首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The murine and human genes for the L1 neural adhesion molecule were shown to lie on conserved regions of the X chromosome to which genes responsible for several neuromuscular diseases have been mapped and which are adjacent to the fragile site (FRAXA) associated with mental retardation. By pulsed-field gel mapping we have demonstrated physical linkage between the L1 gene and other genes located in Xq28: L1 lies between the eye pigment RCP, GCP locus and the glucose-6-phosphate dehydrogenase (G6PD) gene. This location is compatible with the implication of the L1 molecule in one of the X-linked neuromuscular diseases mapped to this region.  相似文献   

2.
We are using pulsed-field gel electrophoresis (PFGE) to establish a physical map of the human Xq28 region. We have identified a new probe 35.239 (DXYS64), localized in Xq28 by somatic hybrid mapping and belonging to a region of greater than 99% homology between the X and the Y chromosomes. PFGE data show that probes 35.239 and the polymorphic locus DXS115 (probe 767) map within a common 300-kb BssHII fragment. Both probes, in addition, hybridize to 575-kb BssHII and 590-kb ClaI fragments that contain the gene coding for coagulation factor VIII (F8C). The order F8C-DXS115-DXYS64 could be determined. Our results also provide evidence for linkage between the red/green color vision locus (RCP,GCP) and probes MD13 and T1.7 (GdX, DXS254) within a 750-kb ClaI fragment. Although the latter two probes are located within 50 kb of the 3' end of the G6PD gene, a G6PD cDNA probe did not hybridize to this fragment. G6PD, on the other hand, could be linked to F8C on a 290-kb BssHII fragment. All these data allow us to propose the order (RCP,GCP)-MD13-GdX-G6PD-F8C-DXS115-DXYS 64. We also linked probes St14 (DXS52), MN12 (DXS33), and DX13 (DXS15) to a member of a small family of X-linked dispersed sequences (DNF22S3) within a 575-kb BssHII fragment. The preliminary physical map presented here should be useful for further fine mapping of disease genes in the Xq28 region and should be helpful in orientating efforts toward the cloning of sequences close to the fragile X syndrome.  相似文献   

3.
The red (RCP) and green (GCP) color pigment genes are located in Xq28, a chromosomal region implicated in many genetic disorders. The restriction fragment length polymorphism (RFLP) we describe here will be useful for linkage analysis in these disorders.  相似文献   

4.
Summary Temperature-sensitive mutants harbouring alterations in ribosomal proteins L28 and L33 have been isolated and used in mapping the genes coding for the two proteins. It was found that they mapped very close to each other and near pyrE at 80.7 min on the E. coli genetic map. The genes affected by the mutations have been concluded to be the structural genes for proteins L28 (rpmB) and L33 (rpmG) by constructing merodiploids heterozygous for pyrE and for the two ribosomal proteins. Various transduction studies with P1kc phages indicate the gene order in this region to be (rpmB, rpmG)-pyrE-spoT-gltC.  相似文献   

5.
Striated (Str) and bare patches (Bpa) are X-irradiation-induced, X-linked dominant mouse mutations that are lethal prenatally in hemizygous males. To map the Str mutation, we generated a backcross involving Mus castaneus. Pedigree analysis of 193 affected female and normal male progeny from the cross places Str extremely close to DXMIT1 and favors a gene order of (Cf-9)-Ids-Gabra3-DXS1104h-(Str, DXMIT1)-F8a-DXPas8-DXBay6-DXMIT6 for the loci studied. This region of the mouse X Chromosome (Chr) is syntenic with proximal human Xq28. Based on the mode of inheritance and clinical phenotype, Str may be a homolog of human familial incontinentia pigmenti (IP2). Further refinement of our genetic mapping of bare patches positions that locus between DXS1104h and DXPas8 in the same region as Str, raising the possibility that Bpa and Str may be allelic or are due to mutations in overlapping contiguous genes.  相似文献   

