首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Creatine phosphokinase-mediated transport of energy from the site of production to the site of consumption is a key process for meeting the energy-demands of reactions in cytosol. The mitochondrial creatine phosphokinase (mCPK) plays an important role in this process, with the enzyme activity localized particularly in the mitochondrial contact sites (MiCS). Earlier studies in adult animals have shown that the formation of MiCS varies in response to the energy demand and the physiological state of the heart, and it is stimulated by an increase in [Ca2+]i. However, there is little known about MiCS formation in juvenile hearts, characterized by metabolism different from adult hearts. In the present study we investigated the modulation of MiCS formation via Ca2+ in hearts of 14-day-old rats. The moderate response of MiCS to various stimuli (elevated extracellular Ca2+, diltiazem, cardiac arrest by Cd2+) may refer to a still increased intracellular Ca2+ concentration, the incomplete development of mitochondrial energy production as well as to persistingly high energy demand of the developing heart.  相似文献   

2.
Mitochondrial ca(2+) signaling and cardiac apoptosis   总被引:2,自引:0,他引:2  
The broad significance of apoptosis in the cardiovascular system only began to be recognized more widely recently. Apoptotic cell death is a normal component of postnatal morphogenesis of the human cardiac conduction system and may also be involved in the pathogenesis of a variety of cardiovascular diseases, including heart failure, myocardial infarction and atherosclerosis. Recently, it has become evident that mitochondria play important role in the signaling machinery of apoptotic cell death by releasing several apoptotic factors such as cytochrome c, apoptosis-inducing factor and procaspases. Furthermore, calcium signals have been identified as one of the major signals that converge on mitochondria to trigger the mitochondrion-dependent pathway of the apoptotic cell death. Calcium signals are also important in the physiological control of mitochondrial energy metabolism and it has not yet been explored how Ca(2+) turns from a signal for life to a signal for death. Since large elevations of cytosolic [Ca(2+)] ([Ca(2+)](c)) occur during each heartbeat in cardiac myocytes and these [Ca(2+)](c) signals may efficiently propagate to the mitochondria, the Ca(2+)-dependent mitochondrial pathways of apoptosis can be particularly important in the heart. This review is concerned with the role of mitochondrial Ca(2+) signaling in the control of cardiac apoptosis.  相似文献   

3.
The majority of experimental and clinical studies indicates that the hypertrophied and failing myocardium are characterized by changes in energy and substrate metabolism that attributed to failing heart changes at the genomic level, in fact, heart failure is caused by various diseases, their energy metabolism and substrate are in different genetic variations, then the potential significance of the molecular mechanisms for the aetiology of heart failure is necessary to be evaluated. Persistent viral infection (especially coxsackievirus group B3) of the myocardium in viral myocarditis and viral dilated cardiomyopathy has never been neglected by experts. This study aimed to explore the role and regulatory mechanism of the altered gene expression for energy metabolism involved in mitochondrial oxidative phosphorylation, fatty acid metabolism in viral dilated cardiomyopathy. cDNA Microarray technology was used to evaluate the expression of >35,852 genes in a mice model of viral dilated cardiomyopathy. In total 1385 highly different genes expression, we analyzed 33 altered genes expression for energy metabolism involved in mitochondrial oxidative phosphorylation, fatty acid metabolism and further selected real-time-PCR for quantity one of regulatory mechanisms for energy including fatty acid metabolism—the UCP2 and assayed cytochrome C oxidase activity by Spectrophotometer to explore mitochondrial oxidative phosphorylation function. We found obviously different expression of 33 energy metabolism genes associated with mitochondria oxidative phosphorylation, fatty acid metabolism in cardiomyopathy mouse heart, the regulatory gene for energy metabolism: UCP2 was down-regulated and cytochrome C oxidase activity was decreased. Genes involved in both fatty acid metabolism and mitochondrial oxidative phosphorylation were down-regulated, mitochondrial uncoupling proteins (UCP2) expression did not increase but decrease which might be a kind of adaptive protection response to regulate energy metabolism for ATP produce.  相似文献   

