首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A synthetic tRNA precursor analog containing the structural elements of Escherichia coli tRNA(Phe) was characterized as a substrate for E. coli ribonuclease P and for M1 RNA, the catalytic RNA subunit. Processing of the synthetic precursor exhibited a Mg2+ dependence quite similar to that of natural tRNA precursors such as E. coli tRNA(Tyr) precursor. It was found that Sr2+, Ca2+, and Ba2+ ions promoted processing of the dimeric precursor at Mg2+ concentrations otherwise insufficient to support processing; very similar behavior was noted for E. coli tRNA(Tyr). As noted previously for natural tRNA precursors, the absence of the 3'-terminal CA sequence in the synthetic precursor diminished the facility of processing of this substrate by RNase P and M1 RNA. A study of the Mg2+ dependence of processing of the synthetic tRNA dimeric substrate radiolabeled between C75 and A76 provided unequivocal evidence for an alteration in the actual site of processing by E. coli RNase P as a function of Mg2+ concentration. This property was subsequently demonstrated to obtain (Carter, B. J., Vold, B.S., and Hecht, S. M. (1990) J. Biol. Chem. 265, 7100-7103) for a mutant Bacillus subtilis tRNAHis precursor containing a potential A-C base pair at the end of the acceptor stem.  相似文献   

2.
We have investigated the action of the chemotherapeutic agent Fe(II)-bleomycin on yeast tRNA(Phe), an RNA of known three-dimensional structure. In the absence of Mg2+ ions, the RNA is cleaved preferentially at two major positions, A31 and G53, both of which are located at the terminal base pairs of hairpin loops, and coincide with the location of tight Mg2+ binding sites. A fragment of the tRNA (residues 47-76) containing the T stem-loop is also cleaved specifically at G53. Cleavage of both the intact tRNA and the tRNA fragment is abolished in the presence of physiological concentrations of Mg2+ (> 0.5 mM). Since Fe(II) is not displaced from bleomycin under these conditions, we infer that tight binding of Mg2+ to tRNA excludes productive interactions between Fe(II)-bleomycin and the RNA. These results also show that loss of cleavage is not due to Mg(2+)-dependent formation of tertiary interactions between the D and T loops. In contrast, cleavage of synthetic DNA analogs of the anticodon and T stem-loops is not detectably inhibited by Mg2+, even at concentrations as high as 50 mM. In addition, the site specificities observed in cleavage of RNA and DNA differ significantly. From these results, and from similar findings with other representative RNA molecules, we suggest that the cleavage of RNA by Fe(II)-bleomycin is unlikely to be important for its therapeutic action.  相似文献   

3.
F Mazzei  G Onori 《Biopolymers》1984,23(4):759-766
The uv absorption spectra and melting profiles of an initially ion-free solution of E. coli unfractionated tRNA are significantly modified by the addition of either Na+, Mg2+, or Mn2+ or of other first-series transition-metal ions such as Ni2+, Co2+, and Zn2+. The main effect of the addition of all monovalent or divalent cations examined is an increase of the ordered and stacking stabilized tRNA structure, as revealed by a drop in the absorption near 260 nm, as well as in the 4-TU absorption region. Sharp differences have, however, been detected in the 290–305-nm range in the presence of the various ions studied. When transition-metal ions were added to a tRNA solution, an absorption peak appeared at 294 nm. This effect is interpreted as a perturbation of the electronic structure of the bases due to direct binding of metal ions to the bases. An analysis of the variation in the spectrum as a function of metal concentration and of the thermal melting reversibility in the presence of various metal ions supports the conclusion that while all ions investigated are involved in binding to the phosphate groups of tRNA, transition-metal ions are also able to bind directly to the bases.  相似文献   