6.
C J Faust  G E Herman 《Genomics》1991,11(1):154-164
Using pulsed-field gel electrophoresis, a 3 million-bp physical map containing the X-linked loci Gabra3, DXPas8, CamL1, and Rsvp has been constructed for a segment of the mouse X chromosome homologous to human Xq28. Detailed mapping was performed using single and double digestions with rare-cutter restriction enzymes. Gabra3 and DXPas8 have been shown to be physically linked within a maximal distance of 1600 kb, DXPas8 and CamL1 within 750 kb, and CamL1 and Rsvp within 450 kb. In addition, several CpG islands have been detected in the region encompassing CamL1 and Rsvp. These studies confirm a gene order of cen-Gabra3-DXPas8-CamL1-Rsvp-tel determined by genetic mapping in interspecific backcrosses (A.S. Ryder-Cook et al., 1988, EMBO J. 7: 3017-3021; G.E. Herman et al., 1991, Genomics 9: 670-677). Physical distances for the loci studied agree with the calculated genetic distances. Assuming that there is conserved linkage between man and mouse in the region, the physical mapping data presented here may help to clarify the uncertain gene order for some human Xq28 loci.  相似文献   

7.
8.
The gene for X-linked myotubular myopathy (MTM1) has been localized to a 300-kb critical region in human Xq28 between IDS and GABRA3. As part of an effort to clone this gene, we developed a YAC contig on the mouse X Chromosome (Chr) which includes loci homologous to those within the human MTM1 critical region. The murine contig consists of 18 YACs and spans 2.5–3.0 Mb. We have aligned the human and murine physical maps by isolating conserved mouse genomic fragments, including CpG islands and trapped exons. We believe that the simultaneous isolation of genes from both mouse and human and continued comparative mapping will prove helpful in the eventual identification of MTM1 and other genes in the region. Received: 9 February 1996 / Accepted: 30 March 1996  相似文献   

9.
Caltractin belongs to a family of calcium-binding proteins and is a structural component of the centrosome. A human caltractin cDNA (CALT) has recently been mapped by fluorescence in situ hybridization (FISH) to Xq28. We report here refined mapping of the human CALT gene and its murine homolog between the loci DXS1104 (DXHXS1104) and DXS52 (DXHXS52) by PCR and Southern analysis of YACs and somatic cell hybrids from the region in both species. These mapping studies place the gene within the critical region for the murine X-linked dominant, male lethal mutations bare patches and striated.  相似文献   

10.
MECP2 duplication results in a well-recognised syndrome in 100% of affected male children; this syndrome is characterised by severe neurodevelopmental disabilities and recurrent infections. However, no sonographic findings have been reported for affected foetuses, and prenatal molecular diagnosis has not been possible for this disease due to lack of prenatal clinical presentation. In this study, we identified a small duplication comprising the MECP2 and L1CAM genes in the Xq28 region in a patient from a family with severe X-linked mental retardation and in a prenatal foetus with brain structural abnormalities. Using high-resolution chromosome microarray analysis (CMA) to screen 108 foetuses with congenital structural abnormalities, we identified additional three foetuses with the MECP2 duplication. Our study indicates that ventriculomegaly, hydrocephalus, agenesis of the corpus callosum, choroid plexus cysts, foetal growth restriction and hydronephrosis might be common ultrasound findings in prenatal foetuses with the MECP2 duplication and provides the first set of prenatal cases with MECP2 duplication, the ultrasonographic phenotype described in these patients will help to recognise the foetuses with possible MECP2 duplication and prompt the appropriate molecular testing.  相似文献   

11.
Summary We have isolated an X chromosome probe, St35.691 (DXS305), which detects two RFLPs with TaqI and PstI, whose combined heterozygosity is about 60%. This probe has been assigned to Xq28 by physical and genetic mapping and is very closely linked to DXS52, DXS15, and the coagulation factor VIII gene (F8C). The best estimate of the recombination fraction for the DXS52-DXS305 interval is 0.014, with a lod score of 50.1. Multipoint analysis places DXS305 on the same side of F8C as DXS52, but complete ordering of the three loci was not possible with our present data. This highly informative marker should be useful in the precise mapping of the many disease genes that have been assigned to the Xq28 band.  相似文献   

