首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Cerebrospinal fluid (CSF) includes conserved factors whose function is largely unexplored. To assess the role of CSF during embryonic development, CSF was repeatedly drained from embryonic zebrafish brain ventricles soon after their inflation. Removal of CSF increased cell death in the diencephalon, indicating a survival function. Factors within the CSF are required for neuroepithelial cell survival as injected mouse CSF but not artificial CSF could prevent cell death after CSF depletion. Mass spectrometry analysis of the CSF identified retinol binding protein 4 (Rbp4), which transports retinol, the precursor to retinoic acid (RA). Consistent with a role for Rbp4 in cell survival, inhibition of Rbp4 or RA synthesis increased neuroepithelial cell death. Conversely, ventricle injection of exogenous human RBP4 plus retinol, or RA alone prevented cell death after CSF depletion. Zebrafish rbp4 is highly expressed in the yolk syncytial layer, suggesting Rbp4 protein and retinol/RA precursors can be transported into the CSF from the yolk. In accord with this suggestion, injection of human RBP4 protein into the yolk prevents neuroepithelial cell death in rbp4 loss‐of‐function embryos. Together, these data support the model that Rbp4 and RA precursors are present within the CSF and used for synthesis of RA, which promotes embryonic neuroepithelial survival. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 76: 75–92, 2016  相似文献   

2.
3.
4.
The p53 tumor suppressor: Critical regulator of life & death in cancer   总被引:4,自引:0,他引:4  
p53 is the most commonly mutated or deleted known gene in human cancer. The consequences of its disruption are profound, either in the germlines of patients with Li-Fraumeni Syndrome, or in mice with targeted gene knockouts. Abundant evidence suggests that p53 exerts regulation of cell cycle progression as well as apoptotic cell death, both in response to identical environmental or metabolic stressors. The specific decision of cell cycle arrest vs. death may underlie p53's differential ability to trigger death in cancer cells and arrest with repair in non-cancer cells, thus producing a therapeutic index pertinent to cancer therapy. Indeed, p53 status is likely to correlate with prognosis in many human cancers and in multiple animal tumor models. The mechanistic basis for p53's functions are still emerging, and will hopefully yield new therapeutic strategies applicable to treatment of the many poor-prognosis, p53-deficient human malignancies.  相似文献   

5.
哺乳动物SWI/SNF复合物是一种ATP依赖的染色质重塑复合物, 在细胞增殖、分化、发育和肿瘤抑制过程中发挥着重要作用。ARID1A是一种SWI/SNF复合物亚基, 此外还是一种ARID家族成员, 具有非序列特异性DNA结合活性。ARID1A发挥着肿瘤抑制作用, 在多种肿瘤如卵巢癌、膀胱癌和胃癌等存在频繁基因突变。ARID1A可通过上调p21和下调E2F-反应基因表达而抑制细胞增殖。ARID1A与肿瘤抑制作用的发现对癌症发生的理解和癌症新治疗有重要裨益。文章介绍了ARID1A的基本特征、肿瘤发生的关联及生物学作用, 以期对ARID1A有一个全面理解。  相似文献   

6.
Deleted in liver cancer-1 (DLC1), a potential tumor suppressor, acts as a GTPase-activating protein for Rho family members. In many human cancers, the DLC1 expression is frequently downregulated or inactivated, which allows cancer cells to proliferate and disseminate. In this review, we describe the characteristics and other members of the DLC1 family and delineate the signal pathways DLC1 involved in regulating cancer cell growth, colony formation, apoptosis, senescence, autophagy, migration and invasion. In addition, we explore the clinical data of DLC1 and the mechanisms that natural products upregulate the DLC1 expression to inhibit cancer. Despite these insights, many important unanswered questions remain about the exact mechanisms of DLC1-mediated cancer suppression.  相似文献   

