首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nitrogen mustard alkylating agents react with isolated DNA in a sequence selective manner, and the substituent attached to the drug reactive group can impose a distinct sequence preference. It is not clear however to what extent the observed DNA sequence preferences are preserved in intact cells. The highly reiterated sequence of human alpha DNA has been used to determine the sites of guanine-N7 alkylation following treatment of cells with three nitrogen mustards, mechlorethamine, uracil mustard and quinacrine mustard, known to react in isolated DNA with distinctly different sequence preferences. Alpha DNA from drug treated cells was extracted, purified, end-labeled, and a 296 base pair, singly end-labelled, fragment isolated. Following the quantitative conversion of alkylation sites to strand breaks the fragments were separated on DNA sequencing gels. Clear differences were observed between the alkylation patterns of the three compounds, and the selectivities were qualitatively similar to those predicted and observed in the same sequence alkylated in vitro. In particular the unique preferences of uracil and quinacrine mustards for 5'-PyGC-3' and 5'-GT/GPu-3' sequences, respectively, were preserved in intact cells suggesting that the pattern of sequence dependent reactivity is not grossly affected by the nuclear milieu.  相似文献   

2.
Nitrogen mustards alkylate DNA primarily at the N7 position of guanine. Using an approach analogous to that of the Maxam-Gilbert procedure for DNA sequence analysis, we have examined the relative frequencies of alkylation for a number of nitrogen mustards at different guanine-N7 sites on a DNA fragment of known sequence. Most nitrogen mustards were found to have similar patterns of alkylation, with the sites of greatest alkylation being runs of contiguous guanines, and relatively weak alkylation at isolated guanines. Uracil mustard and quinacrine mustard, however, were found to have uniquely enhanced reaction with at least some 5'-PyGCC-3' and 5'-GT-3' sequences, respectively. In addition, quinacrine mustard showed a greater reaction at runs of contiguous guanines than did other nitrogen mustards, whereas uracil mustard showed little preference for these sequences. A comparison of the sequence-dependent variations of molecular electrostatic potential at the N7-position of guanine with the sequence dependent variations of alkylation intensity for mechlorethamine and L-phenylalanine mustard showed a good correlation in some regions of the DNA, but not others. It is concluded that electrostatic interactions may contribute strongly to the reaction rates of cationic compounds such as the reactive aziridinium species of nitrogen mustards, but that other sequence selectivities can be introduced in different nitrogen mustard derivatives.  相似文献   

3.
M D Wyatt  M Lee    J A Hartley 《Nucleic acids research》1997,25(12):2359-2364
The covalent sequence specificity of a series of nitrogen mustard and imidazole-containing analogues of distamycin was determined using modified sequencing techniques. The analogues tether benzoic acid mustard (BAM) and possess either one, two or three imidazole units. Examination of the alkylation specificity revealed that BAM produced guanine-N7 lesions in a pattern similar to conventional nitrogen mustards. The monoimidazole-BAM conjugate also produced guanine-N7 alkylation in a similar pattern to BAM, but at a 100-fold lower dose. The diimidazole and triimidazole conjugates did not produce detectable guanine-N7 alkylation but only alkylated at selected sites in the minor groove. Unexpectedly, the alkylation specificity at equivalent doses was nearly identical to that found for the previously reported pyrrole-BAM conjugates. The consensus sequence, 5'-TTTTGPuwas strongly alkylated by the triimidazole conjugate in preference to other similar sites including three occurrences of 5'-TTTTAA. Footprinting studies were carried out to examine the non-covalent DNA binding interactions. These studies revealed that the tripyrrole- BAM conjugate bound non-covalently to the same AT-rich sites as distamycin. In contrast, whereas the Im3lexitropsin bound non-covalently to GC-rich sequences, the triimidazole-BAM conjugate did not detectably footprint to either GC- or AT-rich regions at equivalent doses. The results indicate that the alkylation event is not solely dictated by the non-covalent binding and might be influenced by a unique sequence dependent conformational feature of the consensus sequence 5'-TTTTGPu.  相似文献   

