首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The protein kinase C (PKC) pathway is important for the regulation of K(+) transport. The renal outer medullar K(+) (ROMK1) channels show an exquisite sensitivity to intracellular protons (pH(i)) (effective pK(a) approximately 6.8) and play a key role in K(+) homeostasis during metabolic acidosis. Our molecular dynamic simulation results suggest that PKC-mediated phosphorylation on Thr-193 may disrupt the PIP(2)-channel interaction via a charge-charge interaction between Thr-193 and Arg-188. Therefore, we investigated the role of PKC and pH(i) in regulation of ROMK1 channel activity using a giant patch clamp with Xenopus oocytes expressing wild-type and mutant ROMK1 channels. ROMK1 channels pre-incubated with the PKC activator phorbol-12-myristate-13-acetate exhibited increased sensitivity to pH(i) (effective pK(a) shifted to pH approximately 7.0). In the presence of GF109203X--a PKC selective inhibitor--the effective pK(a) for inhibition of ROMK1 channels by pH(i) decreased (effective pK(a) shifted to pH approximately 6.5). The pH(i) sensitivity of ROMK1 channels mediated by PKC appeared to be dependent of PIP(2) depletion. The giant patch clamp together with site direct mutagenesis revealed that Thr-193 is the phosphorylation site on PKC that regulates the pH(i) sensitivity of ROMK1 channels. Mutation of PKC-induced phosphorylation sites (T193A) decreases the pH(i) sensitivity and increases the interaction of channel-PIP(2). Taken together, these results provide new insights into the molecular mechanisms underlying the pH(i) gating of ROMK1 channel regulation by PKC.  相似文献   

2.
ROMK channels are responsible for K(+) secretion in kidney. The activity of ROMK is regulated by intracellular pH (pH(i)) with acidification causing channel closure (effective pK(a) approximately 6.9). Recently, we and others reported that a direct interaction of the channels with phosphatidyl-4,5-bisphosphate (PIP(2)) is critical for opening of the inwardly rectifying K(+) channels. Here, we investigate the relationship between the mechanisms for regulation of ROMK by PIP(2) and by pH(i). We find that disruption of PIP(2)-ROMK1 interaction not only decreases single-channel open probability (P(o)) but gives rise to a ROMK1 subconductance state. This state has an increased sensitivity to intracellular protons (effective pK(a) shifted to pH approximately 7.8), such that the subconductance channels are relatively quiescent at physiological pH(i). Open probability for the subconductance channels can then be increased by intracellular alkalinization to supra-physiological pH. This increase in P(o) for the subconductance channels by alkalinization is not associated with an increase in PIP(2)-channel interaction. Thus, direct interaction with PIP(2) is critical for ROMK1 to open at full conductance. Disruption of this interaction increases pH(i) sensitivity for the channels via emergence of the subconductance state. The control of open probability of ROMK1 by pH(i) occurs via a mechanism distinct from the regulation by PIP(2).  相似文献   

3.
The activity of apical K(+) channels in cortical collecting duct (CCD) is stimulated and inhibited by protein kinase A (PKA) and C (PKC), respectively. Direct interaction between phosphatidylinositol 4,5-bisphosphate (PIP(2)) and the cloned CCD K(+) channel, ROMK1, is critical for channel opening. We have found previously that phosphorylation of ROMK1 by PKA increases affinity of the channel for PIP(2) and mutation of PKA sites reduces the affinity of ROMK1 for PIP(2). In this study we investigate the molecular mechanism for PKC regulation of ROMK and report that mutants of ROMK1 with reduced PIP(2) affinity exhibit an increased sensitivity to inhibition by phorbol myristate acetate (PMA). The effect of PMA can be prevented by pretreatment with calphostin-C. Activation of PKC by carbachol in Xenopus oocytes co-expressing M1 muscarinic receptors also causes inhibition of the channels. Calphostin-C prevents carbachol-induced inhibition, suggesting that activation of PKC is necessary for inhibition of the channels. PMA reduces open probability of the channel in cell-attached patch clamp recordings. After inhibition by PMA in cell-attached recordings, application of PIP(2) to the cytoplasmic face of excised inside-out membranes restores channel activity. PMA reduces PIP(2) content in oocyte membrane and calphostin-C prevents the reduction. These results suggest that reduction of membrane PIP(2) content contributes to the inhibition of ROMK1 channels by PKC. This mechanism may underscore the inhibition of K(+) secretion in CCD by hormones that activate PKC.  相似文献   