4.
Cardiac and skeletal muscle critically depend on mitochondrial energy metabolism for their normal function. Recently, we showed that apoptosis-inducing factor (AIF), a mitochondrial protein implicated in programmed cell death, plays a role in mitochondrial respiration. However, the in vivo consequences of AIF-regulated mitochondrial respiration resulting from a loss-of-function mutation in Aif are not known. Here, we report tissue-specific deletion of Aif in the mouse. Mice in which Aif has been inactivated specifically in cardiac and skeletal muscle exhibit impaired activity and protein expression of respiratory chain complex I. Mutant animals develop severe dilated cardiomyopathy, heart failure, and skeletal muscle atrophy accompanied by lactic acidemia consistent with defects in the mitochondrial respiratory chain. Isolated hearts from mutant animals exhibit poor contractile performance in response to a respiratory chain-dependent energy substrate, but not in response to glucose, supporting the notion that impaired heart function in mutant animals results from defective mitochondrial energy metabolism. These data provide genetic proof that the previously defined cell death promoter AIF has a second essential function in mitochondrial respiration and aerobic energy metabolism required for normal heart function and skeletal muscle homeostasis.  相似文献   

5.
It has been firstly demonstrated that rat heart and skeletal muscle nuclei contain creatine dinase, one of the most important enzymes of energy metabolism. The nuclei isolated in concentrated sucrose were practically free from cytoplasm and mitochondrial fragments. Electrophoresis in acetyl cellulose revealed that the nuclear extracts from rat heart and skeletal muscles contain only one isoenzyme of creatine kinase similar in mobility to the mitochondrial isoenzyme. The magnitude of Km values for creatine kinase from the nuclei of both tissues was determined. It was shown histochemically that creatine kinase is localized inside the nuclei, predominantly in the sites of chromatin location. A possible role of the enzyme in nuclear metabolism is discussed.  相似文献   

6.
Three functions have been suggested to be localized in contact sites between the inner and the outer membrane of mitochondria from mammalian cells: (i) transfer of energy from matrix to cytosol through the action of peripheral kinases; (ii) import of mitochondrial precursor proteins; and (iii) transfer of lipids between outer and inner membrane. In the contact site-related energy transfer a number of kinases localized in the periphery of the mitochondrion play a crucial role. Two examples of such kinases are relevant here: (i) hexokinase isoenzyme I which is capable of binding to the outer aspect of the outer membrane; and (ii) the mitochondrial isoenzyme of creatine kinase which is localized in the intermembrane space. Recently, evidence was presented that both hexokinase and creatine kinase are preferentially localized in contact sites (Adams, V. et al. (1989) Biochim. Biophys. Acta 981, 213-225). The aim of the present experiments was two-fold. First, to establish methods which enable the bioenergetic aspects of energy transfer mediated by kinases in contact sites to be measured. In these experiments emphasis was on hexokinase, while 31P-NMR was the major experimental technique. Second, we wanted to develop methods which can give insight into factors playing a role in the formation of contact sites involved in energy transfer. In the latter approach, mitochondrial creatine kinase was studied using monolayer techniques.  相似文献   

7.
Mitochondria sense,shape and integrate signals,and thus function as central players in cellular signal transduction. Ca2+ waves and redox reactions are two such intracellular signals modulated by mitochondria. Mitochondrial Ca2+ transport is of utmost physio-pathological relevance with a strong impact on metabolism and cell fate. Despite its importance,the molecular nature of the proteins involvedin mitochondrial Ca2+ transport has been revealed only recently. Mitochondrial Ca2+ promotes energy metabolism through the activation of matrix dehydrogenases and downstream stimulation of the respiratory chain. These changes also alter the mitochondrial NAD(P)H/NAD(P)+ ratio,but at the same time will increase reactive oxygen species(ROS) production. Reducing equivalents and ROS are having opposite effects on the mitochondrial redox state,which are hard to dissect. With the recent development of genetically encoded mitochondrial-targeted redoxsensitive sensors,real-time monitoring of matrix thiol redox dynamics has become possible. The discoveries of the molecular nature of mitochondrial transporters of Ca2+ combined with the utilization of the novel redox sensors is shedding light on the complex relation between mitochondrial Ca2+ and redox signals and their impact on cell function. In this review,we describe mitochondrial Ca2+ handling,focusing on a number of newly identified proteins involved in mitochondrial Ca2+ uptake and release. We further discuss our recent findings,revealing how mitochondrial Ca2+ influences the matrix redox state. As a result,mitochondrial Ca2+ is able to modulate the many mitochondrial redox-regulated processes linked to normal physiology and disease.  相似文献   