4.
Alkylation at the N7 position of guanine in DNA renders the C8-hydrogen acidic. This serves as the basis for an assay of guanine N7 alkylation using [8-3H]-guanine-labeled DNA. I modified the assay by preparing a high specific activity substrate in vitro and by replacing the distillation step with charcoal adsorption of substrate. Using the appearance of noncharcoal-adsorbable label as a measure of guanine-N7 alkylation I examined the reaction of DNA with dimethyl sulfate and mechlorethamine. The rate of reaction of dimethyl sulfate with the N7 position of guanine in DNA was constant over time, i.e., loss of label from DNA proceeded linearly with time. On the other hand, the rate of reaction of mechlorethamine with DNA increased with time, consistent with the initial formation of the reactive aziridinium ion. The assay can also be used to compare the reaction rates of various alkylating agents with DNA. Thus, the acridine mustards ICR-170 and quinacrine mustard were far more potent alkylating agents than mechlorethamine. Furthermore the assay may be used to determine the alkylating potency and stability of various alkylating agent preparations: while frozen solutions of acridine mustards in organic solvents retained alkylating activity for several months, different commercial preparations of quinacrine mustard had little or no alkylating activity.  相似文献   

5.
A polymerase stop assay has been developed to determine the DNA nucleotide sequence specificity of covalent modification by antineoplastic agents using the thermostable DNA polymerase from Thermus aquaticus and synthetic labelled primers. The products of linear amplification are run on sequencing gels to reveal the sites of covalent drug binding. The method has been studied in detail for a number of agents including nitrogen mustards, platinum analogues and mitomycin C, and the sequence specificities obtained accord with those obtained by other procedures. The assay is advantageous in that it is not limited to a single type of DNA lesion (as in the piperidine cleavage assay for guanine-N7 alkylation), does not require a strand breakage step, and is more sensitive than other primer extension procedures which have only one cycle of polymerization. In particular the method has considerable potential for examining the sequence selectivity of damage and repair in single copy gene sequences in genomic DNA from cells.  相似文献   

6.
Several bifunctional alkylating agents of the aziridinylbenzoquinone class have been evaluated as potential antitumor agents. 3,6-Bis[(2-hydroxyethyl)amino]-2,5- diaziridinyl-1,4-benzoquinone (BZQ), 2,5-diaziridinyl-1,4-benzoquinone (DZQ), 3,6-bis(carboxyamino)-2,5-diaziridinyl- 1,4-benzoquinone (AZQ), and six analogues of AZQ have been studied for their ability to induce DNA interstrand cross-linking, as measured by an agarose gel technique, and to determine whether they react with DNA in a sequence-selective manner, as determined by a modified DNA sequencing technique. At an equimolar concentration (10 microM), only DZQ and BZQ showed any detectable cross-linking at pH 7 without reduction. Cross-linking was enhanced in both cases at low pH (4). Reduction by ascorbic acid at both pH's increased the cross-linking, which was particularly striking in the case of DZQ. In contrast, AZQ and its analogues only produced a significant level of cross-linking under both low-pH and reducing conditions, the extent of cross-linking decreasing as the size of the alkyl end group increased. The compounds reacted with all guanine-N7 positions in DNA with a sequence selectivity similar to other chemotherapeutic alkylating agents, such as the nitrogen mustards, although some small differences were observed with BZQ. Nonreduced DZQ showed a qualitatively similar pattern of reactivity to the other compounds, but on reduction (at pH 4 or 7) was found to react almost exclusively with 5'-GC-3' sequences, and in particular, at 5'-TGC-3' sites. A model to explain this unique reaction is proposed.  相似文献   

