首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Somatic evolution, which underlies tumor progression, is driven by two essential components: 1) diversification of phenotypes through heritable mutations and epigenetic changes and 2) selection for mutant clones which possess maximal fitness. Exposure to ionizing radiation (IR) is strongly associated with increased risk of carcinogenesis. This link is traditionally attributed to causation of oncogenic mutations through the mutagenic effects of irradiation. On the other hand, potential effects of irradiation on altering fitness and increasing selection for mutant clones are frequently ignored. Recent studies bring the effects of irradiation on fitness and selection into focus, demonstrating that IR exposure results in stable reductions in the fitness of hematopoietic stem and progenitor cell populations. These reductions of fitness are associated with alteration of the adaptive landscape, increasing the selective advantages conferred by certain oncogenic mutations. Therefore, the link between irradiation and carcinogenesis might be more complex than traditionally appreciated: while mutagenic effects of irradiation should increase the probability of occurrence of oncogenic mutations, IR can also work as a tumor promoter, increasing the selective expansion of clones bearing mutations which become advantageous in the irradiation-altered environment, such as activated mutations in Notch1 or disrupting mutations in p53.  相似文献   

2.
Somatic evolution, which underlies tumor progression, is driven by two essential components: (1) diversification of phenotypes through heritable mutations and epigenetic changes and (2) selection for mutant clones which possess higher fitness. Exposure to ionizing radiation (IR) is highly associated with increased risk of carcinogenesis. This link is traditionally attributed to causation of oncogenic mutations through the mutagenic effects of irradiation. On the other hand, potential effects of irradiation on altering fitness and increasing selection for mutant clones are frequently ignored. Recent studies bring the effects of irradiation on fitness and selection into focus, demonstrating that IR exposure results in stable reductions in the fitness of hematopoietic stem and progenitor cell populations. These reductions of fitness are associated with alteration of the adaptive landscape, increasing the selective advantages conferred by certain oncogenic mutations. Therefore, the link between irradiation and carcinogenesis might be more complex than traditionally appreciated: while mutagenic effects of irradiation should increase the probability of occurrence of oncogenic mutations, IR can also work as a tumor promoter, increasing the selective expansion of clones bearing mutations which become advantageous in the irradiation-altered environment, such as activated mutations in Notch1 or disrupting mutations in p53.Key words: Notch, p53, fitness, irradiation, hematopoietic, evolution  相似文献   

3.
4.
de Visser JA  Rozen DE 《Genetics》2006,172(4):2093-2100
The conventional model of adaptation in asexual populations implies sequential fixation of new beneficial mutations via rare selective sweeps that purge all variation and preserve the clonal genotype. However, in large populations multiple beneficial mutations may co-occur, causing competition among them, a phenomenon called "clonal interference." Clonal interference is thus expected to lead to longer fixation times and larger fitness effects of mutations that ultimately become fixed, as well as to a genetically more diverse population. Here, we study the significance of clonal interference in populations consisting of mixtures of differently marked wild-type and mutator strains of Escherichia coli that adapt to a minimal-glucose environment for 400 generations. We monitored marker frequencies during evolution and measured the competitive fitness of random clones from each marker state after evolution. The results demonstrate the presence of multiple beneficial mutations in these populations and slower and more erratic invasion of mutants than expected by the conventional model, showing the signature of clonal interference. We found that a consequence of clonal interference is that fitness estimates derived from invasion trajectories were less than half the magnitude of direct estimates from competition experiments, thus revealing fundamental problems with this fitness measure. These results force a reevaluation of the conventional model of periodic selection for asexual microbes.  相似文献   

5.
Isolation and analysis of recombinant DNA molecules containing yeast DNA.   总被引:26,自引:0,他引:26  
2500 recombinant plasmids containing insertions of yeast nuclear DNA have been cloned in Escherichia coli. It can be calculated that about 85% of the yeast genome is represented in this collection. The clones have been characterized by hybridization to purified RNA species. Of the 2000 clones examined, 75 contain insertions of yeast ribosomal DNA, 201 contain insertions of yeast tRNA genes, and 26 contain DNA sequences that are complementary to abundant mRNA species.  相似文献   