4.
The ROMK (Kir1.1; Kcnj1) gene is believed to encode the apical small conductance K(+) channels (SK) of the thick ascending limb (TAL) and cortical collecting duct (CCD). Loss-of-function mutations in the human ROMK gene cause Bartter's syndrome with renal Na(+) wasting, consistent with the role of this channel in apical K(+) recycling in the TAL that is crucial for NaCl reabsorption. However, the mechanism of renal K(+) wasting and hypokalemia that develop in individuals with ROMK Bartter's syndrome is not apparent given the proposed loss of the collecting duct SK channel. Thus, we generated a colony of ROMK null mice with approximately 25% survival to adulthood that provides a good model for ROMK Bartter's syndrome. The remaining 75% of null mice die in less than 14 days after birth. The surviving ROMK null mice have normal gross renal morphology with no evidence of significant hydronephrosis, whereas non-surviving null mice exhibit marked hydronephrosis. ROMK protein expression was absent in TAL and CCD from null mice but exhibited normal abundance and localization in wild-type littermates. ROMK null mice were polyuric and natriuretic with an elevated hematocrit consistent with mild extracellular volume depletion. SK channel activity in TAL and CCD was assessed by patch clamp analysis in ROMK wild-type ROMK(+/+), heterozygous ROMK(+/-), and null ROMK(-/-) mice. In 313 patches with successful seals from the three ROMK genotypes, SK channel activity in ROMK (+/+ and +/-) exhibited normal single channel kinetics. The expression frequencies are as follows: 67 (TAL) and 58% (CCD) in ROMK(+/+); about half that of the wild-type in ROMK(+/-), being 38 (TAL) and 25% (CCD); absent in both TAL or CCD in ROMK(-/-) between 2 and 5 weeks in 15 mice (61 and 66 patches, respectively). The absence of SK channel activity in ROMK null mice demonstrates that ROMK is essential for functional expression of SK channels in both TAL and CCD. Despite loss of ROMK expression, the normokalemic null mice exhibited significantly increased kaliuresis, indicating alternative mechanisms for K(+) absorption/secretion in the nephron.  相似文献   

5.
Base-line urinary potassium secretion in the distal nephron is mediated by small conductance rat outer medullary K (ROMK)-like channels. We used the patch clamp technique applied to split-open cortical collecting ducts (CCDs) isolated from rats fed a normal potassium (NK) or low potassium (LK) diet to test the hypothesis that AngII directly inhibits ROMK channel activity. We found that AngII inhibited ROMK channel activity in LK but not NK rats in a dose-dependent manner. The AngII-induced reduction in channel activity was mediated by AT1 receptor (AT1R) binding, because pretreatment of CCDs with losartan but not PD123319 AT1 and AT2 receptor antagonists, respectively, blocked the response. Pretreatment of CCDs with U73122 and calphostin C, inhibitors of phospholipase C (PLC) and protein kinase C (PKC), respectively, abolished the AngII-induced decrease in ROMK channel activity, confirming a role of the PLC-PKC pathway in this response. Studies by others suggest that AngII stimulates an Src family protein-tyrosine kinase (PTK) via PKC-NADPH oxidase. PTK has been shown to regulate the ROMK channel. Inhibition of NADPH oxidase with diphenyliodonium abolished the inhibitory effect of AngII or the PKC activator phorbol 12-myristate 13-acetate on ROMK channels. Suppression of PTK by herbimycin A significantly attenuated the inhibitory effect of AngII on ROMK channel activity. We conclude that AngII inhibits ROMK channel activity through PKC-, NADPH oxidase-, and PTK-dependent pathways under conditions of dietary potassium restriction.  相似文献   