7.
The sequence preferences for alkylation of a series of novel parasubstituted aniline mustards linked to the DNA-intercalating chromophore 9-aminoacridine by an alkyl chain of variable length were studied by using procedures analogous to Maxam-Gilbert reactions. The compounds alkylate DNA at both guanine and adenine sites. For mustards linked to the acridine by a short alkyl chain through a para O- or S-link group, 5'-GT sequences are the most preferred sites at which N7-guanine alkylation occurs. For analogues with longer chain lengths, the preference of 5'-GT sequences diminishes in favor of N7-adenine alkylation at the complementary 5'-AC sequence. Magnesium ions are shown to selectively inhibit alkylation at the N7 of adenine (in the major groove) by these compounds but not the alkylation at the N3 of adenine (in the minor groove) by the antitumor antibiotic CC-1065. Effects of chromophore variation were also studied by using aniline mustards linked to quinazoline and sterically hindered tert-butyl-9-aminoacridine chromophores. The results demonstrate that in this series of DNA-directed mustards the noncovalent interactions of the carrier chromophores with DNA significantly modify the sequence selectivity of alkylation by the mustard. Relationships between the DNA alkylation patterns of these compounds and their biological activities are discussed.  相似文献   

8.
Large variations in alkylation intensities exist among guanines in a DNA sequence following treatment with chemotherapeutic alkylating agents such as nitrogen mustards, and the substituent attached to the reactive group can impose a distinct sequence preference for reaction. In order to understand further the structural and electrostatic factors which determine the sequence selectivity of alkylation reactions, the effect of increased ionic strength, the intercalator ethidium bromide, AT-specific minor groove binders distamycin A and netropsin, and the polyamine spermine on guanine N7-alkylation by L-phenylalanine mustard (L-Pam), uracil mustard (UM), and quinacrine mustard (QM) was investigated with a modification of the guanine-specific chemical cleavage technique for DNA sequencing. For L-Pam and UM, increased ionic strength and the cationic DNA affinity binders dose dependently inhibited the alkylation. QM alkylation was less inhibited by salt (100 mM NaCl), ethidium (10 microM), and spermine (10 microM). Distamycin A and netropsin (100 microM) gave an enhancement of overall QM alkylation. More interestingly, the pattern of guanine N7-alkylation was qualitatively altered by ethidium bromide, distamycin A, and netropsin. The result differed with both the nitrogen mustard (L-Pam less than UM less than QM) and the cationic agent used. The effect, which resulted in both enhancement and suppression of alkylation sites, was most striking in the case of netropsin and distamycin A, which differed from each other. DNA footprinting indicated that selective binding to AT sequences in the minor groove of DNA can have long-range effects on the alkylation pattern of DNA in the major groove.  相似文献   

9.
Nitrogen mustards are commonly used in cancer chemotherapy. They interact with DNA at electronegative sites, primarily forming N7 guanine mono-adducts and interstrand cross-links. Targeting nitrogen mustards to DNA by attachment of a DNA minor groove binding carrier such as the bisbenzimidazoles Hoechst 33258 (pibenzimol) or Hoechst 33342 (HOE) makes it possible to direct DNA alkylation to more specific stretches of DNA. We have performed a detailed molecular analysis of 6-thioguanine resistant clones arising in Chinese hamster AS52 cells after treatment with HOE, in comparison with a mono- and bifunctional pair of bisbenzimidazole-targeted nitrogen mustards (MGBs). HOE showed no significant ability to induce 6-thioguanine resistant mutants, possibly because drug-treated cells are highly susceptible to apoptosis within very short times. Neither of the MGBs caused the rapid cell death seen with the bisbenzimidazole. However, both MGBs were weaker mutagens than previously found for undirected mustards in the same system, an effect that we suggest could relate to greater structure-directed binding to less mutable DNA sites in the minor groove. Additionally, the nature of some of the mutants suggested there may be a small component of topo I and/or II-mediated events in the mutagenicity of the MGBs. Both MGBs showed high activity in causing deletion mutations, which may be due to errors in attempted repair of the complex lesions formed by minor groove targeted alkylators.  相似文献   