4.
Structure of an unmodified tRNA molecule   总被引:11,自引:0,他引:11  
  相似文献   

5.
The thermal unfolding of phenylalanine and initiator tRNA from yeast was investigated over a broad range of solution conditions by differential ultraviolet absorption at 260 nm. Under most conditions, the initiator tRNA exhibits two clearly separated transitions in its differential melting curve which were assigned to unfolding of tertiary and secondary structure elements, respectively. The tertiary transition of this tRNA and the overall transition observed for tRNAPhe do not show a maximum in a curve of Tm values plotted as a function of [Na+]. Such a maximum is usually observed for other nucleic acids at about 1 M Na+. In the presence of 5 mM of the divalent cation Mg2+ (or Ca2+), an overall destabilization of the tRNAs is observed when increasing the sodium concentration. The largest fall in Tm (approximately 15 degrees C) is observed for the tertiary transition of the initiator tRNA. Among various cations tested the following efficiency in the overall stabilization of tRNAPhe is observed: spermine greater than spermidine greater than putrescine greater than Na+ (approximately NH4+). Mg2+ is most efficient at concentrations above 5 mM, but below this concentration spermine and spermidine appear to be more efficient. The same hierarchy in stabilizing power of the polyamines and Na+ is observed for both transitions of the initiator tRNA. However, when compared with Mg2+, the polyamines are far less capable of stabilizing the tertiary structure. In contrast, spermine and spermidine are slightly better than Mg2+ in stabilizing the secondary structure. At increasing concentrations of the polyvalent cations (at fixed [Na+] ) the Tm values of the tRNAs attain a constant value.  相似文献   

6.
Magnesium binding and conformational change of DNA in chromatin   总被引:1,自引:0,他引:1  
K Watanabe  K Iso 《Biochemistry》1984,23(7):1376-1383
The structure of chromatin in the presence of Mg2+ ions was examined by circular dichroism and equilibrium dialysis. Circular dichroism (CD) shows that above 260 nm the intensity of the spectrum of DNA in nucleoproteins decreases as the Mg2+ concentration increases. This change is an intrinsic characteristic of DNA since it is also observed in protein-free DNA and has been attributed to a change in the winding angle of base pairs around the DNA axis. Some structural elements of the DNA in the nucleosome core, therefore, are as movable as those of protein-free DNA. The basic organization of H1-depleted chromatin, 146 base pairs (bp) of DNA wound around core histones and a residual 49 bp in the linker region in the repeating unit, is maintained both in the presence and in the absence of Mg2+ ions, as shown by the fact that the CD spectrum of H1-depleted chromatin has the same type of linear combination between the spectrum of protein-free DNA and that of the nucleosome core in 0.2 mM MgCl2-10 mM triethanolamine (pH 7.8) as it has in 1 mM ethylenediaminetetraacetic acid-10 mM tris(hydroxymethyl) aminomethane (pH 7.8). The ellipticity of chromatin shows a smaller decrease relative to the other nucleoproteins and protein-free DNA upon the addition of Mg2+ ions. Therefore, some structural elements of chromatin are apparently somewhat protected against the conformational change induced by these ions. The spectrum of chromatin becomes almost indistinguishable from that of H1-depleted chromatin in 0.2 mM MgCl2.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
General properties of ouabain-sensitive K+ binding to purified Na+,K+-ATPase [EC 3.6.1.3] were studied by a centrifugation method with 42K+. 1) The affinity for K+ was constant at pH values higher than 6.4, and decreased at pH values lower than 6.4. 2) Mg2+ competitively inhibited the K+ binding. The dissociation constant (Kd) for Mg2+ of the enzyme was estimated to be about 1 mM, and the ratio of Kd for Mg2+ to Kd for K+ was 120 : 1. The order of inhibitory efficiency of divalent cations toward the K+ binding was Ba2+ congruent to Ca2+ greater than Zn2+ congruent to Mn2+ greater than Sr2+ greater than Co2+ greater than Ni2+ greater than Mg2+. 3) The order of displacement efficiency of monovalent cations toward the K+ binding in the presence or absence of Mg2+ was Tl+ greater than Rb+ greater than or equal to (K+) greater than NH4+ greater than or equal to Cs+ greater than Na+ greater than Li+. The inhibition patterns of Na+ and Li+ were different from those of other monovalent cations, which competitively inhibited the K+ binding. 4) The K+ binding was not influenced by different anions, such as Cl-, SO4(2-), NO3-, acetate, and glycylglycine, which were used for preparing imidazole buffers. 5) Gramicidin D and valinomycin did not affect the K+ binding, though the former (10 micrograms/ml) inhibited the Na+,K+-ATPase activity by about half. Among various inhibitors of the ATPase, 0.1 mM p-chloromercuribenzoate and 0.1 mM tri-n-butyltin chloride completely inhibited the K+ binding. Oligomycin (10 micrograms/ml) and 10 mM N-ethylmaleimide had no effect on the K+ binding. In the presence of Na+, however, oligomycin decreased the K+ binding by increasing the inhibitory effect of Na+, whether Mg2+ was present or not. 6) ATP, adenylylimido diphosphate and ADP each at 0.2 mM decreased the K+ binding to about one-fourth of the original level at 10 microM K+ without MgCl2 and at 60 microM K+ with 5 mM MgCl2. On the other hand, AMP, Pi, and p-nitrophenylphosphate each at 0.2 mM had little effect on the K+ binding.  相似文献   

