首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Integrins are heterodimeric transmembrane proteins that mediate cell attachment to extracellular matrix, migration, division, and inhibition of apoptosis. Because growth factors are also important for these processes, there has been interest in cooperative signaling between growth factor receptors and integrins. IGF-I is an important growth factor for vascular cells. One integrin, alphaVbeta3, that is expressed in smooth muscle cells modulates IGF-I actions. Ligand occupancy of alphaVbeta3 is required for IGF-I to stimulate cell migration and division. Src homology 2 containing tyrosine phosphatase (SHP-2) is a tyrosine phosphatase whose recruitment to signaling molecules is stimulated by growth factors including IGF-I. If alphaVbeta3 ligand occupancy is inhibited, there is no recruitment of SHP-2 to alphaVbeta3 and its transfer to downstream signaling molecules is blocked. Ligand occupancy of alphaVbeta3 stimulates tyrosine phosphorylation of the beta3-subunit, resulting in recruitment of SHP-2. This transfer is mediated by an insulin receptor substrate-1-related protein termed DOK-1. Subsequently, SHP-2 is transferred to another transmembrane protein, SHPS-1. This transfer requires IGF-I receptor-mediated tyrosine phosphorylation of SHPS-1, which contains two YXXL motifs that mediate SHP-2 binding. The transfer of SHP-2 to SHPS-1 is also required for recruitment of Shc to SHPS-1. Ligand occupancy of alphaVbeta3 results in sustained Shc phosphorylation and enhanced Shc recruitment. Shc activation results in induction of MAPK. Inhibition of the Shc/SHPS-1 complex formation results in failure to achieve sustained MAPK activation and an attenuated mitogenic response. Thus, within the vessel wall, a mechanism exists whereby ligand occupancy of the alphaVbeta3 integrin is required for assembly of a multicomponent membrane signaling complex that is necessary for cells to respond optimally to IGF-I.  相似文献   

2.
Protein tyrosine phosphatases (PTPases), such as SHP-1 and SHP-2, that contain Src homology 2 (SH2) domains play important roles in growth factor and cytokine signal transduction pathways. A protein of approximately 115 to 120 kDa that interacts with SHP-1 and SHP-2 was purified from v-src-transformed rat fibroblasts (SR-3Y1 cells), and the corresponding cDNA was cloned. The predicted amino acid sequence of the encoded protein, termed SHPS-1 (SHP substrate 1), suggests that it is a glycosylated receptor-like protein with three immunoglobulin-like domains in its extracellular region and four YXX(L/V/I) motifs, potential tyrosine phosphorylation and SH2-domain binding sites, in its cytoplasmic region. Various mitogens, including serum, insulin, and lysophosphatidic acid, or cell adhesion induced tyrosine phosphorylation of SHPS-1 and its subsequent association with SHP-2 in cultured cells. Thus, SHPS-1 may be a direct substrate for both tyrosine kinases, such as the insulin receptor kinase or Src, and a specific docking protein for SH2-domain-containing PTPases. In addition, we suggest that SHPS-1 may be a potential substrate for SHP-2 and may function in both growth factor- and cell adhesion-induced cell signaling.  相似文献   

