首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Many soluble proteins are known to interact with membranes in partially disordered states, and the mechanism and relevance of such interactions in cellular processes are beginning to be understood. Bovine α-lactalbumin (BLA) represents an excellent prototype for monitoring membrane interaction due to its conformational plasticity. In this work, we comprehensively monitored the interaction of apo-BLA with zwitterionic and negatively charged membranes utilizing a variety of approaches. We show that BLA preferentially binds to negatively charged membranes at acidic pH with higher binding affinity. This is supported by spectral changes observed with a potential-sensitive membrane probe and fluorescence anisotropy measurements of a hydrophobic probe. Our results show that BLA exhibits a molten globule conformation when bound to negatively charged membranes. We further show, using the parallax approach, that BLA penetrates the interior of negatively charged membranes, and tryptophan residues are localized at the membrane interface. Red edge excitation shift (REES) measurements reveal that the immediate environment of tryptophans in membrane-bound BLA is restricted, and the restriction is dependent on membrane lipid composition. We envision that understanding the mechanism of BLA–membrane interaction would help in bioengineering of α-lactalbumin, and to address the mechanism of tumoricidal and antimicrobial activities of BLA–oleic acid complex.  相似文献   

2.
The cyclopeptide antibiotic gramicidin S taken at a concentration of 100--200 mkg/mg membrane protein rapidly increases the permeability of M. lysodeikticus protoplast membranes for substrates of respiratory chain and exogenous cytochromes c. Prolonged incubation of gramicidin S with protoplasts results in their lysis which is more fast at low temperatures. In contrast to natural gramicidin, a derivative of gramicidin S with acetylated amino groups does not inhibit either the micrococcus membrane dehydrogenase or the whole of respiratory chain and does not affect the osmotic barrier of protoplasts. Aliphatic diamines (at concentrations up to 0.1 M) and Ca2+ ions (10(-2) M) do not affect the functioning of the respiratory chain in isolated micrococcus membranes. Another derivative of the antibiotic with an increased distance of loaded amino groups from the cyclopeptide framework (diglycyl gramicidin S) affects the membrane in a way similar to that of natural gramicidin. Washing of gramicidin-treated membranes with NaCl enhances the inhibitory effect of the antibiotic on membrane enzymes. The data obtained suggest that in addition to ionic interactions some hydrophobic interactions also occur during gramicidin S binding to the bacterial membrane, probably at the expense of a hydrophobic peptide ring. It is assumed that gramicidin S, similar to Ca2+ and some other membranotropic agents provides for phase separation of negatively charged phospholipids from other groups of phospholipids, manifesting itself in an appearance of "frozen" sites on the membrane which destroys its barrier properties. This is due to the formation of ionic bonds of negatively charged phospholipids. Simultaneously, unlike Ca2+, gramicidin S, when interacting with membrane proteins, prevents their redistribution in more liquid parts of the membrane, which results in a situation when the respiratory enzymes become surrounded by alkyl chains with restricted motion.  相似文献   

3.
The methods of computer simulation in all-atom and coarse-grained approximations have been used to study specific interactions of the isolated domain I-BAR of the actin-binding protein IRSp53 with model membranes containing neutral phospholipids and those including negatively charged PI(4,5)P2 phospholipids. It has been shown that the I-BAR domain does not interact with neutral lipids but induces bending of the synthetic membrane rich in negatively charged phospholipids. Clustering of charged lipids on the surface of the membrane at the sites of its interaction with the protein has been observed. This indicates that the interaction of I-BAR with negatively charged lipids is of electrostatic and hydrophobic nature.  相似文献   