10.
Electrophilic N-acyloxy-N-alkoxyamides are mutagenic in Salmonella typhimurium TA100 without the need for S9 metabolic activation and they react with DNA at guanine-N7 at physiological pH. Since these are direct-acting mutagens, structural factors influence binding and reactivity with DNA. Mutagenicity in TA100 can be predicted by a QSAR incorporating hydrophobicity (logP), stability to substitution reactions at nitrogen (pK(a) of the leaving acid) and steric effects of para-aryl substituents (E(s)). A number of mutagens exhibit activities that deviate markedly from the predicted values and they fall into two classes: di-tert-butylated N-benzoyloxy-N-benzyloxybenzamides, which - because of their size - are most probably excluded from the major groove or are unable to achieve a transition state for reaction with DNA, and N-benzoyloxy-N-butoxyalkylamides with branching alpha-to the amide carbonyl, which are resistant to S(N)2 reactions at the amide nitrogen.  相似文献   

11.
Pyrophosphorolysis by bacteriophage T7 DNA polymerase leads to the degradation of specific dideoxynucleotide-terminated fragments on DNA sequencing gels. This reaction can be prevented by pyrophosphatase. It is also inhibited by a high concentration of dNTPs; only the dNTP complementary to the next base in the template is an effective inhibitor, suggesting the formation of a stable polymerase-primer-template-nucleotide complex despite the absence of a 3' hydroxyl group on the primer. The use of pyrophosphatase, a genetically modified T7 DNA polymerase that lacks exonuclease activity, and Mn2+ rather than Mg2+ to eliminate discrimination between dideoxynucleotides and deoxynucleotides (Tabor, S., and Richardson, C. C. (1989) Proc. Nat. Acad. Sci. U. S. A. 86, 4076-4080) generates bands of uniform intensity on a DNA sequencing gel. Uniform band intensities simplify the analysis of a DNA sequence, particularly with automated procedures. For example, when genomic DNA is sequenced directly, heterozygotic sequences are readily detected because their bands have half the intensity of homozygotic sequences. A procedure for automated DNA sequencing is described that exploits the uniformity. A single reaction with a single labeled primer is carried out using four different ratios of dideoxynucleotides to deoxynucleotides; after gel electrophoresis in a single lane, the sequence is determined by the relative intensity of each band.  相似文献   

12.
The covalent binding of the activated forms of several aflatoxins to N-7 of guanine residues on purified DNA has been studied. The aflatoxins include aflatoxin B1 (AFB1) and two human metabolites, aflatoxicol and aflatoxin M1, along with aflatoxicol M1, a rabbit and trout metabolite. DNA binding studies using tritiated [3H]aflatoxins indicate that equimolar solutions of each aflatoxin upon activation with chloroperoxybenzoic acid readily react to produce covalently bound adducts. These reactions produce alkali-labile sites which can be identified using a simple variation of the Maxam-Gilbert sequencing procedure. Two DNA fragments were exposed to each aflatoxin, and the reaction intensities at 33 guanine residues were determined. As much as 10-fold variation in reaction intensities was observed for various guanyl sites. Data indicate that none of the aflatoxins had identical reaction profiles, although AFB1 and aflatoxicol M1 were similar, as were aflatoxicol and aflatoxin M1. Hence, the frequency with which the various aflatoxin epoxides might damage specific sites critical for tumor initiation in vivo would not be predictable from total covalent binding indices. The frequency of occurrence of modifications at particular sites for AFB1 was also compared with the empirical "rules" established for AFB1 by Misra et al. (Misra, R. P., Muench, K. F., and Humayun, M. Z. (1983) Biochemistry 22, 3351-3359). Identical sites within fragments were compared for each aflatoxin, and the data showed that the attacking frequency for some such sites varied significantly. These results indicate that binding intensity rules based on nearest neighbor nucleotides do not reliably predict guanyl-AFB1 binding frequencies.  相似文献   