3.
Insulin-like growth factor I (IGF-I) stimulates smooth muscle cell (SMC) proliferation, and the mitogen-activated protein kinase (MAPK) pathway plays an important role in mediating IGF-I-induced mitogenic signaling. Our prior studies have shown that recruitment of Src homology 2 domain tyrosine phosphatase (SHP-2) to the membrane scaffolding protein Src homology 2 domain-containing protein tyrosine phosphatase substrate-1 (SHPS-1) is required for IGF-I-dependent MAPK activation. The current studies were undertaken to define the upstream signaling components that are required for IGF-I-stimulated MAPK activation and the role of SHPS-1 in regulating this process. The results show that IGF-I-induced Shc phosphorylation and its subsequent binding to Grb2 is required for sustained phosphorylation of MAPK and increased cell proliferation in SMCs. Furthermore, for Shc to be phosphorylated in response to IGF-I requires that Shc must associate with SHPS-1 and this association is mediated in part by SHP-2. Preincubation of cells with a peptide that contains a phospho-tyrosine binding motif sequence derived from SHPS-1 inhibited IGF-I-stimulated SHP-2 transfer to SHPS-1, the association of Shc with SHPS-1, and IGF-I-dependent Shc phosphorylation. Expression of an SHPS-1 mutant that did not bind to Shc or SHP-2 resulted in decreased Shc and MAPK phosphorylation in response to IGF-I. In addition, SMCs expressing a mutant form of the beta3 subunit of the alphaVbeta3, which results in impairment of SHP-2 transfer to SHPS-1, also showed attenuated IGF-I-dependent Shc and MAPK phosphorylation. Further analysis showed that Shc and SHP-2 can be coimmunoprecipitated after IGF-I stimulation. A cell-permeable peptide that contained a polyproline sequence from Shc selectively inhibited Shc/SHP-2 association and impaired Shc but not SHP-2 binding to SHPS-1. Exposure to this peptide also inhibited IGF-I-stimulated Shc and MAPK phosphorylation. Cells expressing a mutant form of Shc with the four prolines substituted with alanines showed no Shc/SHPS-1 association in response to IGF-I. We conclude that SHPS-1 functions as an anchor protein that recruits both Shc and SHP-2 and that their recruitment is necessary for IGF-I-dependent Shc phosphorylation, which is required for an optimal mitogenic response in SMCs.  相似文献   

4.
Our previous studies have indicated an essential role of p52shc in mediating IGF-I activation of MAPK in smooth muscle cells (SMC). However, the role of the p66 isoform of shc in IGF-I signal transduction is unclear. In the current study, two approaches were employed to investigate the role of p66shc in mediating IGF-I signaling. Knockdown p66shc by small interfering RNA enhanced IGF-I-stimulated p52shc tyrosine phosphorylation and growth factor receptor-bound protein-2 (Grb2) association, resulting in increased IGF-I-dependent MAPK activation. This was associated with enhanced IGF-I-stimulated cell proliferation. In contrast, knockdown of p66shc did not affect IGF-I-stimulated IGF-I receptor tyrosine phosphorylation. Overexpression of p66shc impaired IGF-I-stimulated p52shc tyrosine phosphorylation and p52shc-Grb2 association. In addition, IGF-I-dependent MAPK activation was also impaired, and SMC proliferation in response to IGF-I was inhibited. IGF-I-dependent cell migration was enhanced by p66shc knockdown and attenuated by p66shc overexpression. Mechanistic studies indicated that p66shc inhibited IGF-I signal transduction via competitively inhibiting the binding of Src homology 2 domain-containing protein tyrosine phosphatase-2 (SHP-2) to SHP substrate-1 (SHPS-1), leading to the disruption of SHPS-1/SHP-2/Src/p52shc complex formation, an event that has been shown previously to be essential for p52shc phosphorylation and Grb2 recruitment. These findings indicate that p66shc functions to negatively regulate the formation of a signaling complex that is required for p52shc activation in response to IGF-I, thus leading to attenuation of IGF-I-stimulated cell proliferation and migration.  相似文献   

5.
Activation of the MAPK pathway mediates insulin-like growth factor-I (IGF-I)-dependent proliferation in vascular smooth muscle cells (SMC). Our previous studies have shown that IGF-I-induced Shc phosphorylation is necessary for sustained activation of MAPK and increased cell proliferation of SMCs, and both Shc and the tyrosine phosphatase SHP-2 must be recruited to the membrane protein SHPS-1 in order for Shc to be phosphorylated. These studies were undertaken to determine whether Src kinase activity is required to phosphorylate Shc in response to IGF-I in SMC and because SHP-2 binds to Src whether their interaction was also required for IGF-I-stimulated mitogenesis. Our results show that IGF-I induces activation of Src kinase and that is required for Shc phosphorylation and for optimal MAPK activation. We tested whether Shc is a substrate of c-Src in SMC by disrupting Src/Shc association using a peptide containing a YXXL (Tyr328) motif sequence derived from Src. The peptide blocked the binding of Src and Shc in vitro and in vivo. Cells expressing a mutant Src (Src-FF) that had Tyr328/Tyr358 substituted with phenylalanines (Src-FF) showed defective Src/Shc binding, impaired IGF-I-dependent Shc phorylation, and impaired mitogenesis. This supports the conclusion that Src phosphorylates Shc. IGF-I induced both Src/SHP-2 and Src/SHPS-1 association. SMCs expressing an SHP-2 mutant that had the polyproline-rich region of SH2 deleted (SHP-2Delta10) had disrupted SHP-2/Src association, impaired IGF-I-dependent Shc phosphorylation, and an attenuated mitogenic response. IGF-I-induced association of Src and SHPS-1 was also impaired in SHP-2Delata10-expressing cells, although SHP-2/SHPS-1 association was unaffected. Upon IGF-I stimulation, a complex assembles on SHPS-1 that contains SHP-2, c-Src, and Shc wherein Src phosphorylates Shc, a signaling step that is necessary for an optimal mitogenic response.  相似文献   