6.
ATP-regulated (K(ATP)) channels are formed by an inward rectifier pore-forming subunit (Kir) and a sulfonylurea (glibenclamide)-binding protein, a member of the ATP binding cassette family (sulfonylurea receptor (SUR) or cystic fibrosis transmembrane conductance regulator). The latter is required to confer glibenclamide sensitivity to K(ATP) channels. In the mammalian kidney ROMK1-3 are components of K(ATP) channels that mediate K(+) secretion into urine. ROMK1 and ROMK3 splice variants share the core polypeptide of ROMK2 but also have distinct NH(2)-terminal extensions of 19 and 26 amino acids, respectively. The SUR2B is also expressed in rat kidney tubules and may combine with Kir.1 to form renal K(ATP) channels. Our previous studies showed that co-expression of ROMK2, but not ROMK1 or ROMK3, with rat SUR2B in oocytes generated glibenclamide-sensitive K(+) currents. These data suggest that the NH(2)-terminal extensions in both ROMK1 and ROMK3 block ROMK-SUR2B interaction. Seven amino acids in the NH(2)-terminal extensions of ROMK1 and ROMK3 are identical (amino acids 13-19 in ROMK1 and 20-26 in ROMK3) and may determine ROMK-SUR2B interaction. We constructed a series of hemagglutinin-tagged ROMK1 NH(2)-terminal deletion and substitution mutants and examined glibenclamide-sensitive K(+) currents in oocytes when co-expressed with SUR2B. These studies identified an amino acid triplet "IRA" within the conserved segment in the NH(2) terminus of ROMK1 and ROMK3 that blocks the ability of SUR2B to confer glibenclamide sensitivity to the expressed K(+) currents. The position of this triplet in the ROMK1 NH(2)-terminal extension is also important for the ROMK-SUR2B interactions. In vitro co-translation and immunoprecipitation studies with hemagglutinin-tagged ROMK mutants and SUR2B indicted that direct interaction between these two proteins is required for glibenclamide sensitivity of induced K(+) currents in oocytes. These results suggest that the IRA triplet in the NH(2)-terminal extensions of both ROMK1 and ROMK3 plays a key role in subunit assembly of the renal secretary K(ATP) channel.  相似文献   

7.
8.
To investigate the biosynthetic mechanisms involved in the expression of the renal epithelial inward rectifying K(+) channel, ROMK1 (Kir1.1a), a six amino acid epitope (AU1) was introduced onto the extreme N-terminus for efficient immunoprecipitation. As expressed in Xenopus oocytes, the AU1 epitope did not modify the functional properties of the ROMK1 channel. To analyze kinetics of ROMK1 synthesis in renal epithelial cells, the AU1-ROMK1 construct was stably transfected in MDCK cells and pulse chase experiments were conducted. When the cells are grown at 37 degrees C, the ROMK1 protein was unstable, being rapidly degraded with a t(1/2) < 1 hour. Furthermore, whole cell patch clamp experiments failed to detect functional ROMK1 channels at the plasma membrane in cells grown at 37 degrees C. In contrast, the degradation process was minimized when the cells were grown at 26 degrees C (t(1/2) > 4 hours), allowing ROMK1 channels to be functionally expressed on the plasma membrane. In summary, in a mammalian epithelial expression system maintained at a physiological temperature, wild-type ROMK1 is bio-synthetically labile and incapable of efficient traffic to the plasmalemma. These observations are reminiscent of temperature sensitive biosynthetic defects in mutant plasma membrane proteins, suggesting that wild-type ROMK1 may require other factors, like the association of a surrogate subunit, for appropriate biosynthetic processing.  相似文献   