4.
The aim of this work was to study interactions between cationic carbosilane dendrimers (CBS) and lipid bilayers or monolayers. Two kinds of second generation carbosilane dendrimers were used: NN16 with Si-O bonds and BDBR0011 with Si-C bonds. The results show that cationic carbosilane dendrimers interact both with liposomes and lipid monolayers. Interactions were stronger for negatively charged membranes and high concentration of dendrimers. In liposomes interactions were studied by measuring fluorescence anisotropy changes of fluorescent labels incorporated into the bilayer. An increase in fluorescence anisotropy was observed for both fluorescent probes when dendrimers were added to lipids that means the decreased membrane fluidity. Both the hydrophobic and hydrophilic parts of liposome bilayers became more rigid. This may be due to dendrimers' incorporation into liposome bilayer. For higher concentrations of both dendrimers precipitation occurred in negatively charged liposomes. NN16 dendrimer interacted stronger with hydrophilic part of bilayers whereas BDBR0011 greatly modified the hydrophobic area. Monolayers method brought similar results. Both dendrimers influenced lipid monolayers and changed surface pressure. For negatively charged lipids the monitored parameter changed stronger than for uncharged DMPC lipids. Moreover, NN16 dendrimer interacted stronger than the BDBR0011.  相似文献   

5.
The acid-basic properties of ellipticine have been re-estimated. The apparent pK of protonation at 3 microM drug concentration is 7.4 +/- 0.1. The ellipticine free base (at pH 9, I = 25 mM) intercalates into calf-thymus DNA with an affinity constant of 3.3 +/- 0.2 X 10(5) M-1, and a number of binding sites per phosphate of 0.23. The ellipticinium cation (pH 5, I = 25 mM) binds also to DNA with a constant of 8.3 +/- 0.2 x 10(5) M-1 and at a number of binding sites (n = 0.19). It is postulated that the binding of the drug to DNA at pH 9 is driven by hydrophobic and/or dipolar effects. Even at pH 5, where ellipticine exists as a cation, it is thought that the hydrophobic interaction is the main contribution to binding. The neutral and cationic forms share common binding within DNA sites but yield to structurally different complexes. The free base has 0.04 additional specific binding sites per phosphate. As determined from temperature-jump experiments, the second-order rate constant of the binding of the free base (pH 9) is 3.4 x 10(7) M-1 s-1 and the residence time of the base within the DNA is 8 ms. The rate constant for the binding of the ellipticinium cation is 9.8 x 10(7) M-1 s-1 when it is assumed that drug attachment occurs via a pathway in which the formation of an intermediate ionic complex is not involved (competitive pathway).  相似文献   

6.
Positively charged proteins can attach themselves to the negatively charged outer surface of biological cell membranes and liposomes. In this work, the influence of the intrinsic shape of the membrane-attached proteins on the elastic properties of the membrane is considered theoretically. It is shown that attachment of anisotropic proteins to the outer surface of biological membranes may induce tubulation of the membrane. The attachment of semi-flexible rod-like proteins increases the local bending constant, while the attachment of semi-flexible plate-like anisotropic proteins may also reduce the local bending constant of the membrane. The role of the hydrophobic protrusion of the attached protein which is embedded in the outer membrane layer is also discussed.  相似文献   

7.
The osmotic effect arising across a porous membrane separating the solution of an electrolyte from water (or a more dilute solution) is ordinarily due to both normal osmosis, as it occurs also with non-electrolytes, and to "anomalous" osmosis. It is shown that the normal osmotic component cannot be measured quantitatively by the conventional comparison with a non-electrolytic reference solute. Anomalous osmosis does not occur with electroneutral membranes. Accordingly, with membranes which can be charged and discharged reversibly (without changes in geometrical structure), such as many proteinized membranes, the osmotic effects caused by an electrolyte can be measured both when only normal osmosis arises (with the membrane in the electroneutral state) and when normal as well as anomalous osmosis occurs (with the membrane in a charged state). The difference between these two effects is the true anomalous osmosis. Data are presented on the osmotic effects across an oxyhemoglobin membrane in the uncharged state at pH 6.75 and in two charged states, positive at pH 4.0 and negative at pH 10.0, with solutions of a variety of electrolytes using a concentration ratio of 2:1 over a wide range of concentrations. The rates of the movement of liquid across the membrane against an inconsequentially small hydrostatic head are recorded instead of, as conventional, the physiologically less significant pressure rises after a standard time.  相似文献   