6.
Growth factor signaling is usually analyzed in isolation without considering the effect of ligand occupancy of transmembrane proteins other than the growth factor receptors themselves. In smooth muscle cells, the transmembrane protein Src homology 2 domain containing protein tyrosine phosphatase substrate-1 (SHPS-1) has been shown to be an important regulator of insulin-like growth factor-I (IGF-I) signaling. SHPS-1 is phosphorylated in response to IGF-I, leading to recruitment of Src homology 2 domain tyrosine phosphatase (SHP-2). Subsequently, SHP-2 is transferred to IGF-I receptor and regulates the duration of IGF-I receptor phosphorylation. Whether ligand occupancy of SHPS-1 influences SHPS-1 phosphorylation or SHP-2 recruitment, thereby altering growth factor signaling, is unknown. Previous studies have shown that integrin associated protein (IAP) associates with SHPS-1. We undertook these studies to determine whether this interaction controlled SHPS-1 phosphorylation and/or SHP-2 recruitment and thereby regulated IGF-I signaling. Disruption of IAP-SHPS-1 binding, by using an IAP monoclonal antibody or cells expressing mutant forms of IAP that did not bind to SHPS-1, inhibited IGF-I-stimulated SHPS-1 phosphorylation and SHP-2 recruitment. This was associated with a lack of SHP-2 transfer to IGF-I receptor and sustained receptor phosphorylation. This resulted in an inability of IGF-I to stimulate sustained mitogen-activated protein kinase activation, cell proliferation, and cell migration. The effect was specific for IGF-I because disruption of the IAP-SHPS-1 interaction had no effect on platelet-derived growth factor-stimulated SHPS-1 phosphorylation or cell migration. In summary, our results show that 1) ligand occupancy of SHPS-1 is a key determinant of its ability to be phosphorylated after IGF-I stimulation, and 2) the interaction between IAP and SHPS-1 is an important regulator of IGF-I signaling because disruption of the results in impaired SHP-2 recruitment and subsequent inhibition of IGF-I-stimulated cell proliferation and migration.  相似文献   

7.
Src homology 2 domain-containing protein tyrosine phosphatase (SHP) substrate-1 (SHPS-1) is a transmembrane protein that is expressed predominantly in macrophages. Its extracellular region interacts with the transmembrane ligand CD47 expressed on the surface of adjacent cells, and its cytoplasmic region binds the protein tyrosine phosphatases SHP-1 and SHP-2. Phagocytosis of IgG- or complement-opsonized RBCs by peritoneal macrophages derived from mice that express a mutant SHPS-1 protein that lacks most of the cytoplasmic region was markedly enhanced compared with that apparent with wild-type macrophages. This effect was not observed either with CD47-deficient RBCs as the phagocytic target or in the presence of blocking Abs to SHPS-1. Depletion of SHPS-1 from wild-type macrophages by RNA interference also promoted FcgammaR-mediated phagocytosis of wild-type RBCs. Ligation of SHPS-1 on macrophages by CD47 on RBCs promoted tyrosine phosphorylation of SHPS-1 and its association with SHP-1, whereas tyrosine phosphorylation of SHPS-1 was markedly reduced in response to cross-linking of FcgammaRs. Treatment with inhibitors of PI3K or of Syk, but not with those of MEK or Src family kinases, abolished the enhancement of FcgammaR-mediated phagocytosis apparent in macrophages from SHPS-1 mutant mice. In contrast, FcgammaR-mediated tyrosine phosphorylation of Syk, Cbl, or the gamma subunit of FcR was similar in macrophages from wild-type and SHPS-1 mutant mice. These results suggest that ligation of SHPS-1 on macrophages by CD47 promotes the tyrosine phosphorylation of SHPS-1 and thereby prevents the FcgammaR-mediated disruption of the SHPS-1-SHP-1 complex, resulting in inhibition of phagocytosis. The inhibition of phagocytosis by the SHPS-1-SHP-1 complex may be mediated at the level of Syk or PI3K signaling.  相似文献   