9.
With-no-Lysine kinase 4 (WNK4) inhibited ROMK (Kir1.1) channels and the inhibitory effect of WNK4 was abolished by serum-glucocorticoid-induced kinase 1 (SGK1) but restored by c-Src. The aim of the present study is to explore the mechanism by which Src-family tyrosine kinase (SFK) modulates the effect of SGK1 on WNK4 and to test the role of SFK-WNK4-SGK1 interaction in regulating ROMK channels in the kidney. Immunoprecipitation demonstrated that protein phosphatase 1 (PP1) binds to WNK4 at amino acid (aa) residues 695-699 (PP1(#1)) and at aa 1211-1215 (PP1(#2)). WNK4(-PP1#1) and WNK4(-PP1#2), in which the PP1(#1) or PP1(#2) binding site was deleted or mutated, inhibited ROMK channels as potently as WNK4. However, c-Src restored the inhibitory effect of WNK4 but not WNK4(-PP1#1) on ROMK channels in the presence of SGK1. Moreover, expression of c-Src inhibited SGK1-induced phosphorylation of WNK4 but not WNK4(-PP1#1) at serine residue 1196 (Ser(1196)). In contrast, coexpression of c-Src restored the inhibitory effect of WNK4(-PP1#2) on ROMK in the presence of SGK1 and diminished SGK1-induced WNK4 phosphorylation at Ser(1196) in cells transfected with WNK4(-PP1#2). This suggests the possibility that c-Src regulates the interaction between WNK4 and SGK1 through activating PP1 binding to aa 695-9 thereby decreasing WNK4 phosphorylation and restoring the inhibitory effect of WNK4. This mechanism plays a role in suppressing ROMK channel activity during the volume depletion because inhibition of SFK or serine/threonine phosphatases increases ROMK channel activity in the cortical collecting duct of rats on a low-Na diet. We conclude that regulation of phosphatase activity by SFK plays a role in determining the effect of aldosterone on ROMK channels and on renal K secretion.  相似文献   

10.
The small-conductance K+ channel (SK) in the apical membrane of the cortical-collecting duct (CCD) is regulated by adenosine triphosphate (ATP) and phosphorylation-dephosphorylation processes. When expressed in Xenopus oocytes, ROMK, a cloned K+ channel similar to the native SK channel, can be stimulated by phosphatidylinositol bisphosphate (PIP2), which is produced by phosphoinositide kinases from phosphatidylinositol. However, the effects of PIP2 on SK channel activity are not known. In the present study, we investigated the mechanism by which hydrolyzable ATP prevented run-down of SK channel activity in excised apical patches of principal cells from rat CCD. Channel run-down was significantly delayed by pretreatment with hydrolyzable Mg-ATP, but ATP gamma S and AMP-PNP had no effect. Addition of alkaline phosphatase also resulted in loss of channel activity. After run-down, SK channel activity rapidly increased upon addition of PIP2. Exposure of inside-out patches to phosphoinositide kinase inhibitors (LY294002, quercetin or wortmannin) decreased channel activity by 74% in the presence of Mg-ATP. PIP2 added to excised patches reactivated SK channels in the presence of these phosphoinositide kinase inhibitors. The protein kinase A inhibitor, PKI, reduced channel activity by 36% in the presence of Mg-ATP. PIP2 was also shown to modulate the inhibitory effects of extracellular and cytosolic ATP. We conclude that both ATP-dependent formation of PIP2 through membrane-bound phosphoinositide kinases and phosphorylation of SK by PKA play important roles in modulating SK channel activity.  相似文献   

11.
Inwardly rectifying potassium channels require binding of phosphatidylinositol-4,5-bisphosphate (PIP2) for channel activity. Three independent sites (aa 175-206, aa 207-246, aa 324-365) were located in the C-terminal domain of Kir2.1 channels by assaying the binding of overlapping fragments to PIP2 containing liposomes. Mutations in the first site, which abolished channel activity, reduced PIP2 binding of this fragment but not of the complete C-terminus. Point mutations in the third site also reduced both, channel activity and PIP2 binding of this segment. The relevance of the third PIP2 binding site provides a basis for the understanding of constitutively active Kir2 channels.  相似文献   

12.
ROMK channels are well-known to play a central role in renal K secretion, but the absence of highly specific and avid-ROMK antibodies has presented significant roadblocks toward mapping the extent of expression along the entire distal nephron and determining whether surface density of these channels is regulated in response to physiological stimuli. Here, we prepared new ROMK antibodies verified to be highly specific, using ROMK knockout mice as a control. Characterization with segmental markers revealed a more extensive pattern of ROMK expression along the entire distal nephron than previously thought, localizing to distal convoluted tubule regions, DCT1 and DCT2; the connecting tubule (CNT); and cortical collecting duct (CD). ROMK was diffusely distributed in intracellular compartments and at the apical membrane of each tubular region. Apical labeling was significantly increased by high-K diet in DCT2, CNT1, CNT2, and CD (P < 0.05) but not in DCT1. Consistent with the large increase in apical ROMK, dramatically increased mature glycosylation was observed following dietary potassium augmentation. We conclude 1) our new antibody provides a unique tool to characterize ROMK channel localization and expression and 2) high-K diet causes a large increase in apical expression of ROMK in DCT2, CNT, and CD but not in DCT1, indicating that different regulatory mechanisms are involved in K diet-regulated ROMK channel functions in the distal nephron.  相似文献   