8.
The effects of lauryl dimethylamine oxide on the Rhodospirillum rubrum H+-ATPase have been studied. This detergent activates Mg2+-dependent ATP hydrolysis in the isolated R. rubrum F0-F1 34-fold, whereas the Ca2+-ATPase activity is only slightly modified. ATPase activation by lauryl dimethylamine oxide enhances the effect on ATP hydrolysis exerted by free Mg2+ ions. Concentrations of free Mg2+ in the range of 0.025 mM favor activation while higher concentrations inhibit ATPase activity by approximately 70%. Steady-state kinetic analysis shows that lauryl dimethylamine oxide induces a complex kinetic behavior for Mg-ATP in the chromatophores, similar to the untreated F0-F1 complex. The initial rate value for Mg-ATP unisite catalysis was found to be 6.3 times higher (3.5 X 10(-3) mol Pi per mol R. rubrum F0-F1 per second) in the presence than in the absence of detergent, where the initial rate was 5.5 X 10(-4) mol Pi per mol R. rubrum F0-F1 per second. These experiments show that lauryl dimethylamine oxide shifts the cation requirement for ATP-hydrolysis of the isolated R. rubrum H+-ATPase from Ca2+ to Mg2+ and that it activates both multisite and unisite catalysis. Results are discussed in relation to the possibility of a regulatory role by Mg2+ ions on ATP hydrolysis expressed through subunit interactions.  相似文献   

9.
We have recently described a cryptand structure, FCryp-1, with appropriate properties for an indicator of intracellular free Na+ concentration using the 19F-n.m.r. chemical shift of the incorporated 5FBAPTA [1,2-bis-(2-amino-5-fluorophenoxy)ethane-NNN'N'-tetra-acetic acid] reporter group to measure the free cytosolic Na+ concentration [( Na+]i) [Smith, Morris, Hesketh and Metcalfe (1986) Biochim. Biophys. Acta 889, 82-83]. FCryp-1 carries four carboxylate groups to confer aqueous solubility and the indicator is membrane-permeant when the carboxyls are esterified with acetoxymethyl ester groups. Here we describe the synthesis of FCryp-2 to provide a fluorescent indicator of [Na+]i. FCryp-2 retains the parent tribenzo (2:2:1) cryptand structure of FCryp-1, in which the benzenoid ring at C-21 in FCryp-1 is replaced by an indole derivative which acts as the fluorophor in FCryp-2. With excitation at 340 nm, FCryp-2 gives an emission maximum at 460 nm in the absence of Na+ which shifts to 395 nm when FCryp-2 is saturated with Na+, with an isosbestic point at 455 nm. The apparent dissociation constant of FCryp-2 in a buffer solution of 100 mM-KCl/20 mM-KH2PO4/K2HPO4, pH 7.0, at 37 degrees C is 6.0 mM and the free Na+ concentration can be measured either from the calibrated fluorescence intensity at 395 nm, which increases 25-fold when Na+ is bound to FCryp-2, or from the ratio of fluorescence intensities at 395 nm and 455 nm. The measurement of free [Na+] by either method is unaffected by K+, Ca2+ or Mg2+ in the normal intracellular concentration ranges. Free [Na+] measurements by the ratio method are unaffected by pH from 6.6 to 7.6.  相似文献   