8.
Tyrosine phosphorylation of membrane proteins plays a crucial role in cell signaling by recruiting Src homology 2 (SH2) domain-containing signaling molecules. Recently, we have isolated a transmembrane protein designated PZR that specifically binds tyrosine phosphatase SHP-2, which has two SH2 domains (Zhao, Z. J., and Zhao, R. (1998) J. Biol. Chem. 273, 29367-29372). PZR belongs to the immunoglobulin superfamily. Its intracellular segment contains four putative sites of tyrosine phosphorylation. By site-specific mutagenesis, we found that the tyrosine 241 and 263 embedded in the consensus immunoreceptor tyrosine-based inhibitory motifs VIYAQL and VVYADI, respectively, accounted for the entire tyrosine phosphorylation of PZR. The interaction between PZR and SHP-2 requires involvement of both tyrosyl residues of the former and both SH2 domains of the latter, since its was disrupted by mutating a single tyrosyl residue or an SH2 domain. Overexpression of catalytically inactive but not active forms of SHP-2 bearing intact SH2 domains in cells caused hyperphosphorylation of PZR. In vitro, tyrosine-phosphorylated PZR was efficiently dephosphorylated by the full-length form of SHP-2 but not by its SH2 domain-truncated form. Together, the data indicate that PZR serves not only as a specific anchor protein of SHP-2 on the plasma membrane but also as a physiological substrate of the enzyme. The coexisting binding and dephosphorylation of PZR by SHP-2 may function to terminate signal transduction initiated by PZR and SHP-2 and to set a threshold for the signal transduction to be initiated.  相似文献   

9.
The focal adhesion kinase (FAK), a protein-tyrosine kinase (PTK), associates with integrin receptors and is activated by cell binding to extracellular matrix proteins, such as fibronectin (FN). FAK autophosphorylation at Tyr-397 promotes Src homology 2 (SH2) domain binding of Src family PTKs, and c-Src phosphorylation of FAK at Tyr-925 creates an SH2 binding site for the Grb2 SH2-SH3 adaptor protein. FN-stimulated Grb2 binding to FAK may facilitate intracellular signaling to targets such as ERK2-mitogen-activated protein kinase. We examined FN-stimulated signaling to ERK2 and found that ERK2 activation was reduced 10-fold in Src- fibroblasts, compared to that of Src- fibroblasts stably reexpressing wild-type c-Src. FN-stimulated FAK phosphotyrosine (P.Tyr) and Grb2 binding to FAK were reduced, whereas the tyrosine phosphorylation of another signaling protein, p130cas, was not detected in the Src- cells. Stable expression of residues 1 to 298 of Src (Src 1-298, which encompass the SH3 and SH2 domains of c-Src) in the Src- cells blocked Grb2 binding to FAK; but surprisingly, Src 1-298 expression also resulted in elevated p130cas P.Tyr levels and a two- to threefold increase in FN-stimulated ERK2 activity compared to levels in Src- cells. Src 1-298 bound to both FAK and p130cas and promoted FAK association with p130cas in vivo. FAK was observed to phosphorylate p130cas in vitro and could thus phosphorylate p130cas upon FN stimulation of the Src 1-298-expressing cells. FAK-induced phosphorylation of p130cas in the Src 1-298 cells promoted the SH2 domain-dependent binding of the Nck adaptor protein to p130cas, which may facilitate signaling to ERK2. These results show that there are additional FN-stimulated pathways to ERK2 that do not involve Grb2 binding to FAK.  相似文献   