13.
ROMK channels are regulated by internal pH (pH(i)) and extracellular K(+) (K(+)(o)). The mechanisms underlying this regulation were studied in these channels after expression in Xenopus oocytes. Replacement of the COOH-terminal portion of ROMK2 (Kir1.1b) with the corresponding region of the pH-insensitive channel IRK1 (Kir 2.1) produced a chimeric channel (termed C13) with enhanced sensitivity to inhibition by intracellular H(+), increasing the apparent pKa for inhibition by approximately 0.9 pH units. Three amino acid substitutions at the COOH-terminal end of the second transmembrane helix (I159V, L160M, and I163M) accounted for these effects. These substitutions also made the channels more sensitive to reduction in K(+)(o), consistent with coupling between the responses to pH(i) and K(+)(o). The ion selectivity sequence of the activation of the channel by cations was K(+) congruent with Rb(+) > NH(4)(+) > Na(+), similar to that for ion permeability, suggesting an interaction with the selectivity filter. We tested a model of coupling in which a pH-sensitive gate can close the pore from the inside, preventing access of K(+) from the cytoplasm and increasing sensitivity of the selectivity filter to removal of K(+)(o). We mimicked closure of this gate using positive membrane potentials to elicit block by intracellular cations. With K(+)(o) between 10 and 110 mM, this resulted in a slow, reversible decrease in conductance. However, additional channel constructs, in which inward rectification was maintained but the pH sensor was abolished, failed to respond to voltage under the same conditions. This indicates that blocking access of intracellular K(+) to the selectivity filter cannot account for coupling. The C13 chimera was 10 times more sensitive to extracellular Ba(2+) block than was ROMK2, indicating that changes in the COOH terminus affect ion binding to the outer part of the pore. This effect correlated with the sensitivity to inactivation by H(+). We conclude that decreasing pH(I) increases the sensitivity of ROMK2 channels to K(+)(o) by altering the properties of the selectivity filter.  相似文献   

14.
Intracellular ATP and membrane-associated phosphatidylinositol phospholipids, like PIP(2) (PI(4,5)P(2)), regulate the activity of ATP-sensitive K(+) (K(ATP)) and Kir1.1 channels by direct interaction with the pore-forming subunits of these channels. We previously demonstrated direct binding of TNP-ATP (2',3'-O-(2,4,6-trinitrophenylcyclo-hexadienylidene)-ATP) to the COOH-terminal cytosolic domains of the pore-forming subunits of Kir1.1 and Kir6.x channels. In addition, PIP(2) competed for TNP-ATP binding on the COOH termini of Kir1.1 and Kir6.x channels, providing a mechanism that can account for PIP(2) antagonism of ATP inhibition of these channels. To localize the ATP-binding site within the COOH terminus of Kir1.1, we produced and purified maltose-binding protein (MBP) fusion proteins containing truncated and/or mutated Kir1.1 COOH termini and examined the binding of TNP-ATP and competition by PIP(2). A truncated COOH-terminal fusion protein construct, MBP_1.1CDeltaC170, containing the first 39 amino acid residues distal to the second transmembrane domain was sufficient to bind TNP-ATP with high affinity. A construct containing the remaining COOH-terminal segment distal to the first 39 amino acid residues did not bind TNP-ATP. Deletion of 5 or more amino acid residues from the NH(2)-terminal side of the COOH terminus abolished nucleotide binding to the entire COOH terminus or to the first 49 amino acid residues of the COOH terminus. PIP(2) competed TNP-ATP binding to MBP_1.1CDeltaC170 with an EC(50) of 10.9 microm. Mutation of any one of three arginine residues (R188A/E, R203A, and R217A), which are conserved in Kir1.1 and K(ATP) channels and are involved in ATP and/or PIP(2) effects on channel activity, dramatically reduced TNP-ATP binding to MBP_1.1DeltaC170. In contrast, mutation of a fourth conserved residue (R212A) exhibited slightly enhanced TNP-ATP binding and increased affinity for PIP(2) competition of TNP-ATP (EC(50) = 5.7 microm). These studies suggest that the first 39 COOH-terminal amino acid residues form an ATP-PIP(2) binding domain in Kir1.1 and possibly the Kir6.x ATP-sensitive K(+) channels.  相似文献   

