18 Drosophila species or for 24 diploid insect species (including Drosophila). The niche width-genetic variation hypothesis is rejected as an explanation. A comparison of selection models and neutral models shows that both hypotheses are capable of explaining the data.  相似文献   

9.
As high-throughput genomic tools, such as the DNA microarray platform, have lead to the development of novel genotyping procedures, such as Diversity Arrays Technology (DArT) and Single Nucleotide Polymorphisms (SNPs), it is likely that, in the future, high density linkage maps will be constructed from both dominant and co-dominant markers. Recently, a strictly genetic approach was described for estimating recombination frequency (r) between co-dominant markers in full-sib families. The complete set of maximum likelihood estimators for r in full-sib families was almost obtained, but unfortunately, one particular configuration involving dominant markers, segregating in a 3:1 ratio and co-dominant markers, was not considered. Here we add nine further estimators to the previously published set, thereby making it possible to cover all combinations of molecular markers with two to four alleles (without epistasis) in a full-sib family. This includes segregation in one or both parents, dominance and all linkage phase configurations.  相似文献   

10.
It is shown that when females can adjust their offspring sex ratios conditionally to the identity of their mates, i.e. sib or non-sib, split sex ratios are expected. These split sex ratios result from variation in relatedness between females and their daughters. Haplodiploid females' relatedness to their daughters increases as their relatedness to their mates increases. Therefore, sibmated females' optimal progeny sex ratio is more female biased than that of outbred females. Inbreeding depression that can result from complementary sex determination (CSD) is also considered. The genetic load caused by CSD can be so costly to sibmated females that they switch to the production of males only. The evolutionarily stable sex ratios for a sibmating model is found to be of a weak type. These weak equilibria and split sex ratios can lead to high variation about the mean and are an incentive for further studies on sex ratio variation in conjunction with mating behaviour. The occurrence of split sex ratios in haplodiploid taxa is important because it favours the evolution of eusociality. Partial local mating and alternative mating strategies can thus eventually lead to the evolution of eusociality.  相似文献   

11.
Maternally inherited bacterial endosymbionts that affect host fitness are common in nature. Some endosymbionts colonise host populations by reproductive manipulations (such as cytoplasmic incompatibility; CI) that increase the reproductive fitness of infected over uninfected females. Theory predicts that CI-inducing endosymbionts in haplodiploid hosts may also influence sex allocation, including in compatible crosses, however, empirical evidence for this is scarce. We examined the role of two common CI-inducing endosymbionts, Cardinium and Wolbachia, in the sex allocation of Pezothrips kellyanus, a haplodiploid thrips species with a split sex ratio. In this species, irrespective of infection status, some mated females are constrained to produce extremely male-biased broods, whereas other females produce extremely female-biased broods. We analysed brood sex ratio of females mated with males of the same infection status at two temperatures. We found that at 20 °C the frequency of constrained sex allocation in coinfected pairs was reduced by 27% when compared to uninfected pairs. However, at 25 °C the constrained sex allocation frequency increased and became similar between coinfected and uninfected pairs, resulting in more male-biased population sex ratios at the higher temperature. This temperature-dependent pattern occurred without changes in endosymbiont densities and compatibility. Our findings indicate that endosymbionts affect sex ratios of haplodiploid hosts beyond the commonly recognised reproductive manipulations by causing female-biased sex allocation in a temperature-dependent fashion. This may contribute to a higher transmission efficiency of CI-inducing endosymbionts and is consistent with previous models that predict that CI by itself is less efficient in driving endosymbiont invasions in haplodiploid hosts.Subject terms: Evolutionary genetics, Evolutionary ecology, Parasitology  相似文献   

12.
13.
Acquired abdominal wall defects result from trauma, previous surgery, infection, and tumor resection. The correction of complex defects is a challenge to both plastic and reconstructive and general surgeons. The anatomy of the abdominal wall, as well as considerations in patient assessment and surgical planning, are discussed. A simple classification of abdominal wall defects based on size, depth, and location is provided. Publications regarding the various abdominal reconstruction techniques are reviewed and summarized to familiarize the reader with the treatment options for each particular defect. Finally, an algorithm is presented to guide the surgeon in selecting the optimal reconstructive technique.  相似文献   

14.
15.
The beetle family Scolytidae includes several groups having regular sib-mating and extremely female-biased sex ratios. Two such groups are known to include haplodiploid species: (i) the tribe Xyleborini and (ii) Coccotrypes and related genera within the tribe Dryocoetini. Relationships of these groups have been controversial. We analysed elongation factor 1-α (852 bp) and cytochrome oxidase 1 (1179 bp) sequences for 40 species. The most-parsimonious trees imply a single origin of haplodiploidy uniting Xyleborini (approximately 1200 species) and sib-mating Dryocoetini (approximately 160 species). The sister-group of the haplodiploid clade is the outcrossing genus Dryocoetes. The controversial genus Premnobius is outside the haplodiploid clade. Most haplodiploid scolytids exploit novel resources, ambrosia fungi or seeds, but a few have the ancestral habit of feeding on phloem. Thus, scolytids provide the clearest example of W. D. Hamilton''s scenario for the evolution of haplodiploidy (life under bark leading to inbreeding and hence to female-biased sex ratios through haplodiploidy) and now constitute a unique opportunity to study diplodiploid and haplodiploid sister-lineages in a shared ancestral habitat. There is some evidence of sex determination by maternally inherited endosymbiotic bacteria, which may explain the consistency with which female-biased sex ratios and close inbreeding have been maintained.  相似文献   