8.
Cytochrome b5 is a membrane protein that comprises two fragments: one is water-soluble and heme-containing, and the other is hydrophobic and membrane-embedded. The function of electron transfer is performed by the former whose crystal structure is known; however, its conformational states when in the membrane field and interacting with other proteins are still to be studied. Previously, we proposed water-alcohol mixtures for modeling the effect of membrane surface on proteins, and used this approach to study the conformational behavior of positively charged cytochrome c as well as relatively neutral retinol-binding protein also functioning in the field of negatively charged membrane. The current study describes the conformational behavior of the negatively charged water-soluble fragment of cytochrome b5 as dependent on pH. Decreasing pH was shown to transform the fragment state from native to intermediate, similar to the molten globule reported earlier for other proteins in aqueous solutions: at pH 3.0, the fragment preserved a pronounced secondary structure and compactness but lost its rigid tertiary structure. A possible role of this intermediate state in cytochrome b5 functioning is discussed.  相似文献   

9.
The binding of the Syrian hamster prion protein, SHaPrP(90-231), to model lipid membranes was investigated by tryptophan fluorescence. Membranes composed of negatively charged or zwitterionic lipids, and raft-like membranes containing dipalmitoylphosphatidylcholine(1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), cholesterol and sphingomyelin, were investigated. It was found that SHaPrP(90-231) binds to negatively charged lipid membranes and raft-like membranes. Binding of PrP to negatively charged lipid membranes involves both electrostatic and hydrophobic lipid-protein interactions and results in partial insertion of PrP into the lipid bilayer. This membrane-inserted conformation of PrP is richer in beta-sheet structure and has a disruptive effect on the integrity of the lipid bilayer, leading to total release of vesicle contents. In contrast, the binding of PrP to raft-like membranes is driven by hydrophobic lipid-protein interactions and induces the formation of alpha-helical structure. This conformation of PrP with a high content of alpha-helix is formed only at pH 7 and does not destabilize the lipid bilayer. Our findings support the view that an interaction of PrP with lipid membranes could play a role in PrP conversion.  相似文献   

10.
The pH dependence of the binding of weakly acidic uncouplers of oxidative phosphorylation to rat-liver mitochondria and liposomes is mainly determined by the pKa of the uncoupler molecule. The absorption and fluorescene excitation spectra of the anionic form of weakly acidic uncouplers of oxidative phosphorylation are red-shifted upon interaction with liposomal or mitochondrial membranes. The affinity for the liposomes, as deduced from the red shift, is independent of the degree of saturation of the fatty acid chains of different lecithins. The intensity of the spectra at one pH value is strongly dependent upon the surface charge of the liposomes. With positively charged liposomes the results obtained can be almost quantitatively explained with the Gouy-Chapman theory, but with negatively charged ones deviations are observed. At a particular pH, the divalent ion Ca-2+ stongly influences the intensity of the spectra in the presence of negatively charged liposomes, but has no effect with neutral liposomes. With mitochondrial membranes an effect of Ca-2+ similar to that with negatively charged liposomes is observed. Depletion of the phospholipids of the mitochondria and subsequent restoration of the mitochrondrial membrane with lecithin, strongly diminishes this effect, but restoration with negatively charged phospholipids does not influence it. From these observations it is concluded that the anionic form of the uncoupler molecule when bound to mitochondria is located within the partly negatively charged phospholiped moiety of the membrane, with its anionic group pointing to the aqueous solution.  相似文献   