10.
Src homology 2 domain-containing protein tyrosine phosphatase substrate-1 (SHPS-1), also known as Signal-regulatory protein alpha (SIRPα) or SIRPA is a transmembrane protein that is predominantly expressed in neurons, dendritic cells, and macrophages. This study was conducted to investigate the role of SHPS-1 in the oxidative stress and brain damage induced by acute focal cerebral ischemia. Wild-type (WT) and SHPS-1 mutant (MT) mice were subjected to middle cerebral artery occlusion (60 min) followed by reperfusion. SHPS-1 MT mice had significantly reduced infarct volumes and improved neurological function after brain ischemia. In addition, neural injury and oxidative stress were inhibited in SHPS-1 MT mice. The mRNA and protein levels of the antioxidant genes nuclear factor-E2-related factor 2 (Nrf2) and heme oxygenase 1 were up-regulated in SHPS-1 MT mice. The SHPS-1 mutation suppressed the phosphorylation of SHP-1 and SHP-2 and increased the phosphorylation of Akt and GSK3β. These results provide the first demonstration that SHPS-1 plays an important role in the oxidative stress and brain injury induced by acute cerebral ischemia. The activation of Akt signaling and the up-regulation of Nrf2 and heme oxygenase 1 likely account for the protective effects that were observed in the SHPS-1 MT mice.  相似文献   

11.
Interleukin-1beta (IL-1beta) mediates destruction of matrix collagens in diverse inflammatory diseases including arthritis, periodontitis, and pulmonary fibrosis by activating fibroblasts, cells that interact with matrix proteins through integrin-based adhesions. In vitro, IL-1beta signaling is modulated by focal adhesions, supramolecular protein complexes that are enriched with tyrosine kinases and phosphatases. We assessed the importance of tyrosine phosphatases in regulating cell-matrix interactions and IL-1beta signaling. In human gingival fibroblasts plated on fibronectin, IL-1beta enhanced the maturation of focal adhesions as defined by morphology and enrichment with paxillin and alpha-actinin. IL-1beta also induced activation of ERK and recruitment of phospho-ERK to focal complexes/adhesions. Treatment with the potent tyrosine phosphatase inhibitor pervanadate, in the absence of IL-1beta, recapitulated many of these responses indicating the importance of tyrosine phosphatases. Immunoblotting of collagen bead-associated complexes revealed that the tyrosine phosphatase, SHP-2, was also enriched in focal complexes/adhesions. Depletion of SHP-2 by siRNA or by homologous recombination markedly altered IL-1beta-induced ERK activation and maturation of focal adhesions. IL-1beta-induced tyrosine phosphorylation of SHP-2 on residue Y542 promoted focal adhesion maturation. Association of Gab1 with SHP-2 in focal adhesions correlated temporally with activation of ERK and was abrogated in cells expressing mutant (Y542F) SHP-2. We conclude that IL-1beta mediated maturation of focal adhesions is dependent on tyrosine phosphorylation of SHP-2 at Y542, leading to recruitment of Gab1, a process that may influence the downstream activation of ERK.  相似文献   

12.
The transmembrane glycoprotein SHPS-1 binds the protein tyrosine phosphatase SHP-2 and serves as its substrate. Although SHPS-1 has been implicated in growth factor- and cell adhesion-induced signaling, its biological role has remained unknown. Fibroblasts homozygous for expression of an SHPS-1 mutant lacking most of the cytoplasmic region of this protein exhibited increased formation of actin stress fibers and focal adhesions. They spread more quickly on fibronectin than did wild-type cells, but they were defective in subsequent polarized extension and migration. The extent of adhesion-induced activation of Rho, but not that of Rac, was also markedly reduced in the mutant cells. Activation of the Ras-extracellular signal-regulated kinase signaling pathway and of c-Jun N-terminal kinases by growth factors was either unaffected or enhanced in the mutant fibroblasts. These results demonstrate that SHPS-1 plays crucial roles in integrin-mediated cytoskeletal reorganization, cell motility and the regulation of Rho, and that it also negatively modulates growth factor-induced activation of mitogen-activated protein kinases.  相似文献   