13.
Sequence specificity of heat-labile sites in DNA induced by mitomycin C   总被引:4,自引:0,他引:4  
K Ueda  J Morita  T Komano 《Biochemistry》1984,23(8):1634-1640
The sequence specificity of the mitomycin C-DNA interaction was directly determined by using DNA sequencing techniques and by using 3'- or 5'-end-labeled DNA fragments of defined sequence as substrates. Mitomycin C reduced with sodium borohydride induced heat-labile sites in DNA preferentially at specific sequences. The heat-labile sites were induced most preferentially at the dinucleotide sequence G-T ( especially Pu G-T), which was determined by scanning autoradiograms with a microdensitometer after gel electrophoresis. DNA was cleaved at the 3' side of deoxyguanosines and of some deoxyadenosines by heat treatment. Oligonucleotides produced by heat treatment after reaction with reduced mitomycin C contained phosphoryl groups at the 5' termini. The 3' termini seemed not to have simple structures, judging from their electrophoretic mobilities. Oxygen radicals such as singlet oxygen and hydroxyl radical were possibly involved in the induction of heat-labile sites.  相似文献   

14.
Previous work showed that melphalan-induced mutations in the aprt gene of CHO cells are primarily transversions and occur preferentially at G-G-C sequences, which are potential sites for various bifunctional alkylations involving guanine N-7. To identify the DNA lesion(s) which may be responsible for these mutations, an end-labeled DNA duplex containing a frequent site of melphalan-induced mutation in the aprt gene was treated with melphalan, mechlorethamine or phosphoramide mustard. The sequence specificity and kinetics of formation of both interstrand and intrastrand crosslinks were determined. All mustards selectively formed two base-staggered interstrand crosslinks between the 5'G and the G opposite C in the 5'G-G-C sequence. Secondary alkylation was much slower for melphalan than for the other mustards and the resulting crosslink was more stable. Mechlorethamine and phosphoramide mustard induced intrastrand crosslinks between the two contiguous Gs in the G-G-C sequence in double-stranded DNA, but melphalan did not. Molecular dynamic simulations provided a structural explanation for this difference, in that the monofunctionally bound intermediates of mechlorethamine and phosphoramide mustard assumed thermodynamically stable conformations with the second arm in a position appropriate for intrastrand crosslink formation, while the corresponding melphalan monoadduct did not.  相似文献   

15.
Aeromonas hydrophila (HG1)-specific RAPD-PCR fragments were investigated for their potential as DNA probes. From 20 RAPD-PCR fragment bands, it was found that two were specific to all isolates of Aeromonas hydrophila (HG1) tested. Cloning and nucleotide sequence determination of one of these bands showed that co-migration of similar sized amplicons had occurred and that this band (designated '7e') contained at least four fragments of different sequences. Three of these individual amplicons had a sequence specific to Aer. hydrophila (HG1) isolates. The sequence of one of these amplicons ('7e5') was used to design primers for a specific polymerase chain reaction (PCR). The specificity of the PCR was achieved using a modified hot-start procedure. The identity of the PCR amplicons was confirmed by high stringency hybridization with a digoxygenin-labelled 7e5 probe.  相似文献   

16.
Antitumor nitrogen mustards, such as bis(2-chloroethyl)methylamine (mechlorethamine), are useful chemotherapeutic agents with a long history of clinical application. The antitumor effects of nitrogen mustards are attributed to their ability to induce DNA-DNA and DNA-protein cross-links (DPCs) that block DNA replication. In the present work, a mass spectrometry-based methodology was employed to characterize in vivo DNA-protein cross-linking following treatment of human fibrosarcoma (HT1080) cells with cytotoxic concentrations of mechlorethamine. A combination of mass spectrometry-based proteomics and immunological detection was used to identify 38 nuclear proteins that were covalently cross-linked to chromosomal DNA following treatment with mechlorethamine. Isotope dilution HPLC-ESI(+)-MS/MS analysis of total proteolytic digests revealed a concentration-dependent formation of N-[2-(S-cysteinyl)ethyl]-N-[2-(guan-7-yl)ethyl]methylamine (Cys-N7G-EMA) conjugates, indicating that mechlorethamine cross-links cysteine thiols within proteins to N-7 positions of guanine in DNA.  相似文献   