11.
Jung HJ  Lee JY  Kim SH  Eu YJ  Shin SY  Milescu M  Swartz KJ  Kim JI 《Biochemistry》2005,44(16):6015-6023
VSTx1 is a voltage sensor toxin from the spider Grammostola spatulata that inhibits KvAP, an archeabacterial voltage-activated K(+) channel whose X-ray structure has been reported. Although the receptor for VSTx1 and the mechanism of inhibition are unknown, the sequence of the toxin is related to hanatoxin (HaTx) and SGTx, two toxins that inhibit eukaryotic voltage-activated K(+) channels by binding to voltage sensors. VSTx1 has been recently shown to interact equally well with lipid membranes that contain zwitterionic or acidic phospholipids, and it has been proposed that the toxin receptor is located within a region of the channel that is submerged in the membrane. As a first step toward understanding the inhibitory mechanism of VSTx1, we determined the three-dimensional solution structure of the toxin using NMR. Although the structure of VSTx1 is similar to HaTx and SGTx in terms of molecular fold and amphipathic character, the detailed positions of hydrophobic and surrounding charged residues in VSTx1 are very different than what is seen in the other toxins. The amphipathic character of VSTx1, notably the close apposition of basic and hydrophobic residues on one face of the toxin, raises the possibility that the toxin interacts with interfacial regions of the membrane. We reinvestigated the partitioning of VSTx1 into lipid membranes and find that VSTx1 partitioning requires negatively charged phospholipids. Intrinsic tryptophan fluorescence and acrylamide quenching experiments suggest that tryptophan residues on the hydrophobic surface of VSTx1 have a diminished exposure to water when the toxin interacts with membranes. The present results suggest that if membrane partitioning is involved in the mechanism by which VSTx1 inhibits voltage-activated K(+) channels, then binding of the toxin to the channel would likely occur at the interface between the polar headgroups and the hydrophobic phase of the membrane.  相似文献   

12.
Cationic antimicrobial peptides (CAMPs) selectively target bacterial membranes by electrostatic interactions with negatively charged lipids. It turned out that for inhibition of microbial growth a high CAMP membrane concentration is required, which can be realized by the incorporation of hydrophobic groups within the peptide. Increasing hydrophobicity, however, reduces the CAMP selectivity for bacterial over eukaryotic host membranes, thereby causing the risk of detrimental side-effects. In this study we addressed how cationic amphipathic peptides-in particular a CAMP with Lysine-Leucine-Lysine repeats (termed KLK)-affect the localization and dynamics of molecules in eukaryotic membranes. We found KLK to selectively inhibit the endocytosis of a subgroup of membrane proteins and lipids by electrostatically interacting with negatively charged sialic acid moieties. Ultrastructural characterization revealed the formation of membrane invaginations representing fission or fusion intermediates, in which the sialylated proteins and lipids were immobilized. Experiments on structurally different cationic amphipathic peptides (KLK, 6-MO-LF11-322 and NK14-2) indicated a cooperation of electrostatic and hydrophobic forces that selectively arrest sialylated membrane constituents.  相似文献   

13.
The pH dependence of the binding of weakly acidic uncouplers of oxidative phosphorylation to rat-liver mitochondria and liposomes is mainly determined by the pKa of the uncoupler molecule.

The absorption and fluorescence excitation spectra of the anionic form of weakly acidic uncouplers of oxidative phosphorylation are red-shifted upon interaction with liposomal or mitochondrial membranes. The affinity for the liposomes, as deduced from the red shift, is independent of the degree of saturation of the fatty acid chains of different lecithins. The intensity of the spectra at one pH value is strongly dependent upon the surface charge of the liposomes. With positively charged liposomes the results obtained can be almost quantitatively explained with the Gouy-Chapman theory, but with negatively charged ones deviations are observed. At a particular pH, the divalent ion Ca2+ strongly influences the intensity of the spectra in the presence of negatively charged liposomes, but has no effect with neutral liposomes.

With mitochondrial membranes an effect of Ca2+ similar to that with negatively charged liposomes is observed. Depletion of the phospholipids of the mitochondria and subsequent restoration of the mitochondrial membrane with lecithin, strongly diminishes this effect, but restoration with negatively charged phospholipids does not influence it.

From these observations it is concluded that the anionic form of the uncoupler molecule when bound to mitochondria is located within the partly negatively charged phospholipid moiety of the membrane, with its anionic group pointing to the aqueous solution.  相似文献   