13.
IGF-I stimulates cell growth through interaction of the IGF receptor with multiprotein signaling complexes. However, the mechanisms of IGF-I receptor-mediated signaling are not completely understood. We have previously shown that IGF-I-stimulated 3T3-L1 cell proliferation is dependent on Src activation of the ERK-1/2 MAPK pathway. We hypothesized that IGF-I activation of the MAPK pathway is mediated through integrin activation of Src-containing signaling complexes. The disintegrin echistatin decreased IGF-I phosphorylation of Src and MAPK, and blocking antibodies to (alpha)v and beta3 integrin subunits inhibited IGF-I activation of MAPK, suggesting that (alpha)v(beta)3 integrins mediate IGF-I mitogenic signaling. IGF-I increased ligand binding to (alpha)v(beta)3 as detected by immunofluorescent staining of ligand-induced binding site antibody and stimulated phosphorylation of the beta3 subunit, consistent with inside-out activation of (alpha)v(beta)3 integrins. IGF-I increased tyrosine phosphorylation of the focal adhesion kinase (FAK) Pyk2 (calcium-dependent proline-rich tyrosine kinase-2) to a much greater extent than FAK, and increased association of Src with Pyk2 but not FAK. The intracellular calcium chelator BAPTA prevented IGF-I phosphorylation of Pyk2, Src, and MAPK, suggesting that IGF-I activation of Pyk2 is calcium dependent. Transient transfection with a dominant-negative Pyk2, which lacks the autophosphorylation and Src binding site, decreased IGF-I activation of MAPK, but no inhibition was seen with transfected wild-type Pyk2. These results indicate that IGF-I signaling to MAPK is dependent on inside-out activation of (alpha)v(beta)3 integrins and integrin-facilitated multiprotein complex formation involving Pyk2 activation and association with Src.  相似文献   

14.
Interleukin-1 (IL-1) signaling is dependent on focal adhesions, structures that are enriched with tyrosine kinases and phosphatases. Because the non-receptor tyrosine phosphatase Src homology 2 domain-containing protein tyrosine phosphatase-2 (SHP-2) is enriched in focal adhesions and IL-1-induced ERK activation requires increased Ca(2+), we determined whether SHP-2 modulates IL-1-induced Ca(2+) signaling. In SHP-2-deficient fibroblasts, IL-1-induced Ca(2+) signaling and ERK activation were markedly diminished compared with cells expressing SHP-2. IL-1-induced Ca(2+) release from the endoplasmic reticulum occurred in the vicinity of focal adhesions and was strongly inhibited by the blockage of phospholipase C (PLC) catalytic activity. Immunoprecipitation and immunostaining showed that SHP-2, the endoplasmic reticulum-specific protein calnexin, and PLCgamma1 were associated with focal adhesions; however, these associations and IL-1-induced ERK activation dissipated after cells were plated on non-integrin substrates. IL-1 promoted phosphorylation of SHP-2 and PLCgamma1. IL-1-induced phosphorylation of PLCgamma1 was diminished in SHP-2-deficient cells but was restored by stable transfection with SHP-2. BAPTA/AM (1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetrakis(acetoxymethyl ester)) blocked IL-1-induced phosphorylation of SHP-2 and PLCgamma1, indicating mutually dependent interactive roles for Ca(2+), SHP-2, and PLCgamma1 in IL-1 signaling. We conclude that SHP-2 is critical for IL-1-induced phosphorylation of PLCgamma1 and thereby enhances IL-1-induced Ca(2+) release and ERK activation. Focal adhesions co-localizing with the endoplasmic reticulum may provide molecular staging sites required for ERK activation.  相似文献   