12.
Repeated DNA sequences in the distal long arm of the human X chromosome   总被引:1,自引:1,他引:0  
Summary Two DNA probes from within a single large insert from a recombinant phage-DNA library that was constructed from flow-sorted chromosomes enriched for the human X chromosome were shown to hybridize with repeated X-specific and autosomal DNA sequences. The X-chromosomal repeated sequences were assigned to the distal long arm of the X chromosome by both hybrid mapping and in situ hybridization. Fine mapping places these repeats in a region of Xq28 between DX13 (DXS15, in distal Xq28) and factor VIII (F8C, in proximal Xq28). The location of the X-specific repeats makes them potentially useful for future investigations of discases mapping to the distal long arm of the X chromosome, such as the fragile X syndrome.  相似文献   

13.
14.
A large portion of human Xq28 has been completely characterized but the interval between G6PD and Xqter has remained poorly understood. Because of a lack of stable, high-density clone coverage in this region, we constructed a 1.6-Mb bacterial and P1 artificial chromosome (BAC and PAC, respectively) contig to expedite mapping, structural and evolutionary analysis, and sequencing. The contig helped to reposition previously mismapped genes and to characterize the XAP135 pseudogene near the int22h-2 repeat. BAC clones containing the distal int22h repeats also demonstrated spontaneous rearrangements and sparse coverage, which suggested that they were unstable. Because the int22h repeats are involved in genetic diseases, we examined them in great apes to see if they have always been unstable. Differences in copy number among the apes, due to duplications and deletions, indicated that they have been unstable throughout their evolution. Taking another approach toward understanding the genomic nature of distal Xq28, we examined the homologous mouse region and found an evolutionary junction near the distal int22h loci that separated the human distal Xq28 region into two segments on the mouse X chromosome. Finally, haplotype analysis showed that a segment within Xq28 has resisted excessive interchromosomal exchange through great ape evolution, potentially accounting for the linkage disequilibrium recently reported in this region. Collectively, these data highlight some interesting features of the genomic sequence in Xq28 and will be useful for positional cloning efforts, mouse mutagenesis studies, and further evolutionary analyses.  相似文献   

15.
Summary One of the commonest forms of X-linked mental retardation is associated with a fragile site at Xq27 on the human X chromosome which can be visualised structurally after culturing cells in folate-deficient media. Unusually, the mutation can be transmitted through a phenotypically normal male. There is already some evidence that the gene loci for G6PD and factor IX are linked to this mental retardation locus. We have followed the inheritance of a DNA sequence 52A, in fragile site families that are also informative for factor IX. We demonstrate that these probes are localised at Xq27/Xq28-Xqter, close physically to the fragile site. We did not find close linkage between 52A, factor IX, and the fragile site in the families studied despite 52A and factor IX showing linkage in normal families. We discuss the importance of these data for the genetic mapping of this region of the human X chromosome and the implication for the use of these DNA probes for clinical diagnosis.  相似文献   

16.
Zhang B  Xia K  Ding M  Liang D  Liu Z  Pan Q  Hu Z  Wu LQ  Cai F  Xia J 《Human genetics》2005,116(1-2):128-131
Congenital motor nystagmus (CMN), a subtype of nystagmus, may reduce vision or be associated with other, more serious, conditions that limit vision. The genetic basis for CMN is still unknown. To identify a locus for CMN, genotyping and linkage analysis were performed in 22 individuals from a Chinese family with X-linked CMN using markers from X chromosome. The maximum LOD score obtained for microsatellite maker DXS1192 linked the CMN locus in this family to Xq. By haplotype construction the locus for CMN was finally localized to an approximately 4.4-cM region at chromosome Xq26.3-q27.1. The SLC9A6 and FGF13 genes in this region, were selected and screened for mutation in this family, but no mutation was detected.B. Zhang and K. Xia contribute to this work equally  相似文献   