8.
Mitochondrial oxidation of fatty acids accounts for the majority of cardiac ATP production in the heart. Fatty acid utilization by cardiac mitochondria is controlled at the level of fatty acid uptake, lipid synthesis, mobilization and mitochondrial import and oxidation. Consequently defective mitochondrial function appears to be central to the development of heart failure. Cardiolipin is a key mitochondrial phospholipid required for the activity of the electron transport chain. In heart failure, loss of cardiolipin and tetralinoleoylcardiolipin helps to fuel the generation of excessive reactive oxygen species that are a by-product of inefficient mitochondrial electron transport chain complexes I and III. In this vicious cycle, reactive oxygen species generate lipid peroxides and may, in turn, cause oxidation of cardiolipin catalyzed by cytochrome c leading to cardiomyocyte apoptosis. Hence, preservation of cardiolipin and mitochondrial function may be keys to the prevention of heart failure development. In this review, we summarize cardiac energy metabolism and the important role that fatty acid uptake and metabolism play in this process and how defects in these result in heart failure. We highlight the key role that cardiolipin and sirtuins play in cardiac mitochondrial β-oxidation. In addition, we review the potential of pharmacological modulation of cardiolipin through the polyphenolic molecule resveratrol as a sirtuin-activator in attenuating mitochondrial dysfunction. Finally, we provide novel experimental evidence that resveratrol treatment increases cardiolipin in isolated H9c2 cardiac myocytes and tetralinoleoylcardiolipin in the heart of the spontaneously hypertensive rat and hypothesize that this leads to improvement in mitochondrial function. This article is part of a Special Issue entitled: Heart Lipid Metabolism edited by G.D. Lopaschuk.  相似文献   

9.
Elsewhere in this book the important role of creatine kinase and its metabolites in high energy phosphate metabolism and transport in muscle cells has been reviewed. The emphasis of this review article is mainly on the compartmentalized catalytic activity of adenylate kinase in relation to creatine kinase isoenzymes, and other enzymes of energy production and utilization processes in muscle cells. At present the role of adenylate kinase is considered simply to equilibrate the stores of adenine nucleotides. Recent studies by us and others, however, suggest an entirely new view of the metabolic importance of adenylate kinase in muscle function. This view offers a closer interaction between adenylate kinase and creatine kinase, in the process of energy production (at mitochondrial and glycolytic sites), and energy utilization (at myofibrillar sites and perhaps other sites such as sarcoplasmic reticular, sarcolemmal membrane, etc.), thus being an integral part of the high energy phosphate transport system.This review article opens up the opportunity to further examine the metabolism of adenine nucleotides and their fluxes through the adenylate kinase system in intact muscle cells. Using an intact system, having a preserved integrity of their compartmentalized enzymes and substrates, is essential in clarifying the exact role of adenylate kinase in high energy phosphate metabolism in muscle cells.  相似文献   

10.
An intricate network of reactions is involved in matching energy supply with demand in the heart. This complexity arises because energy production both modulates and is modulated by the electrophysiological and contractile activity of the cardiac myocyte. Here, we present an integrated mathematical model of the cardiac cell that links excitation-contraction coupling with mitochondrial energy generation. The dynamics of the model are described by a system of 50 ordinary differential equations. The formulation explicitly incorporates cytoplasmic ATP-consuming processes associated with force generation and ion transport, as well as the creatine kinase reaction. Changes in the electrical and contractile activity of the myocyte are coupled to mitochondrial energetics through the ATP, Ca2+, and Na+ concentrations in the myoplasmic and mitochondrial matrix compartments. The pseudo steady-state relationship between force and oxygen consumption at various stimulus frequencies and external Ca2+ concentrations is reproduced in both model simulations and direct experiments in cardiac trabeculae under normoxic conditions, recapitulating the linearity between cardiac work and respiration in the heart. Importantly, the model can also reproduce the rapid time-dependent changes in mitochondrial NADH and Ca2+ in response to abrupt changes in workload. The steady-state and dynamic responses of the model were conferred by ADP-dependent stimulation of mitochondrial oxidative phosphorylation and Ca2+ -dependent regulation of Krebs cycle dehydrogenases, illustrating how the model can be used as a tool for investigating mechanisms underlying metabolic control in the heart.  相似文献   