14.
Magainin 2, a polycationic peptide, displays bactericidal and tumoricidal activity, presumably interacting with negatively charged phospholipids in the membrane hosts. In this work, we investigate the role played by the lipid head-group in the interactions and self-association of magainin 2 during pore formation in lipid bilayers. Two methods are used: single-channel and macroscopic incorporation into planar lipid membranes. Single-channel incorporation showed that magainin 2 did not interact with zwitterionic membranes, while the addition of negatively charged dioleoylphosphatidylglycerol to the membrane leads to channel formation. On the other hand, magainin 2 did not form channels in membranes made up of dioleoylphosphatidylserine (DOPS), although the addition of ergosterol to DOPS membranes leads to channel formation. This finding could indicate that ergosterol may be a possible target of magainin 2 in fungal membranes. Further support for this hypothesis comes from experiments in which the addition of ergosterol to palmitoyloleoylphosphatidylcholine membranes induced channel formation. Besides the role of negatively charged membranes, this study has shown that magainin 2 also forms channels in membranes lacking heads, such as monoolein and oxidized cholesterol, indicating an interaction of magainin 2 with acyl chains and cholesterol, respectively. This finding provides further evidence that peptide binding and assembly in lipid membranes is a complex process driven by electrostatic and/or hydrophobic interactions, depending on the structure of the peptide and the membrane composition.  相似文献   

15.
Binding of the tricyclic antidepressant imipramine (IMI) to neutral and negatively charged lipid membranes was investigated using a radioligand binding assay combined with centrifugation or filtration. Lipid bilayers were composed of brain phosphatidylcholine (PC) and phosphatidylserine (PS). IMI binding isotherms were measured up to IMI concentration of 0.5 mmol/l. Due to electrostatic attraction, binding between the positively charged IMI and the negatively charged surfaces of PS membranes was augmented compared to binding to neutral PC membranes. After correction for electrostatic effects by means of the Gouy-Chapman theory, the binding isotherms were described both by surface partition coefficients and by binding parameters (association constants and binding capacities). It was confirmed that binding of IMI to model membranes is strongly affected by negatively charged phospholipids and that the binding is heterogeneous; in fact, weak surface adsorption and incorporation of the drug into the hydrophobic core of lipid bilayer can be seen and characterized. These results support the hypothesis suggesting that the lipid part of biological membranes plays a role in the mechanism of antidepressant action.  相似文献   

16.
The interaction of bovine alpha-lactalbumin (BLA) with negatively charged phospholipid bilayers was studied by NMR monitored 1H exchange to characterize the conformational transition that enables a water-soluble protein to associate with and partially insert into a membrane. BLA was allowed to exchange in deuterated buffer in the absence (reference) and the presence (membrane-bound) of acidic liposomes at pH 4.5, experimental conditions that allow efficient protein-membrane interaction. After adjusting the pH to 6.0, to dissociate the protein from the membrane, reference and membrane-released samples of BLA were analysed by (F1) band-selective homonuclear decoupled total correlation spectroscopy in the alphaH-NH region. The overall exchange behaviour of the membrane-bound state is molten globule-like, suggesting an overall destabilization of the polypeptide. Nevertheless, the backbone amide protons of residues R10, L12, C77, K94, K98, V99 and W104 show significant protection against solvent exchange in the membrane-bound protein. We propose a mechanism for the association of BLA with negatively charged membranes that includes initial protonation of acidic side-chains at the membrane interface, and formation of an interacting site with the membrane which involves helixes A and C. In the next step these helices would slide away from each other, adopting a parallel orientation to the membrane, and would rotate to maximize the interaction between their hydrophobic residues and the lipid bilayer.  相似文献   

17.
Tetanus and botulinum neurotoxins (TeNT and BoNT) bind strongly and specifically to the nervous tissue, as it can be inferred from their potency and from their effects restricted to the nervous system. The molecular basis of these properties are presently unknown. As a first approach, we have investigated the interaction of TeNT and BoNT with model membranes by photolabelling with phospholipid analogues carrying the photoreceptor group at different positions of the lipid molecule in order to probe different membrane regions. We found that at neutral pH TeNT and BoNTs (type A, B and E) adsorb onto the surface of negatively charged liposomes. Polysialogangliosides increase this interaction only slightly thus suggesting that they provide a minor contribution to toxin lipid binding. On this basis we propose that clostridial neurotoxins bind to lipids via both a predominant unspecific interaction with negatively charged lipids (including gangliosides) and a specific, but weaker, interaction with polysialogangliosides. At acidic pH values both chains of these neurotoxins are labelled strongly by photogroups located in the hydrophobic milieu of the membrane with a pH dependence that overlaps the range of pH values reached in the endosomal lumen. This result is consistent with their insertion into the lipid bilayer in agreement with the idea that clostridial neurotoxins may penetrate into cells via intracellular low pH compartments.  相似文献   