15.
The ROMK subtypes of inward rectifier K+ channels (Kir 1.1, KCNJ1) mediate potassium secretion and regulate NaCl reabsorption in the kidney. In the present study, the role of the PDZ binding motif in ROMK function is explored. Here we identify the Na/H exchange regulatory factors, NHERF-1 and NHERF-2, as PDZ domain interaction partners of the ROMK channel. Characterization of the basis and consequences of NHERF association with ROMK reveals a PDZ interaction-dependent trafficking process and a coupling mechanism for linking ROMK to a channel modifier protein, the cystic fibrosis transmembrane regulator (CFTR). As measured by antibody binding of external epitope-tagged forms of Kir 1.1 in intact cells, NHERF-1 or NHERF-2 coexpression increased cell surface expression of ROMK. Channel interaction with NHERF proteins and effects of NHERF on ROMK localization were dependent on the presence of the PDZ domain binding motif in ROMK. Both NHERF proteins contain two PDZ domains; recombinant protein-protein binding assays and yeast-two-hybrid studies revealed that ROMK preferentially associates with the second PDZ domain of NHERF-1 and with the first PDZ domain of NHERF-2, precisely opposite of what has been reported for CFTR. Consistent with the scaffolding capacity of the NHERF proteins, coexpression of NHERF-2 with ROMK and CFTR dramatically increases the amount of ROMK protein that coimmunopurifies and functionally interacts with CFTR. Thus NHERF facilitates assembly of a ternary complex containing ROMK and CFTR. These observations raise the possibility that PDZ-based interactions may underscore physiological regulation and membrane targeting of ROMK in the kidney.  相似文献   

16.
ATP-sensitive potassium (K(ATP)) channels couple cell metabolism to electrical activity by regulating K(+) fluxes across the plasma membrane. Channel closure is facilitated by ATP, which binds to the pore-forming subunit (Kir6.2). Conversely, channel opening is potentiated by phosphoinositol bisphosphate (PIP(2)), which binds to Kir6.2 and reduces channel inhibition by ATP. Here, we use homology modelling and ligand docking to identify the PIP(2)-binding site on Kir6.2. The model is consistent with a large amount of functional data and was further tested by mutagenesis. The fatty acyl tails of PIP(2) lie within the membrane and the head group extends downwards to interact with residues in the N terminus (K39, N41, R54), transmembrane domains (K67) and C terminus (R176, R177, E179, R301) of Kir6.2. Our model suggests how PIP(2) increases channel opening and decreases ATP binding and channel inhibition. It is likely to be applicable to the PIP(2)-binding site of other Kir channels, as the residues identified are conserved and influence PIP(2) sensitivity in other Kir channel family members.  相似文献   

17.
Potassium (K+) homeostasis is controlled by the secretion of K+ ions across the apical membrane of renal collecting duct cells through a low-conductance inwardly rectifying K+ channel. The sensitivity of this channel to intracellular pH is particularly high and assumed to play a key role in K+ homeostasis. Recently, the apical K+ channel has been cloned (ROMK1,2,3 = Kir1.1a, Kir1.1b and Kir1.1c) and the pH dependence of ROMK1 was shown to resemble closely that of the native apical K+ channel. It is reported here that the steep pH dependence of ROMK channels is determined by a single amino acid residue located in the N-terminus close to the first hydrophobic segment M1. Changing lysine (K) at position 80 to methionine (M) removed the sensitivity of ROMK1 channels to intracellular pH. In pH-insensitive IRK1 channels, the reverse mutation (M84K) introduced dependence on intracellular pH similar to that of ROMK1 wild-type. A detailed mutation analysis suggests that a shift in the apparent pKalpha of K80 underlies the pH regulation of ROMK1 channels in the physiological pH range.  相似文献   