11.
The ratio of myocardial phosphocreatine (PCr)/ATP reflects the balance of energy consumption and energy supply in the heart. It is reduced in a range of important physiological conditions including during and after acute hypoxia, after a prolonged visit to high-altitude, and in those suffering from both type 2 diabetes mellitus and various forms of heart failure. Yet despite its significance, the factors underlying the reduced PCr/ATP ratio seen in heart failure remain poorly understood. Given that oxidative phosphorylation is the only viable steady-state provider of ATP in the heart, the argument has been put forward that the observed reduction in myocardial PCr/ATP in all these conditions can be accounted for by some form of mitochondrial insufficiency. Thus we used a computer model of oxidative phosphorylation, coupled with creatine kinase, to study the effects of hypoxia and mitochondrial dysfunction on myocardial PCr/ATP. In physiological normoxia, all oxidative phosphorylation complexes, NADH supply and proton leak exerted comparable (of the same order of magnitude) control over PCr/ATP, as defined within Metabolic Control Analysis (MCA). Under hypoxia, the control increased considerably for all components of the system, especially for cytochrome oxidase and mitochondrial proton leak. Hypoxia alone, without any changes in other factors, exerted a pronounced effect on PCr/ATP. Our simulations support three important ideas: First, that mitochondrial abnormalities can contribute considerably to a blunted PCr/ATP; second, that hypoxia and mitochondrial dysfunction can interact in important ways to determine the energy status of the failing heart; and third, that hypoxia alone can account for significant decreases in cardiac PCr/ATP.  相似文献   

12.
Ion channels are proteins, which facilitate the ions flow throught biological membranes. In recent years the structure as well as the function of the plasma membrane ion channels have been well investigated. The knowledge of intracellular ion channels however is still poor. Up till now, the calcium channel described in endoplasmatic reticulum and mitochondrial porine are the examples of intracellular ion channels, which have been well characterized. The mitochondrial potassium channels: regulated by ATP (mitoK(ATP)) and of big conductance activated by Ca2+ (mitoBK(Ca)), which were described in inner mitochondrial membrane, play a key role in the protection of heart muscle against ischemia. In this review the last date concerning the mitochondrial ion channels as well as they function in cell metabolism have been presented.  相似文献   

13.
Aerobic metabolism is enhanced during perinatal heart development in parallel with increased cardiac function. The mitochondrial component of the phosphorylcreatine shuttle is important in providing energy for contraction and was examined in weanling and adult rat left ventricle. Creatine kinase activity was enhanced in tissue homogenate and purified cardiac myocytes of adults. Mitochondrial analyses attribute this enhancement to increased creatine kinase activity per milligram mitochondrial protein. Other enzymatic markers of mitochondrial function are not enhanced in activity during perinatal heart growth. The unique response of creatine kinase points to the shuttle mechanism and of mitochondrial creatine kinase, in particular, as a major contributor to heart functional regulation.  相似文献   

14.
15.
Mitochondrial matrix phosphoproteome: effect of extra mitochondrial calcium   总被引:7,自引:0,他引:7  
Post-translational modification of mitochondrial proteins by phosphorylation or dephosphorylation plays an essential role in numerous cell signaling pathways involved in regulating energy metabolism and in mitochondrion-induced apoptosis. Here we present a phosphoproteomic screen of the mitochondrial matrix proteins and begin to establish the protein phosphorylations acutely associated with calcium ions (Ca(2+)) signaling in porcine heart mitochondria. Forty-five phosphorylated proteins were detected by gel electrophoresis-mass spectrometry of Pro-Q Diamond staining, while many more Pro-Q Diamond-stained proteins evaded mass spectrometry detection. Time-dependent (32)P incorporation in intact mitochondria confirmed the extensive matrix protein phosphoryation and revealed the dynamic nature of this process. Classes of proteins that were detected included all of the mitochondrial respiratory chain complexes, as well as enzymes involved in intermediary metabolism, such as pyruvate dehydrogenase (PDH), citrate synthase, and acyl-CoA dehydrogenases. These data demonstrate that the phosphoproteome of the mitochondrial matrix is extensive and dynamic. Ca(2+) has previously been shown to activate various dehydrogenases, promote the generation of reactive oxygen species (ROS), and initiate apoptosis via cytochrome c release. To evaluate the Ca(2+) signaling network, the effects of a Ca(2+) challenge sufficient to release cytochrome c were evaluated on the mitochondrial phosphoproteome. Novel Ca(2+)-induced dephosphorylation was observed in manganese superoxide dismutase (MnSOD) as well as the previously characterized PDH. A Ca(2+) dose-dependent dephosphorylation of MnSOD was associated with an approximately 2-fold maximum increase in activity; neither the dephosphorylation nor activity changes were induced by ROS production in the absence of Ca(2+). These data demonstrate the use of a phosphoproteome screen in determining mitochondrial signaling pathways and reveal new pathways for Ca(2+) modification of mitochondrial function at the level of MnSOD.  相似文献   