7.
The frequent alteration of miRNA expression in many cancers, together with our recent reports showing a robust accumulation of miR-483-3p at the final stage of skin wound healing, and targeting of CDC25A leading to an arrest of keratinocyte proliferation, led us to hypothesize that miR-483-3p could also be endowed with antitumoral properties. We tested that hypothesis by documenting the in vitro and in vivo impacts of miR-483-3p in squamous cell carcinoma (SCC) cells. miR-483-3p sensitized SCC cells to serum deprivation- and drug-induced apoptosis, thus exerting potent tumor suppressor activities. Its pro-apoptotic activity was mediated by a direct targeting of several anti-apoptotic genes, such as API5, BIRC5, and RAN. Interestingly, an in vivo delivery of miR-483-3p into subcutaneous SCC xenografts significantly hampered tumor growth. This effect was explained by an inhibition of cell proliferation and an increase of apoptosis. This argues for its further use as an adjuvant in the many instances of cancers characterized by a downregulation of miR-483-3p.  相似文献   

8.
9.
10.
Summary Death-associated protein (DAP)-kinase, an actin-cytoskeleton localized serine/threonine kinase, functions as a novel tumor suppressor and participates in a wide variety of cell death systems. Recent studies indicate that DAP-kinase elicits a potent cytoskeletal reorganization effect and is capable of modulating integrin inside-out signaling. Using this understanding of DAP-kinase protein function as a framework, we discuss the functional mechanisms of this kinase in regulating death-associated morphological and signaling events. Furthermore, a potential role of DAP-kinase to be a drug target is also discussed.  相似文献   

11.
12.
The generation of the paraxial skeleton requires that commitment and differentiation of skeletal progenitors is precisely coordinated during limb outgrowth. Several signaling molecules have been identified that are important in specifying the pattern of these skeletal primordia. Very little is known, however, about the mechanisms regulating the differentiation of limb mesenchyme into chondrocytes. Overexpression of RARalpha in transgenic animals interferes with chondrogenesis and leads to appendicular skeletal defects (Cash, D.E., C.B. Bock, K. Schughart, E. Linney, and T.M. Underhill. 1997. J. Cell Biol. 136:445-457). Further analysis of these animals shows that expression of the transgene in chondroprogenitors maintains a prechondrogenic phenotype and prevents chondroblast differentiation even in the presence of BMPs, which are known stimulators of cartilage formation. Moreover, an RAR antagonist accelerates chondroblast differentiation as demonstrated by the emergence of collagen type II-expressing cells much earlier than in control or BMP-treated cultures. Addition of Noggin to limb mesenchyme cultures inhibits cartilage formation and the appearance of precartilaginous condensations. In contrast, abrogation of retinoid signaling is sufficient to induce the expression of the chondroblastic phenotype in the presence of Noggin. These findings show that BMP and RAR-signaling pathways appear to operate independently to coordinate skeletal development, and that retinoid signaling can function in a BMP-independent manner to induce cartilage formation. Thus, retinoid signaling appears to play a novel and unexpected role in skeletogenesis by regulating the emergence of chondroblasts from skeletal progenitors.  相似文献   

13.
The fragile histidine triad gene (human FHIT, mouse Fhit) has been shown to act as a tumor suppressor gene. Nit1 and Fhit form a fusion protein, encoded by the NitFhit gene in flies and worms, suggesting that mammalian Nit1 and Fhit proteins, which are encoded by genes on different chromosomes in mammals, may function in the same signal pathway(s). A previous study showed that Nit1 deficiency in knockout mice confers a cancer prone phenotype, as does Fhit deficiency. We have now assessed the tumor susceptibility of Fhit?/?Nit1?/? mice and observed that double knockout mice develop more spontaneous and carcinogen‐induced tumors than Fhit?/? mice, suggesting that the extent of tumor susceptibility due to Nit1 and Fhit deficiency is additive, and that Nit1 and Fhit affect distinct signal pathways in mammals. Nit1, like Fhit, is present in cytoplasm and mitochondria but not nuclei. Because Fhit deficiency affects responses to replicative and oxidative stress, we sought evidence for Nit1 function in response to such stresses in tissues and cultured cells: when treated with hydroxyurea, the normal kidney‐derived double‐deficient cells appear not to activate the pChk2 pathway and when treated with H2O2, show little evidence of DNA damage, compared with wild type and Fhit?/? cells. The relevance of Nit1 deficiency to human cancers was examined in human esophageal cancer tissues, and loss of Nit1 expression was observed in 48% of esophageal adenocarcinomas. J. Cell. Biochem. 107: 1097–1106, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