10.
The Pb2+-catalyzed cleavage of tRNAPhe has been used to probe the effect of Na+ and Mg2+ binding to tRNA. Na+ is a noncompetitive inhibitor of the Pb2+-catalyzed cleavage. Millimolar Mg2+ is also a noncompetitive inhibitor. Analysis of the Mg2+ data show that at least two sites are involved in binding and that there is an interaction between the sites (cooperativity). Low-affinity Mg2+ binding is thus different from "weak" and "strong" Mg2+ binding to tRNA characterized previously. We postulate that the alterations induced by low-affinity Mg2+ binding in tRNA mimic to some extent those brought about in RNA by the interaction with a protein factor and that at appropriate [Mg2+] the whole structure of tRNA is able to respond in a concerted way to a signal from the environment such as aminoacylation or codon binding.  相似文献   

11.
由于精胺(spermine)能特异地刺激哺乳动物tRNA~(Ile)的氨基酰化,本文用纯化的牛肝tRNA~(Ile)观察了精胺和Mg(2+)对tRNA~(Ile)CD光谱的影响。结果显示:Mg(2+)可使牛肝tRNA~(Ile)CD光谱峰向短波方向偏移2nm,波峰为263nm,峰值被增大约10%,ΔθMg(2+)=2.3×103deg·cm2/dmol;而精胺使牛肝tRNA~(Ile)CD光谱峰减少40%,Δθspermine=1×10(-4)deg·cm2/dmol;精胺和Mg(2+)对肝tRNA~(Ile)-IleRS复合物或IleRS的CD光谱基本无影响。表明Mg(2+)和精胺可影响牛肝tRNA~(Ile)的构象。实验同时以酵母tRNA(Phe)和E·colitRNA~(Ile)作为对照。  相似文献   

12.
Oligomycin induces occlusion of Na+ in membrane-bound Na,K-ATPase. Here it is shown that Na,K-ATPase from pig kidney or shark rectal gland solubilized in the nonionic detergent C12E8 is capable of occluding Na+ in the presence of oligomycin. The apparent affinity for Na+ is reduced for both enzymes upon solubilization, and there is an increase in the sigmoidicity of binding curves, which indicates a change in the cooperativity between the occluded ions. A high detergent/protein ratio leads to a decreased occlusion capacity. De-occlusion of Na+ by addition of K+ is slow for solubilized Na,K-ATPase, with a rate constant of about 0.1 s-1 at 6 degrees C. Stopped-flow fluorescence experiments with 6-carboxyeosin, which can be used to monitor the E1Na-form in detergent solution, show that the K(+)-induced de-occlusion of Na+ correlates well with the fluorescence decrease which follows the transition from the E1Na-form to the E2-form. There is a marked increase in the rate of fluorescence change at high detergent/protein ratios, indicating that the properties of solubilized enzyme are subject to modification by detergent in other respects than mere solubilization of the membrane-bound enzyme. The temperature dependence of the rate of de-occlusion in the range 2 degrees C to 12 degrees C is changed slightly upon solubilization, with activation energies in the range 20-23 kcal/mol for membrane-bound enzyme, increasing to 26-30 kcal/mol for solubilized enzyme. Titrations of the rate of transition from E1Na to E2K with oligomycin can be interpreted in a model with oligomycin having an apparent dissociation constant of about 2.5 microM for C12E8-solubilized shark Na,K-ATPase and 0.2 microM for solubilized pig kidney Na,K-ATPase.  相似文献   