16.
ER-mitochondria contact sites represent hubs for signaling that control mitochondrial biology related to several aspects of cellular survival, metabolism, cell death sensitivity and metastasis, which all contribute to tumorigenesis. Altered ER-mitochondria contacts can deregulate Ca2+ homeostasis, phospholipid metabolism, mitochondrial morphology and dynamics. MAM represent both a hot spot in cancer onset and progression and an Achilles' heel of cancer cells that can be exploited for therapeutic perspectives. Over the past years, an increasing number of cancer-related proteins, including oncogenes and tumor suppressors, have been localized in MAM and exert their pro- or antiapoptotic functions through the regulation of Ca2+ transfer and signaling between the two organelles. In this review, we highlight the central role of ER-mitochondria contact sites in tumorigenesis and focus on chemotherapeutic drugs or potential targets that act on MAM properties for new therapeutic approaches in cancer.  相似文献   

17.
Glancy B  Balaban RS 《Biochemistry》2012,51(14):2959-2973
Calcium is an important signaling molecule involved in the regulation of many cellular functions. The large free energy in the Ca(2+) ion membrane gradients makes Ca(2+) signaling inherently sensitive to the available cellular free energy, primarily in the form of ATP. In addition, Ca(2+) regulates many cellular ATP-consuming reactions such as muscle contraction, exocytosis, biosynthesis, and neuronal signaling. Thus, Ca(2+) becomes a logical candidate as a signaling molecule for modulating ATP hydrolysis and synthesis during changes in numerous forms of cellular work. Mitochondria are the primary source of aerobic energy production in mammalian cells and also maintain a large Ca(2+) gradient across their inner membrane, providing a signaling potential for this molecule. The demonstrated link between cytosolic and mitochondrial Ca(2+) concentrations, identification of transport mechanisms, and the proximity of mitochondria to Ca(2+) release sites further supports the notion that Ca(2+) can be an important signaling molecule in the energy metabolism interplay of the cytosol with the mitochondria. Here we review sites within the mitochondria where Ca(2+) plays a role in the regulation of ATP generation and potentially contributes to the orchestration of cellular metabolic homeostasis. Early work on isolated enzymes pointed to several matrix dehydrogenases that are stimulated by Ca(2+), which were confirmed in the intact mitochondrion as well as cellular and in vivo systems. However, studies in these intact systems suggested a more expansive influence of Ca(2+) on mitochondrial energy conversion. Numerous noninvasive approaches monitoring NADH, mitochondrial membrane potential, oxygen consumption, and workloads suggest significant effects of Ca(2+) on other elements of NADH generation as well as downstream elements of oxidative phosphorylation, including the F(1)F(O)-ATPase and the cytochrome chain. These other potential elements of Ca(2+) modification of mitochondrial energy conversion will be the focus of this review. Though most specific molecular mechanisms have yet to be elucidated, it is clear that Ca(2+) provides a balanced activation of mitochondrial energy metabolism that exceeds the alteration of dehydrogenases alone.  相似文献   

18.
Changes in mitochondrial function are intimately associated with metabolic diseases. Here, we review recent evidence relating alterations in mitochondrial energy metabolism, ion transport and redox state in hypercholesterolemia and hypertriglyceridemia. We focus mainly on changes in mitochondrial respiration, K(+) and Ca(2+) transport, reactive oxygen species generation and susceptibility to mitochondrial permeability transition.  相似文献   

19.
20.
Crompton M  Barksby E  Johnson N  Capano M 《Biochimie》2002,84(2-3):143-152
Mitochondria establish contact sites between the inner and outer membranes. The contact sites are held together by junctional complexes of the adenine nucleotide translocase (ANT; inner membrane) and the voltage-dependent anion channel (VDAC; outer membrane). The junctional complexes act as multifunctional recruitment centres, binding a range of proteins according to the function to be executed. Some of these, involving kinases and enzymes of lipid transfer, are readily understood as ongoing functions in energy and lipid metabolism. But the roles of other proteins recruited to the junctional complexes are less well defined. Here, we focus on the complexes formed with Bax and with cyclophilin-D, and their possible roles in apoptotic and necrotic cell death. We have isolated both types of complexes using glutathione-S-transferase fusion proteins of Bax and of cyclophilin-D. The VDAC/ANT/cyclophilin-D complex reconstitutes Ca(2+)- and cyclosporin A-sensitive permeability transition pore activity when incorporated into proteoliposomes. The complex forms readily in the absence of factors required for pore opening in isolated mitochondria, suggesting that these factors act on the preexisting complex, rather than drive its assembly, and that the complex is a physiological entity in healthy cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号