16.
Modified technique for nipple-areolar reconstruction: a case series   总被引:1,自引:0,他引:1  
SUMMARY: Thousands of women undergo postmastectomy breast reconstruction each year. Part of the reconstruction of an aesthetically pleasing breast is a high-quality nipple-areolar reconstruction. The goals for this reconstruction include appropriate nipple projection, areolar color, and areolar texture. Presented in this article is a novel technique that achieves these goals without the need for harvesting a distant skin graft. The nipple-areolar reconstruction is performed under local anesthesia. A skate flap is designed to achieve the nipple reconstruction. The skate flap donor sites are closed primarily, and the outline of the areola is then defined with a round template. The skin is then incised at the border of the areola, and a full-thickness graft is elevated to the base of the reconstructed nipple. After hemostasis is achieved, the skin graft is placed back down in its original position and a bolster dressing is applied. Tattooing is performed 4 months postoperatively to achieve a color match. Twenty-four consecutive patients underwent 31 nipple-areolar reconstructions using this novel technique. All patients achieved excellent results without complications. One patient did experience a partial skate flap loss; however, the wound healed secondarily without the need for revision. The technique described herein can achieve the goals of nipple-areolar reconstruction, including appropriate nipple projection, areolar color, and areolar texture, without the need for a distant skin graft.  相似文献   

17.
A new method for haplotype inference including full-sib information   总被引:1,自引:0,他引:1       下载免费PDF全文
Ding XD  Simianer H  Zhang Q 《Genetics》2007,177(3):1929-1940
Recent literature has suggested that haplotype inference through close relatives, especially from nuclear families, can be an alternative strategy in determining linkage phase and estimating haplotype frequencies. In the case of no possibility to obtain genotypes for parents, and only full-sib information being used, a new approach is suggested to infer phase and to reconstruct haplotypes. We present a maximum-likelihood method via an expectation-maximization algorithm, called FSHAP, using only full-sib information when parent information is not available. FSHAP can deal with families with an arbitrary number of children, and missing parents or missing genotypes can be handled as well. In a simulation study we compare FSHAP with another existing expectation-maximization (EM)-based approach (FAMHAP), the conditioning approach implemented in FBAT and GENEHUNTER, which is only pedigree based and assumes linkage equilibrium. In most situations, FSHAP has the smallest discrepancy of haplotype frequency estimation and the lowest error rate in haplotype reconstruction, only in some cases FAMHAP yields comparable results. GENEHUNTER produces the largest discrepancy, and FBAT produces the highest error rate in offspring in most situations. Among the methods compared, FSHAP has the highest accuracy in reconstructing the diplotypes of the unavailable parents. Potential limitations of the method, e.g., in analyzing very large haplotypes, are indicated and possible solutions are discussed.  相似文献   

18.
We have implemented a Fast Fourier Summation algorithm for tomographic reconstruction of three-dimensional biological data sets obtained via transmission electron microscopy. We designed the fast algorithm to reproduce results obtained by the direct summation algorithm (also known as filtered or R-weighted backprojection). For two-dimensional images, the new algorithm scales as O(N(theta)M log M)+O(MN log N) operations, where N(theta) is the number of projection angles and M x N is the size of the reconstructed image. Three-dimensional reconstructions are constructed from sequences of two-dimensional reconstructions. We demonstrate the algorithm on real data sets. For typical sizes of data sets, the new algorithm is 1.5-2.5 times faster than using direct summation in the space domain. The speed advantage is even greater as the size of the data sets grows. The new algorithm allows us to use higher order spline interpolation of the data without additional computational cost. The algorithm has been incorporated into a commonly used package for tomographic reconstruction.  相似文献   

19.
Recent theoretical work has shown that haplodiploid cyclical parthenogens, such as rotifers, are expected to have an equal frequency of male‐producing and resting‐egg producing females during their sexual phase. We tested this prediction by following sexual reproduction dynamics in two laboratory populations and one field population of the rotifer Brachionus plicatilis through two growing seasons. We recorded population density, proportion of sexual females, and sex allocation (the proportion of male‐producing sexual females as a fraction of total sexual females). We found this sex allocation ratio to vary from 0.3 to 1.0 in single sampling events. However, when we computed sex allocation by using the integrated densities of both male‐producing sexual females and resting‐egg producing sexual females over time, the two laboratory populations and one of the two field growing seasons showed sex allocation ratios that did not significantly differ from the expected value of 0.5.  相似文献   

20.
Beukeboom LW  Kamping A 《Genetics》2006,172(2):981-989
The parasitoid wasp Nasonia vitripennis is an emerging model organism for developmental and behavioral genetics. It reproduces by haplodiploidy; males typically develop parthenogenetically from haploid eggs and females from fertilized diploid eggs. A polyploid mutant strain is available in which females are triploid and lay haploid and diploid eggs that normally develop into males when unfertilized. In contrast to previous reports, approximately 2% of triploid females were found to occasionally produce daughters as well as gynandromorphs from diploid unfertilized eggs. Daughter production increased with age and differed among familial lineages. This is the first report of parthenogenetic female development in Nasonia. The results show that a paternally provided genome is not required for femaleness and call for modifications of existing models of sex determination in Nasonia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号