18.
The hexapeptide Ac-RRWWRF-NH2 has earlier been identified as a potent antimicrobial peptide by screening synthetic combinatorial hexapeptide libraries. In this study, it was found that this peptide had a large influence on the thermotropic phase behavior of model membranes containing the negatively charged headgroup phosphatidylglycerol, a major component of bacterial membranes. In contrast, differential scanning calorimetry showed that it had little effect on model membranes containing the zwitterionic phosphatidylcholine headgroup, the main component of erythrocyte membranes. This behavior is consistent with its biological activity and with its affinity to these membranes as determined by titration calorimetry, implying that peptide-lipid interactions play an important role in this process. The structure of this peptide bound to membrane-mimetic sodium dodecyl sulfate (SDS) and dodecylphosphocholine micelles has been determined using conventional two-dimensional nuclear magnetic resonance methods. It forms a marked amphipathic structure in SDS with its hydrophobic residues on one side of the structure and with the positively charged residues on the other side. This amphipathic structure may allow this peptide to penetrate deeper into the interfacial region of negatively charged membranes, leading to local membrane destabilization. Knowledge about the importance of electrostatic interactions of Arg and the role of Trp residues as a membrane interface anchor will provide insight into the future design of potent antimicrobial peptidomimetics.  相似文献   

19.
The islet amyloid polypeptide (IAPP) and insulin are coproduced by the β-cells of the pancreatic islets of Langerhans. Both peptides can interact with negatively charged lipid membranes. The positively charged islet amyloid polypeptide partially inserts into these membranes and subsequently forms amyloid fibrils. The amyloid fibril formation of insulin is also accelerated by the presence of negatively charged lipids, although insulin has a negative net charge at neutral pH-values. We used water-polymer model interfaces to differentiate between the hydrophobic and electrostatic interactions that can drive these peptides to adsorb at an interface. By applying neutron reflectometry, the scattering-length density profiles of IAPP and insulin, as adsorbed at three different water-polymer interfaces, were determined. The islet amyloid polypeptide most strongly adsorbed at a hydrophobic poly-(styrene) surface, whereas at a hydrophilic, negatively charged poly-(styrene sulfonate) interface, the degree of adsorption was reduced by 50%. Almost no IAPP adsorption was evident at this negatively charged interface when we added 100 mM NaCl. On the other hand, negatively charged insulin was most strongly attracted to a hydrophilic, negatively charged interface. Our results suggest that IAPP is strongly attracted to a hydrophobic surface, whereas the few positive charges of IAPP cannot warrant a permanent immobilization of IAPP at a hydrophilic, negatively charged surface at an ionic strength of 100 mM. Furthermore, the interfacial accumulation of insulin at a hydrophilic, negatively charged surface may represent a favorable precondition for nucleus formation and fibril formation.  相似文献   

20.
Immobilization of molecules on surfaces is used for preparative, quantitative, and qualitative studies. Glycosaminoglycans (GAGs) are strongly hydrophilic and negatively charged molecules that do not bind well to either polystyrene surfaces or hydrophobic blotting membranes. Hydrophobic membranes were derivatized with cationic detergents to become hydrophilic and positively charged. The ability of the polyvinylidene fluoride and nitrocellulose membranes to retain GAGs increased up to 12.8 microg per spot in the dot blot assay when the membrane was treated with a cationic detergent. Immobilized GAGs were stained with alcian blue, and the staining intensity was quantitated by scanning and densitometry. The derivatized membranes were used for solid-phase extraction of GAGs in blood plasma, urine, or cerebrospinal fluid. The detection sensitivity was equal for different types of GAGs but there was a slight negative interference from fibrinogen in blood plasma. The immobilized GAGs could also be released from the membrane using a nonionic detergent at high ionic strength. Recovery of different proteoglycan populations, separated by electrophoresis and detected by reversible staining with toluidine blue, was 70-100%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号