17.
The central region of mouse Chromosome (Chr) 8, containing the myodystrophy (myd) locus, is syntenic with human Chr 4q28-qter. The human neuromuscular disorder facioscapulohumeral muscular dystrophy (FSHD) maps to Chr 4q35, and myd has been proposed as a mouse homolog of FSHD. We have employed a comparative mapping approach to investigate this relationship further by extending the mouse genetic map of this region. We have ordered 12 genes in a single cross, 8 of which have human homologs on 4q28-qter. The results confirm a general relationship between the most distal genes on human 4q and the most proximal genes in the mouse 8 syntenic region. Despite chromosomal rearrangements of syntenic groups in this region, conservation of gene order is maintained between the group of genes in the human telomeric region of 4q35 and MMU8. Furthermore, this conserved telomeric HSA4q35 syntenic group maps proximal to the myd mutation and is flanked by genes with homologs on HSA8p22. At the proximal boundary of the MMU8 linkage group we have identified a single 300-kb YAC containing the genes Frgl and Pcml, which have human homologs on 4q35 and 8p22, respectively. Thus, this YAC spans an evolutionary chromosomal breakpoint. As well as providing clues about chromosomal evolution, this map of the FSHD syntenic mouse region should prove invaluable in the isolation of candidate genes for this disease. Received: 20 January 1998 / Accepted: 10 April 1998  相似文献   

18.
The X Chromosome (Chr) genes for phosphoribosylpyrophosphate synthetases 1 and 2, Prps1 and Prps2, were mapped on the mouse X Chr with interspecific backcrosses between C57BL/6 (B6) and M. spretus (S). Southern analysis showed that Prps1 mapped between Plp and DXWas31, a mouse X Chr region that is homologous to Xq21-24 on the human X Chr while Prps2 mapped between DXWas31 and Amg, a region that is homologous to the map position of PRPS2 on Xp22 of the human X Chr. Additionally, other restriction fragments highlighted by PRS II showed autosomal segregation. In situ hybridization and FISH analysis of metaphase chromosome spreads prepared from lymphocytes of B6 or S male mice confirmed that there were in fact two different locations on the X Chr, X F1-2 and X F2-3 for Prps1 and 2 respectively, as well as two autosomal sites for Prps-like genes.  相似文献   

19.
The methyl CpG binding proteins (MeCP1 and MeCP2) are a class of proteins that bind to templates containing symmetrically methylated CpGs. Using an interspecific backcross segregating a number of X-linked markers, we have localized the Mecp2 gene in mouse to the X chromosome close to the microsatellite marker DXMit1. Detailed physical mapping utilizing an available YAC contig encompassing the DXMit1 locus has localized the Mecp2 gene to a 40-kb region between the L1cam and the Rsvp loci, indicating the probable position of a homologue on the human X chromosome.  相似文献   

20.
The chicken natural resistance-associated macrophage protein 1 (NRAMP1) gene has been mapped by linkage analysis by use of a reference panel to develop the chicken molecular genetic linkage map and by fluorescence in situ hybridization. The chicken homolog of the murine Nramp1 gene was mapped to a linkage group located on Chromosome (Chr) 7q13, which includes three genes (CD28, NDUSF1, and EF1B) that have previously been mapped either to mouse Chr 1 or to human Chr 2q. Physical mapping by pulsed-field gel electrophoresis revealed that NRAMP1 is tightly linked to the villin gene and that the genomic organization (gene order and presence of CpG islands) of the chromosomal region carrying NRAMP1 is well conserved between the chicken and mammalian genomes. The regions on mouse Chr 1, human Chr 2q, and chicken Chr 7q that encompass NRAMP1 represent large conserved chromosomal segments between the mammalian and avian genomes. The chromosome mapping of the chicken NRAMP1 gene is a first step in determining its possible role in differential susceptibility to salmonellosis in this species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号