14.
乳腺癌转移抑制基因1(BRMS1)是一个有活性的肿瘤转移抑制基因,参与抑制乳腺癌、黑素瘤、鼻咽癌、非小细胞肺癌、卵巢癌等恶性肿瘤的转移。BRMS1编码蛋白主要通过转录调控转移相关靶基因,参与调节细胞凋亡、细胞通讯、肿瘤血管新生等多种细胞事件。从BRMS1基因的分子结构、表达调控、生物学功能以及转移抑制机理等方面对BRMS1的研究进展做简要回顾。  相似文献   

15.
ANXA1促进Ⅰ型干扰素表达抑制口蹄疫病毒的复制   总被引:1,自引:0,他引:1  
【目的】研究膜联蛋白A1(Annexin A1,ANXA1)对Ⅰ型干扰素(I-IFN)表达及口蹄疫病毒(FMDV)复制的影响。【方法】开展过表达及Knockdown实验,检测ANXA1对FMDV复制的影响。利用双荧光素酶报告系统检测ANXA1对ISRE和IFN-β启动子元件活化的影响。双荧光素酶报告系统鉴定ANXA1调控Ⅰ-IFN通路活化靶分子。Western blotting检测ANXA1对干扰素调解因子3(IRF3)磷酸化的影响。Real-time PCR检测ANXA1对干扰素刺激基因(ISGs)的影响。【结果】过表达ANXA1显著抑制FMDV的复制;下调ANXA1表达促进FMDV复制(P0.01或P0.05);ANXA1促Ⅰ型干扰素通路活化,呈现剂量依赖性(P0.01)。ANXA1显著增强IRF3的磷酸化,促进ISGs的表达(P0.01或P0.05)。【结论】ANXA1促进Ⅰ-IFN表达,抑制FMDV的复制。  相似文献   

16.
The deubiquitinating enzyme BAP1 is mutated in a hereditary cancer syndrome with a high risk of mesothelioma and melanocytic tumors. Here, we show that Bap1 deletion in melanocytes cooperates with the constitutively active, oncogenic form of BRAF (BRAFV600E) and UV to cause melanoma in mice, albeit at very low frequency. In addition, Bap1‐null melanoma cells derived from mouse tumors are more aggressive and colonize and grow at distant sites more than their wild‐type counterparts. Molecularly, Bap1‐null melanoma cell lines have increased DNA damage measured by γH2aX and hyperubiquitination of histone H2a. Therapeutically, these Bap1‐null tumors are completely responsive to BRAF‐ and MEK‐targeted therapies. Therefore, BAP1 functions as a tumor suppressor and limits tumor progression in melanoma.  相似文献   

17.
18.
19.
Anandamide is a neuroimmunoregulatory molecule that triggers apoptosis in a number of cell types including PC12 cells. Here, we investigated the molecular mechanisms underlying anandamide-induced cell death in PC12 cells. Anandamide treatment resulted in the activation of p38 mitogen-activated protein kinase (MAPK), c-Jun N-terminal kinase (JNK), and p44/42 MAPK in apoptosing cells. A selective p38 MAPK inhibitor, SB203580, or dn-JNK, JNK1(A-F) or SAPKbeta(K-R), blocked anandamide-induced cell death, whereas a specific inhibitor of MEK-1/2, U0126, had no effect, indicating that activation of p38 MAPK and JNK is critical in anandamide-induced cell death. An important role for apoptosis signal-regulating kinase 1 (ASK1) in this event was also demonstrated by the inhibition of p38 MAPK/JNK activation and death in cells overexpressing dn-ASK1, ASK1 (K709M). Conversely, the constitutively active ASK1, ASK1DeltaN, caused prolonged p38 MAPK/JNK activation and increased cell death. These indicate that ASK1 mediates anandamide-induced cell death via p38 MAPK and JNK activation. Here, we also found that activation of p38 MAPK/JNK is accompanied by cytochrome c release from the mitochondria and caspase activation (which can be inhibited by SB203580), suggesting that anandamide triggers a mitochondrial dependent apoptotic pathway. The caspase inhibitor, zVAD, and the mitochondrial pore opening inhibitor, cyclosporine A, blocked anandamide-induced cell death but not p38 MAPK/JNK activation, suggesting that activation of these kinases may occur upstream of mitochondrial associated events.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号