13.
The free magnesium concentration in the axoplasm of the giant axon of the squid, Loligo pealei, was estimated by exploting the known sensitivity of the sodium pump to intracellular Mg2+ levels. The Mg- citrate buffer which, when injected into the axon, resulted in no change in sodium efflux was in equilibrium with a Mg2+ level of about 3- -4 mM. Optimal [Mg2+] for the sodium pump is somewhat higher. Total magnesium content of axoplasm was 6.7 mmol/kg, and that of hemolymph was 44 mM. The rate coefficient for 28Mg efflux was about 2 X 10(-3) min-u for a 500-mum axon at 22-25degreesC, with a very high temperature coefficient (Q10=4-5). This efflux is inhibited 95% by injection of apyrase and 75% by removal of external sodium, and seems unaffected by membrane potential or potassium ions. Increased intracellular ADP levels do not affect Mg efflux nor its requirement for Na+/o, but extracellularl magnesium ions do. Activation of 28Mg efflux by Na+/o follows hyperbolic kinetics, with Mg2+/o reducing the affinity of the system for Na+/o. Lanthanum and D600 reversibly inhibit Mg efflux. In the absence of both Na+ and Mg2+, but not in their presence, removal of Ca2+ from the seawater vastly increased 28Mg efflux; this efflux was also strongly inhibited by lanthanum. A small (10(-14) mol cm-2) extra Mg efflux accompanies the conduction of an action potential.  相似文献   

14.
Human platelets were loaded with the fluorescent Na(+)-sensitive dye sodium-binding benzofuran isophtalate (SBFI), and changes in the fluorescence excited at 345 and 385 nm were analyzed after manipulations that evoked predictable changes in the cytosolic Na+ concentration ([Na+]i). Raising [Na+]i by either gramicidin D or monensin specifically increased the fluorescence excited at 345 nm and decreased that excited at 385 nm. Hence, calculation of changes in the 345/385 nm excitation ratio yields an estimate of actual changes in [Na+]i. A transient activation of Na+/H+ exchange evoked by addition of acidified platelets to buffer, pH 7.4, evoked a transient rise in [Na+]i. The re-establishment of basal [Na+]i could be prevented by ouabain, indicating an involvement of the Na+,K(+)-ATPase. Upon stimulation by 0.5 unit/ml of thrombin, [Na+]i immediately increased by 16 +/- 4 mM and this rise continued for at least 60 min after addition of agonist, albeit at a lower rate. This latter sustained rise could not be curtailed by scavenging thrombin by means of hirudin. Addition of ouabain or the phorbol ester 12-O-tetradecanoylphorbol-13-acetate induced a comparable slow rise in the 345/385 excitation ratio. This may indicate a protein kinase C-mediated inhibition by thrombin of the Na+,K(+)-ATPase. In the absence of extracellular Ca2+ (Ca2+o), the [Na+]i gain was augmented to 38 +/- 9 mM. This additional uptake of Na+ was prevented by (i) Mn2+ ions, (ii) La3+ ions, (iii) the blocker of receptor-mediated Ca2+ entry (1-[beta[3-(4-methoxyphenyl)propoxyl]-4-methoxyphenethyl]-1H-im ida zole hydrochloride), and (iv) by hirudin which reversed receptor occupancy by thrombin. These findings suggest that the additional thrombin-induced [Na+]i gain in the absence of Ca2+o is due to Na+ influx through a Ca2+ entry pathway. The increase in [Na+]i in the presence of Ca2+o results from Na+ influx via Na+/H+ exchange.  相似文献   