15.
Protein-tyrosine phosphatase-alpha (PTPalpha) activates Src family kinases (SFKs) to promote the integrin-stimulated early autophosphorylation of focal adhesion kinase (FAK). We report here that integrin stimulation induces tyrosine phosphorylation of PTPalpha. PTPalpha was dephosphorylated upon fibroblast detachment from the substratum and rephosphorylated when cells were plated on the integrin ligand fibronectin. alpha PTP phosphorylation occurred at Tyr789 and required SFKs (Src or Fyn/Yes), FAK, and an intact cytoskeleton. It also required active PTPalpha or constitutively active Src. These observations indicate that PTPalpha activates SFKs and that the subsequently activated SFK.FAK tyrosine kinase complex in turn phosphorylates PTPalpha. Reintroduction of wild-type PTPalpha or unphosphorylatable PTPalpha(Y789F) (but not inactive PTPalpha) into PTPalpha-null fibroblasts restored defective integrin-induced SFK activation, FAK phosphorylation, and paxillin phosphorylation. PTPalpha(Y789F) and inactive PTPalpha could not rescue delayed actin stress fiber assembly and focal adhesion formation or defective cell migration. This study distinguishes two roles of PTPalpha in integrin signaling: an early role as an activator of SFKs and FAK with no requirement for PTPalpha phosphorylation and a later downstream role in cytoskeleton-associated events for which PTPalpha phosphorylation at Tyr789 is essential.  相似文献   

16.
SHPS-1 is an immunoglobulin superfamily protein with four immunoreceptor tyrosine-based inhibitory motifs (ITIMs) in its cytoplasmic region. Various neurotrophic factors induce the tyrosine phosphorylation of SHPS-1 and the association of SHPS-1 with the protein tyrosine phosphatase SHP-2. Using a yeast two-hybrid screen, we identified a protein tyrosine kinase, Csk-homologous kinase (CHK), as an SHPS-1-interacting protein. Immunoprecipitation and pull-down assays using glutathione S -transferase (GST) fusion proteins containing the Src homology 2 (SH2) domain of CHK revealed that CHK associates with tyrosine-phosphorylated SHPS-1 via its SH2 domain. HIS3 assay in a yeast two-hybrid system using the tyrosine-to-phenylalanine mutants of SHPS-1 indicated that the first and second ITIMs of SHPS-1 are required to bind CHK. Over-expression of wild-type CHK, but not a kinase-inactive CHK mutant, enhanced the phosphorylation of SHPS-1 and its subsequent association with SHP-2. CHK phosphorylated each of four tyrosines in the cytoplasmic region of SHPS-1 in vitro . Co-expression of SHPS-1 and CHK enhanced neurite outgrowth in PC12 cells. Thus, CHK phosphorylates and associates with SHPS-1 and is involved in neural differentiation via SHP-2 activation.  相似文献   

17.
Src family kinases (SFKs) are crucial for signaling through a variety of cell surface receptors, including integrins. There is evidence that integrin activation induces focal adhesion kinase (FAK) autophosphorylation at Y397 and that Src binds to and is activated by FAK to carry out subsequent phosphorylation events. However, it has also been suggested that Src functions as a scaffolding molecule through its SH2 and SH3 domains and that its kinase activity is not necessary. To examine the role of SFKs in integrin signaling, we have expressed various Src molecules in fibroblasts lacking other SFKs. In cells plated on fibronectin, FAK could indeed autophosphorylate at Y397 independently of Src but with lower efficiency than when Src was present. This step was promoted by kinase-inactive Src, but Src kinase activity was required for full rescue. Src kinase activity was also required for phosphorylation of additional sites on FAK and for other integrin-directed functions, including cell migration and spreading on fibronectin. In contrast, Src mutations in the SH2 or SH3 domain greatly reduced binding to FAK, Cas, and paxillin but had little effect on tyrosine phosphorylation or biological assays. Furthermore, our indirect evidence indicates that Src kinase activity does not need to be regulated to promote cell migration and FAK phosphorylation. Although Src clearly plays important roles in integrin signaling, it was not concentrated in focal adhesions. These results indicate that the primary role of Src in integrin signaling is as a kinase. Indirect models for Src function are proposed.  相似文献   