17.
The use of randomly generated DNA fragment sequences as probes on DNA arrays offers a unique potential for exploring unsequenced microorganisms. In this study, the detection specificity was evaluated with respect to probe-target sequence similarity using genomic DNAs of four Pseudomonas strains. Genome fragments averaging 2000?bp were found to be specific enough to discriminate 85-90% similarity under highly stringent hybridization conditions. Such stringent conditions compromised signal intensities; however, specific signals remained detectable at the highest stringency (at 75?°C hybridization) with negligible false negatives. These results suggest that, without any probe design or selection, genomic fragments can provide a reasonable specificity for microbial diagnostics or species delineation by DNA-DNA similarities.  相似文献   

18.
We describe a new DNA sequencing method called sequencing by denaturation (SBD). A Sanger dideoxy sequencing reaction is performed on the templates on a solid surface to generate a ladder of DNA fragments randomly terminated by fluorescently labeled dideoxyribonucleotides. The labeled DNA fragments are sequentially denatured from the templates and the process is monitored by measuring the change in fluorescence intensities from the surface. By analyzing the denaturation profiles, the base sequence of the template can be determined. Using thermodynamic principles, we simulated the denaturation profiles of a series of oligonucleotides ranging from 12 to 32 bases and developed a base-calling algorithm to decode the sequences. These simulations demonstrate that DNA molecules up to 20 bases can be sequenced by SBD. Experimental measurements of the melting profiles of DNA fragments in solution confirm that DNA sequences can be determined by SBD. The potential limitations and advantages of SBD are discussed. With SBD, millions of sequencing reactions can be performed on a small area on a surface in parallel with a very small amount of sequencing reagents. Therefore, DNA sequencing by SBD could potentially result in a significant increase in speed and reduction in cost in large-scale genome resequencing.  相似文献   

19.
A new PCR based technique has been developed to investigate the sequence selectivity of adduct formation by DNA damaging agents in a single copy gene in isolated genomic DNA or in drug treated cells. Single-strand ligation PCR (sslig-PCR) demonstrated that cisplatin and nitrogen mustards reacted with guanine in an N-ras fragment with varying sequence specificity similar to that observed previously in plasmid DNA. In cisplatin-treated cells sslig-PCR demonstrated all the adducts found in isolated DNA and with the same sequence selectivity showing a preference for GG and AG sites. However, in cells an additional site of DNA binding of cisplatin was observed at the two occurrences of the sequence 5'-TACT-3' on the transcribed and non-transcribed strands. This sequence is not a recognised target for cisplatin and represents a novel adduct formed in cells.  相似文献   

20.
DNA derived from the 5' spacers of the rRNA genes from Tetrahymena has unusual electrophoretic properties. These properties made it possible to devise a simple electrophoretic procedure for isolating specific rDNA spacer fragments from preparations of total nuclear DNA, enabling us to study DNA modifications at the level of unfractionated nuclei. We have employed the method to study the distribution of topoisomerase I binding sites on the r-chromatin (ribosomal chromatin) of Tetrahymena at the DNA sequence level. The presence of topoisomerase I in situ was detected by its ability to introduce single-strand cleavages into DNA. The positions of the cleavages were determined on DNA sequencing gels after isolation of the fragments. Topoisomerase I binding in r-chromatin is sequence specific and cleavage is confined to a 16 base-pair conserved sequence element previously determined to be a high-affinity binding site for topoisomerase I in vitro. The high degree of sequence specificity may be of important functional significance, as we find a similar sequence specificity with enzymes isolated from five evolutionarily distant species, indicating that preference for the 16 base-pair element is an intrinsic property of eukaryotic type I topoisomerases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号