15.
Chemokine receptors belong to the superfamily of G protein-coupled receptors, which regulate the trafficking and activation of leukocytes, and operate as coreceptors in the entry of HIV-1. To investigate the early steps in the signal transmission from the chemokine-binding site to the G protein-coupling region we engineered metal ion-binding sites at putative extracellular sites in the chemokine receptor CXCR1. We introduced histidines into sites located in the second and third putative extracellular loops of CXCR1, creating single, double, and triple mutant receptors: R199H, R203H, D265H, R199H/R203H, R199H/D265H, R203H/D265H, R203H/H207Q, and R199H/R203H/D265H. Cells expressing the double mutants R199H/D265H and R203H/D265H and the triple mutant R199H/R203H/D265H failed to trigger interleukin 8-dependent calcium responses. Interestingly, calcium responses mediated by the single mutant R203H and the double mutants R199H/R203H and R203H/H207Q were blocked by Zn(II), indicating the creation of a functional metal ion-binding site. On the other hand, cells expressing all single, double, or triple histidine-substituted CXCR1 demonstrated high affinity binding to interleukin 8 in the presence and absence of metal ions. These findings indicate that occupation of the engineered metal-binding site uncouples the chemokine-binding site from the activation mechanism in CXCR1. Most importantly, we identify for the first time elements of an early signal transduction switch of chemokine receptors before the activation of cytoplasmic G proteins.  相似文献   

16.
J M Flanagan  K B Jacobson 《Biochemistry》1988,27(15):5778-5785
The structure of tRNA in solution was explored by NMR spectroscopy to evaluate the effect of divalent cations, especially zinc, which has a profound effect on the chromatographic behaviour of tRNAs in certain systems. The divalent ions Mg2+ and Zn2+ have specific effects on the imino proton region of the 1H NMR spectrum of valine transfer RNA (tRNA(Val] of Escherichia coli and of phenylalanine transfer RNA (tRNA(Phe] of yeast. The dependence of the imino proton spectra of the two tRNAs was examined as a function of Zn2+ concentration. In both tRNAs the tertiary base pair (G-15).(C-48) was markedly affected by Zn2+ (shifted downfield possibly by as much as 0.4 ppm); this is the terminal base pair in the augmented dihydrouridine helix (D-helix). Base pair (U-8).(A-14) in yeast tRNA(Phe) or (s4U-8).(A-14) in tRNA1(Val), which are stacked on (G-15).(C-48), was not affected by Zn2+, except when 1-2 Mg2+ ions per tRNA were also present. Another imino proton that may be affected by Zn2+ in both tRNAs is that of the tertiary base pair (G-19).(C-46). The assignment of this resonance in yeast tRNA(Phe) is tentative since it is located in the region of highly overlapping resonances between 12.6 and 12.3 ppm. This base pair helps to anchor the D-loop to the T psi C loop.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The influence of metal ions (Na(+), Mg(2+) and Cd(2+)) on the thermal unfolding of phenylalanine transfer ribonucleic acid (tRNA(Phe)) was studied by UV spectroscopy-monitored melting experiments. Absorbance data were obtained during the unfolding process in the range 220-340 nm and later analyzed by a multivariate curve resolution approach (MCR-ALS) based on factor analysis. This procedure determines the number of spectroscopically distinct conformations present during the unfolding process and reveals their concentration profiles and pure spectra, without any initial assumption having to be made about the number of steps in the unfolding pathway. From the concentration profiles and pure spectra, information such as T(m) values can be recovered. The results were compared with those obtained previously in spectroscopic and calorimetric unfolding experiments, showing that the multivariate approach recovers information that complements that obtained in traditional spectroscopic melting experiments.  相似文献   