18.
In addition to functioning as a cAMP-activated chloride channel, the cystic fibrosis transmembrane conductance regulator (CFTR) plays an important role in conferring regulatory properties on other ion channels. It is known, with respect to CFTR regulation of ROMK2 (renally derived K(ATP) channel), that the first transmembrane domain and the first nucleotide binding fold domain (NBF1) of CFTR are necessary for this interaction to occur. It has been shown that under conditions that promote phosphorylation, the ROMK2-CFTR interaction is attenuated. To elucidate the complex nature of this interaction, CFTR constructs were co-expressed with ROMK2 in Xenopus oocytes, and two microelectrode voltage clamp experiments were performed. Although the second half of CFTR can act as a functional chloride channel, our results suggest that it does not confer glibenclamide sensitivity on ROMK2, as does the first half of CFTR. The attenuation of the ROMK2-CFTR interaction under conditions that promote phosphorylation is dependent on at least the presence of the R domain of CFTR. We conclude that transmembrane domain 1, NBF1, and the R domain are the CFTR domains involved in the ROMK2-CFTR interaction and that NBF2 and transmembrane domain 2 are not essential. Lastly, the R domain of CFTR is necessary for the attenuation of the ROMK2-CFTR interaction under conditions that promote phosphorylation.  相似文献   

19.
Inactivation of voltage-gated Kv1 channels can be altered by Kvbeta subunits, which block the ion-conducting pore to induce a rapid ('N-type') inactivation. Here, we investigate the mechanisms and structural basis of Kvbeta1.3 interaction with the pore domain of Kv1.5 channels. Inactivation induced by Kvbeta1.3 was antagonized by intracellular PIP(2). Mutations of R5 or T6 in Kvbeta1.3 enhanced Kv1.5 inactivation and markedly reduced the effects of PIP(2). R5C or T6C Kvbeta1.3 also exhibited diminished binding of PIP(2) compared with wild-type channels in an in vitro lipid-binding assay. Further, scanning mutagenesis of the N terminus of Kvbeta1.3 revealed that mutations of L2 and A3 eliminated N-type inactivation. Double-mutant cycle analysis indicates that R5 interacts with A501 and T480 of Kv1.5, residues located deep within the pore of the channel. These interactions indicate that Kvbeta1.3, in contrast to Kvbeta1.1, assumes a hairpin structure to inactivate Kv1 channels. Taken together, our findings indicate that inactivation of Kv1.5 is mediated by an equilibrium binding of the N terminus of Kvbeta1.3 between phosphoinositides (PIPs) and the inner pore region of the channel.  相似文献   

20.
A large number of ion channels maintain their activity through direct interactions with phosphatidylinositol bisphosphate (PIP2). For such channels, hydrolysis of PIP2 causes current inhibition. It has become controversial whether the inhibitory effects on channel activity represent direct effects of PIP2 hydrolysis or of downstream PKC action. We studied Phospholipase C (PLC)-dependent inhibition of G protein-activated inwardly rectifying K+ (Kir3) channels. By monitoring simultaneously channel activity and PIP2 hydrolysis, we determined that both direct PIP2 depletion and PKC actions contribute to Kir3 current inhibition. We show that the PKC-induced effects strongly depend on PIP2 levels in the membrane. At the same time, we show that PKC destabilizes Kir3/PIP2 interactions and enhances the effects of PIP2 depletion on channel activity. These results demonstrate that PIP2 depletion and PKC-mediated effects reinforce each other and suggest that both of these interdependent mechanisms contribute to Kir3 current inhibition. This mechanistic insight may explain how even minor changes in PIP2 levels can have profound effects on Kir3 activity. We also show that stabilization of Kir3/PIP2 interactions by Gbetagamma attenuates both PKC and Gq-mediated current inhibition, suggesting that diverse pathways regulate Kir3 activity through modulation of channel interactions with PIP2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号