6.
7.
8.
9.
The gain in fitness during adaptation depends on the supply of beneficial mutations. Despite a good theoretical understanding of how evolution proceeds for a defined set of mutations, there is little understanding of constraints on net fitness-whether fitness will reach a limit despite ongoing selection and mutation, and if there is a limit, what determines it. Here, the dsDNA bacteriophage SP6, a virus of Salmonella, was adapted to Escherichia coli K-12. From an isolate capable of modest growth on E. coli, four lines were adapted for rapid growth by protocols differing in use of mutagen, propagation method, and duration, but using the same media, temperature, and a continual excess of the novel host. Nucleotide changes underlying those adaptations differed greatly in number and identity, but the four lines achieved similar absolute fitness at the end, an increase of more than 4000-fold phage descendants per hour. Thus, the fitness landscape allows multiple genetic paths to the same approximate fitness limit. The existence and causes of fitness limits have ramifications to genome engineering, vaccine design, and "lethal mutagenesis" treatments to cure viral infections.  相似文献   

10.
Policies aimed at alleviating the growing problem of drug-resistant pathogens by restricting antimicrobial usage implicitly assume that resistance reduces the Darwinian fitness of pathogens in the absence of drugs. While fitness costs have been demonstrated for bacteria and viruses resistant to some chemotherapeutic agents, these costs are anticipated to decline during subsequent evolution. This has recently been observed in pathogens as diverse as HIV and Escherichia coli. Here we present evidence that these gentic adaptations to the costs of resistance can virtually preclude resistant lineages from reverting to sensitivity. We show that second site mutations which compensate for the substantial (14 and 18% per generation) fitness costs of streptomycin resistant (rpsL) mutations in E. coli create a genetic background in which streptomycin sensitive, rpsL+ alleles have a 4-30% per generation selective disadvantage relative to adapted, resistant strains. We also present evidence that similar compensatory mutations have been fixed in long-term streptomycin-resistant laboratory strains of E. coli and may account for the persistence of rpsL streptomycin resistance in populations maintained for more than 10,000 generations in the absence of the antibiotic. We discuss the public health implications of these and other experimental results that question whether the more prudent use of antimicrobial chemotherapy will lead to declines in the incidence of drug-resistant pathogenic microbes.  相似文献   

11.
Laboratory selection is a powerful approach for engineering new traits in metabolic engineering applications. This approach is limited because determining the genetic basis of improved strains can be difficult using conventional methods. We have recently reported a new method that enables the measurement of fitness for all clones contained within comprehensive genomic libraries, thus enabling the genome-scale mapping of fitness altering genes. Here, we demonstrate a strategy for relating these measurements to the individual phenotypes selected for in a particular environment. We first provide a mathematical framework for decomposing fitness into selectable phenotypes. We then employed this framework to predict that single-batch selections would enrich primarily for library clones with increased growth rate, serial-batch would enrich for a broad collection of clones enhanced via a combination of increased growth rate and/or reduced lag times, and that overlap among selected clones would be minimal. We used the SCalar Analysis of Library Enrichments (SCALEs) method to test these predictions. We mapped all genomic regions for which increased copy number conferred a selective advantage to Escherichia coli when cultured via single- or serial-batch in the presence of 1-naphthol. We identified a surprisingly large collection (163 total) of tolerance regions, including all previously identified solvent tolerance genes in E. coli. We show that the majority of the identified regions were unique to the different selection strategies examined and that such differences were indeed due to differences among enriched clones in growth rate and lag times over the solvent concentrations examined. The combination of a framework for decomposing overall fitness into selectable phenotypes along with a genome-scale method for mapping genes to such phenotypes lays the groundwork for improving the rational design of laboratory selections.  相似文献   