18.
S S Reid  J A Cowan 《Biochemistry》1990,29(25):6025-6032
The thermodynamics and kinetics of magnesium binding to tRNA(Phe)(yeast) have been studied directly by 25Mg NMR. In 0.17 M Na+(aq), tRNA(Phe) exists in its native conformation and the number of strong binding sites (Ka greater than or equal to 10(4)) was estimated to be 3-4 by titration experiments, in agreement with X-ray structural data for crystalline tRNA(Phe) (Jack et al., 1977). The set of weakly bound ions were in slow exchange and 25Mg NMR resonances were in the near-extreme-narrowing limit. The line shapes of the exchange-broadened magnesium resonance were indistinguishable from Lorentzian form. The number of weak magnesium binding sites was determined to be 50 +/- 8 in the native conformation and a total line-shape analysis of the exchange-broadened 25 Mg2+ NMR resonance gave an association constant Ka of (2.2 +/- 0.2) X 10(2) M-1, a quadrupolar coupling constant (chi B) of 0.84 MHz, an activation free energy (delta G*) of 12.8 +/- 0.2 kcal mol-1, and an off-rate (koff) of (2.5 +/- 0.4) X 10(3) s-1. In the absence of background Na+(aq), up to 12 +/- 2 magnesium ions bind cooperatively, and 73 +/- 10 additional weak binding sites were determined. The binding parameters in the nonnative conformation were Ka = (2.5 +/- 0.2) X 10(2) M-1, chi B = 0.64 MHz, delta G* = 13.1 +/- 0.2 kcal mol-1, and koff = (1.6 +/- 0.4) X 10(3) s-1. In comparison to Mg2+ binding to proteins (chi B typically ca. 1.1-1.6 MHz) the lower chi B values suggest a higher degree of symmetry for the ligand environment of Mg2+ bound to tRNA. A small number of specific weakly bound Mg2+ appear to be important for the change from a nonnative to a native conformation. Implications for interactions with the ribosome are discussed.  相似文献   

19.
The Na+/K+-ATPase uses energy from the hydrolysis of ATP to pump Na+ ions out of and K+ ions into the cell. ATP-induced conformational changes in the protein have been examined in the Na+/K+-ATPase isolated from duck supraorbital salt glands using Fourier transform infrared spectroscopy. Both standard transmission and attenuated total internal reflection sample geometries have been employed. Under transmission conditions, enzyme at 75 mg/ml was incubated with dimethoxybenzoin-caged ATP. ATP was released by flashing with a UV laser pulse at 355 nm, which resulted in a large change in the amide I band. The absorbance at 1659 cm(-1) decreased with a concomitant increase in the absorbance at 1620 cm(-1). These changes are consistent with a partial conversion of protein secondary structure from alpha-helix to beta-sheet. The changes were approximately 8% of the total absorbance, much larger than those seen with other P-type ATPases. Using attenuated total internal reflection Fourier transform infrared spectroscopy, the decrease in absorbance at approximately 1650 cm(-1) was titrated with ATP, and the titration midpoint K0.5 was determined under different ionic conditions. In the presence of metal ions (Na+, Na+ and K+, or Mg2+), K0.5 was on the order of a few microM. In the absence of these ions, K0.5 was an order of magnitude lower (0.1 microM), indicating a higher apparent affinity. This effect suggests that the equilibrium for the ATP-induced conformational changes is dependent on the presence of metal ions.  相似文献   

20.
Phenylacetyl-CoA ligase (AMP-forming) from Pseudomonas putida is a newly described enzyme (Martinez-Blanco, H., Reglero, A., Rodriguez-Aparicio, L.B. and Luengo, J.M. (1990) J. Biol. Chem. 265, 7084-7090) specifically involved in the catabolism of phenylacetic acid. This enzyme catalyzes the formation of phenylacetyl-CoA in the presence of ATP, CoA, Mg2+ and phenylacetic acid. A rapid method of assaying this enzyme in partially purified preparations has been developed by coupling this reaction with adenylate kinase, pyruvate kinase and kinase and lactate dehydrogenase. The rate of phenylacetyl-CoA formation was measured indirectly by monitoring fluorometrically the NADH oxidation at 340 nm (excitation at 340 nm and analysis of the emitted light at 465 nm). The advantage of this method of assay over others (colorimetric, HPLC and spectrophotometric) is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号