18.
SHPS-1 is a transmembrane protein whose extracellular region interacts with CD47 and whose cytoplasmic region undergoes tyrosine phosphorylation and there by binds the protein tyrosine phosphatase SHP-2. Formation of this complex is implicated in regulation of cell migration by an unknown mechanism. A CD47-Fc fusion protein or antibodies to SHPS-1 inhibited migration of human melanoma cells or of CHO cells overexpressing SHPS-1. Overexpression of wild-type SHPS-1 promoted CHO cell migration, whereas expression of the SHPS-1-4F mutant, which lacks the phosphorylation sites required for SHP-2 binding, had no effect. Antibodies to SHPS-1 failed to inhibit migration of CHO cells expressing SHPS-1-4F. SHPS-1 ligands induced the dephosphorylation of SHPS-1 and dissociation of SHP-2. Antibodies to SHPS-1 also enhanced Rho activity and induced both formation of stress fibers and adoption of a less polarized morphology in melanoma cells. Our results suggest that engagement of SHPS-1 by CD47 prevents the positive regulation of cell migration by this protein. The CD47- SHPS-1 system and SHP-2 might thus contribute to the inhibition of cell migration by cell-cell contact.  相似文献   

19.
Signal transduction by reactive oxygen species (ROS; "redox signaling") has recently come into focus in cellular biology studies. The signaling properties of ROS are largely due to the reversible oxidation of redox-sensitive target proteins, and especially of protein tyrosine phosphatases, whose activity is dependent on the redox state of a low pKa active site cysteine. A variety of mitogenic signals, including those released by receptor tyrosine kinase (RTKs) ligands and oncogenic H-Ras, involve as a critical downstream event the intracellular generation of ROS. Signaling by integrins is also essential for the growth of most cell types and is constantly integrated with growth factor signaling. We provide here evidence that intracellular ROS are generated after integrin engagement and that these oxidant intermediates are necessary for integrin signaling during fibroblast adhesion and spreading. Moreover, we propose a synergistic action of integrins and RTKs for redox signaling. Integrin-induced ROS are required to oxidize/inhibit the low molecular weight phosphotyrosine phosphatase, thereby preventing the enzyme from dephosphorylating and inactivating FAK. Accordingly, FAK phosphorylation and other downstream events, including MAPK phosphorylation, Src phosphorylation, focal adhesion formation, and cell spreading, are all significantly attenuated by inhibition of redox signaling. Hence, we have outlined a redox circuitry whereby, upon cell adhesion, oxidative inhibition of a protein tyrosine phosphatase promotes the phosphorylation/activation and the downstream signaling of FAK and, as a final event, cell adhesion and spreading onto fibronectin.  相似文献   

20.
Inhibitory immunoreceptors downregulate signaling by recruiting Src homology 2 (SH2) domain-containing tyrosine and/or lipid phosphatases to activating receptor complexes [1]. There are indications that some inhibitory receptors might also perform other functions [2] [3]. In adherent macrophages, two inhibitory receptors, SHPS-1 and PIR-B, are the major proteins binding to the tyrosine phosphatase SHP-1. SHPS-1 also associates with two tyrosine-phosphorylated proteins (pp55 and pp130) and a protein tyrosine kinase [4]. Here, we have identified pp55 and pp130 as the adaptor molecules SKAP55hom/R (Src-kinase-associated protein of 55 kDa homologue) and FYB/SLAP-130 (Fyn-binding protein/SLP-76-associated protein of 130 kDa), respectively, and the tyrosine kinase activity as PYK2. Two distinct SHPS-1 complexes were formed, one containing SKAP55hom/R and FYB/SLAP-130, and the other containing PYK2. Recruitment of FYB/SLAP-130 to SHPS-1 required SKAP55hom/R, whereas PYK2 associated with SHPS-1 independently. Formation of both complexes was independent of SHP-1 and tyrosine phosphorylation of SHPS-1. Finally, tyrosine phosphorylation of members of the SHPS-1 complexes was regulated by integrin-mediated adhesion. Thus, SHPS-1 provides a scaffold for the assembly of multi-protein complexes that might both transmit adhesion-regulated signals and help terminate such signals through SHP-1-directed dephosphorylation. Other inhibitory immunoreceptors might have similar scaffold-like functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号