12.
A major goal of genetics is to define the relationship between phenotype and genotype, while a major goal of ecology is to identify the rules that govern community assembly. Achieving these goals by analyzing natural systems can be difficult, as selective pressures create dynamic fitness landscapes that vary in both space and time. Laboratory experimental evolution offers the benefit of controlling variables that shape fitness landscapes, helping to achieve both goals. We previously showed that a clonal population of E. coli experimentally evolved under continuous glucose limitation gives rise to a genetically diverse community consisting of one clone, CV103, that best scavenges but incompletely utilizes the limiting resource, and others, CV101 and CV116, that consume its overflow metabolites. Because this community can be disassembled and reassembled, and involves cooperative interactions that are stable over time, its genetic diversity is sustained by clonal reinforcement rather than by clonal interference. To understand the genetic factors that produce this outcome, and to illuminate the community''s underlying physiology, we sequenced the genomes of ancestral and evolved clones. We identified ancestral mutations in intermediary metabolism that may have predisposed the evolution of metabolic interdependence. Phylogenetic reconstruction indicates that the lineages that gave rise to this community diverged early, as CV103 shares only one Single Nucleotide Polymorphism with the other evolved clones. Underlying CV103''s phenotype we identified a set of mutations that likely enhance glucose scavenging and maintain redox balance, but may do so at the expense of carbon excreted in overflow metabolites. Because these overflow metabolites serve as growth substrates that are differentially accessible to the other community members, and because the scavenging lineage shares only one SNP with these other clones, we conclude that this lineage likely served as an “engine” generating diversity by creating new metabolic niches, but not the occupants themselves.  相似文献   

13.
We report here modifications of human beta-globin PAC clones by homologous recombination in Escherichia coli DH10B, utilising a plasmid temperature sensitive for replication, the recA gene and a wild-type copy of the rpsL gene which allows for an efficient selection for plasmid loss in this host. High frequencies of recombination are observed even with very small lengths of homology and the method has general utility for introducing insertions, deletions and point mutations. No rearrangements were detected with the exception of one highly repetitive genomic sequence when either the E.COLI: RecA- or the lambdoid phage encoded RecT and RecE-dependent recombination systems were used.  相似文献   

14.
Adaptation to novel environments is often associated with changes in gene regulation. Nevertheless, few studies have been able both to identify the genetic basis of changes in regulation and to demonstrate why these changes are beneficial. To this end, we have focused on understanding both how and why the lactose utilization network has evolved in replicate populations of Escherichia coli. We found that lac operon regulation became strikingly variable, including changes in the mode of environmental response (bimodal, graded, and constitutive), sensitivity to inducer concentration, and maximum expression level. In addition, some classes of regulatory change were enriched in specific selective environments. Sequencing of evolved clones, combined with reconstruction of individual mutations in the ancestral background, identified mutations within the lac operon that recapitulate many of the evolved regulatory changes. These mutations conferred fitness benefits in environments containing lactose, indicating that the regulatory changes are adaptive. The same mutations conferred different fitness effects when present in an evolved clone, indicating that interactions between the lac operon and other evolved mutations also contribute to fitness. Similarly, changes in lac regulation not explained by lac operon mutations also point to important interactions with other evolved mutations. Together these results underline how dynamic regulatory interactions can be, in this case evolving through mutations both within and external to the canonical lactose utilization network.  相似文献   

15.
Previous studies have shown that the mutT, mutH, mutL and mutS mutators of Escherichia coli confer a marked selective advantage on their respective hosts in competition with otherwise isogenic wild-type strains. We have conducted competition experiments between dam- and dam+ strains of Escherichia coli and have found that dam mutator strains are negatively selected. Although dam- is the first mutator to have a lower fitness than wild-type under chemostat conditions our result does not contradict the hypothesis that increased mutation rates are of evolutionary advantage under environmental stress conditions. Only in the special case of dam- does the advantage of higher mutation rates not outweigh the disadvantage due to the dam- -caused heavy pleiotropic effects.  相似文献   

16.
Evolution of fitness values upon replication of viral populations is strongly influenced by the size of the virus population that participates in the infections. While large population passages often result in fitness gains, repeated plaque-to-plaque transfers result in average fitness losses. Here we develop a numerical model that describes fitness evolution of viral clones subjected to serial bottleneck events. The model predicts a biphasic evolution of fitness values in that a period of exponential decrease is followed by a stationary state in which fitness values display large fluctuations around an average constant value. This biphasic evolution is in agreement with experimental results of serial plaque-to-plaque transfers carried out with foot-and-mouth disease virus (FMDV) in cell culture. The existence of a stationary phase of fitness values has been further documented by serial plaque-to-plaque transfers of FMDV clones that had reached very low relative fitness values. The statistical properties of the stationary state depend on several parameters of the model, such as the probability of advantageous versus deleterious mutations, initial fitness, and the number of replication rounds. In particular, the size of the bottleneck is critical for determining the trend of fitness evolution.  相似文献   

17.
Aneuploidy is a hallmark of tumor cells, and yet the precise relationship between aneuploidy and a cell’s proliferative ability, or cellular fitness, has remained elusive. In this study, we have combined a detailed analysis of aneuploid clones isolated from laboratory-evolved populations of Saccharomyces cerevisiae with a systematic, genome-wide screen for the fitness effects of telomeric amplifications to address the relationship between aneuploidy and cellular fitness. We found that aneuploid clones rise to high population frequencies in nutrient-limited evolution experiments and show increased fitness relative to wild type. Direct competition experiments confirmed that three out of four aneuploid events isolated from evolved populations were themselves sufficient to improve fitness. To expand the scope beyond this small number of exemplars, we created a genome-wide collection of >1,800 diploid yeast strains, each containing a different telomeric amplicon (Tamp), ranging in size from 0.4 to 1,000 kb. Using pooled competition experiments in nutrient-limited chemostats followed by high-throughput sequencing of strain-identifying barcodes, we determined the fitness effects of these >1,800 Tamps under three different conditions. Our data revealed that the fitness landscape explored by telomeric amplifications is much broader than that explored by single-gene amplifications. As also observed in the evolved clones, we found the fitness effects of most Tamps to be condition specific, with a minority showing common effects in all three conditions. By integrating our data with previous work that examined the fitness effects of single-gene amplifications genome-wide, we found that a small number of genes within each Tamp are centrally responsible for each Tamp’s fitness effects. Our genome-wide Tamp screen confirmed that telomeric amplifications identified in laboratory-evolved populations generally increased fitness. Our results show that Tamps are mutations that produce large, typically condition-dependent changes in fitness that are important drivers of increased fitness in asexually evolving populations.  相似文献   

18.
A plasmid-borne randomized mini-gene library expressing a population of combinatorial 20-mer peptides with no bias toward any biological function was used as an initial source of genetic variance during stress-driven evolution of Escherichia coli. The transformed bacteria were evolved under multiple rounds of selective pressure imposed by nearly lethal concentrations of NiCl(2), AgNO(3), or K(2)TeO(3). At the final stage, clones conferring resistance to NiCl(2) were found to carry identical functional mini-genes, which conferred significant nickel tolerance on the host cells. Expression of the mini-gene markedly improved growth parameters of the evolved clones at subinhibitory concentrations of NiCl(2) while being slightly detrimental in the absence of the stress. This substantial increase in resistance, as compared with control cultures adapted in the absence of the mini-gene, is shown to be largely due to coadaptation with changes elsewhere in the E. coli genome. Clones resistant to AgNO(3) and K(2)TeO(3) harbored plasmid variants with an inactive mini-gene and with a deleted mini-gene operon, respectively. In those cases, an exploration of the mini-gene sequence space apparently was fruitless, and the developed toxicity tolerance was likely to be exclusively associated with acquired adaptive mutations. Overall, the results demonstrate a very natural outcome in which the mini-genes were expected to be either successfully integrated into the bacterial genetic network or rejected depending on their effect on host fitness. This approach is immediately useful as a laboratory model to study the dynamics of bacterial adaptive evolution at the molecular level and is especially relevant as a rapid method to study cellular response to recently acquired genetic material.  相似文献   

19.
Marciano DC  Karkouti OY  Palzkill T 《Genetics》2007,176(4):2381-2392
The bla(TEM-1) beta-lactamase gene has become widespread due to the selective pressure of beta-lactam use and its stable maintenance on transferable DNA elements. In contrast, bla(SME-1) is rarely isolated and is confined to the chromosome of carbapenem-resistant Serratia marcescens strains. Dissemination of bla(SME-1) via transfer to a mobile DNA element could hinder the use of carbapenems. In this study, bla(SME-1) was determined to impart a fitness cost upon Escherichia coli in multiple genetic contexts and assays. Genetic screens and designed SME-1 mutants were utilized to identify the source of this fitness cost. These experiments established that the SME-1 protein was required for the fitness cost but also that the enzyme activity of SME-1 was not associated with the fitness cost. The genetic screens suggested that the SME-1 signal sequence was involved in the fitness cost. Consistent with these findings, exchange of the SME-1 signal sequence for the TEM-1 signal sequence alleviated the fitness cost while replacing the TEM-1 signal sequence with the SME-1 signal sequence imparted a fitness cost to TEM-1 beta-lactamase. Taken together, these results suggest that fitness costs associated with some beta-lactamases may limit their dissemination.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号