首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In contrast to humans, a tryptophan (TRP)-free amino acid (AA) mixture only leads to moderate depletion in plasma TRP levels in adult rats. In this study we evaluated the effects of an acute administration of a TRP-free protein-carbohydrate nutritional mixture in adult male Wistar rats. Plasma amino acid levels were examined at 2 and 4h starting after the first administration. Furthermore, the concentrations of amino acid, serotonin (5-HT), dopamine (DA) and their metabolite (5-hydroxyindolacetic acid (5-HIAA) and 3,4-dihydroxyphenylacetic acid (DOPAC), respectively) were measured within the striatum, hippocampus and cortex. In the TRP depleted animals, the TRP/sigmaLNAA ratio (LNAA: large neutral amino acids) was substantial decreased at 2 and 4h after the first administration of the oral administration (by 71 and 78%, respectively). Four hours after treatment central TRP and 5-HT concentrations were decreased by 50%. Both peripheral and central TRP levels returned to basal values in the group treated with the nutritional mixture supplemented with TRP. Surprisingly, tyrosine levels were also reduced after oral administration of the protein-carbohydrate mixture without affecting central DA concentrations. In conclusion, the TRP-free protein-carbohydrate nutritional mixture appears to be an efficient tool to substantially reduce plasma and central TRP levels in adult rat.  相似文献   

2.
Tyrosine uptake has been reported to differ across brain regions. However, such studies have typically been conducted over brief intervals and in anesthetized rats; anesthesia itself affects amino acid transport across the blood-brain barrier. To address these concerns, serum, brain tissue and in vivo microdialysate tyrosine levels were compared for 0-3 h after administration of tyrosine [0.138-1.10 mmol/kg intraperitoneally (i.p.)] to groups of awake rats. Serum and brain tissue tyrosine levels increased linearly with respect to dose. Basal tissue tyrosine levels varied significantly across brain regions [medial prefrontal cortex (MPFC), striatum, hypothalamus, and cerebellum], but the rate of tyrosine uptake was similar for hypothalamus, striatum and MPFC. For brain regions in which tyrosine levels in both microdialysate and tissue were assayed, namely MPFC and striatum, there was a high degree of correlation between tyrosine levels in tissue and in microdialysate. Increasing brain tyrosine levels had no effect on DA levels in MPFC microdialysate. We conclude that (i) regional differences in the response of dopamine neurons to systemic tyrosine administration cannot be attributed to pharmacokinetic factors; (ii) in vivo microdialysate provides an excellent index over time and across a wide range of tyrosine doses, of brain tissue tyrosine levels; and (iii) increases in brain tyrosine levels do not affect basal DA release in the MPFC.  相似文献   

3.
Abstract: Subcutaneous injection of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) HC1 (25 mg/kg) in pregnant female mice at the 17th day of gestation markedly depleted striatal dopamine (DA) concentrations in the mothers 24 h later and at 24 h and 28 days after delivery. By contrast, in the offspring of the female mice exposed to MPTP during pregnancy, fetal brain DA concentrations at 24 h after injection and at 24 h after birth and striatal DA levels at 14 and 28 days postnatally were unaffected and identical to those in age-matched controls. The postnatal ontogenesis of striatal DA levels was identical in offspring of control vehicle- and MPTP-treated pregnant mice. Also, prenatal challenge with MPTP did not make nigrostriatal DA neurons more vulnerable to a second postnatal treatment with the toxin. Striatal DA depletions were identical in 6-week-old mice given MPTP, whether they were exposed to MPTP or to vehicle in utero. Monoamine oxidase (EC 1.4.3.4; MAO) type B activity was extremely low in the fetal brain and, relatively, much lower than that of MAO-A. Prenatal MPTP administration reduced maternal striatal and also embryonal brain MAO-B activity at 24 h post treatment but did not alter the normal postnatal development of striatal MAO-A and -B activities in the offspring. Study suggests that resistance of fetal DA neurons to the DA-depleting effect of MPTP may be due, at least in part, to an absence in the embryonal brain of adequately developed MAO-B activity required for the conversion of MPTP to its toxic metabolite, 1-methyl-4-phenylpyridinium ion.  相似文献   

4.
5.
Dietary copper deficiency was produced in Swiss albino mice and Sprague Dawley rats to determine the organ specificity of alterations in norepinephrine (NE) and dopamine (DA) concentrations and the relationship with organ copper levels. A 5-week dietary treatment was used, which started 1 week after birth for mice, initially via dams, and 3 weeks after birth for rats. Mice offspring (6 weeks of age) and rats (8 weeks of age) maintained on a copper-deficient (-Cu) treatment were compared with copper-adequate (+Cu) controls. Compared with +Cu animals, -Cu mice and rats were anemic and had low (<1% of +Cu) ceruloplasmin activities but normal body weights. The -Cu mice had organ copper concentrations ranging between 30% and 65% of +Cu values for eight organs studied, with the thymus being the least depleted. For -Cu rats, the range was 15% to 65%. Significant reductions in NE concentration were observed in the heart, pancreas, and spleen of -Cu mice. Elevated DA levels were observed in all organs except the brain. For -Cu rats, the NE level was lower in the heart and the DA level was higher in both the heart and spleen compared with +Cu rats. Dopamine elevation in the heart and spleen for both -Cu mice and rats was four- and fivefold higher, respectively. Adrenal catecholamine levels were only slightly changed by copper deficiency in mice or rats. Urinary levels of both NE and DA were higher in -Cu rats and mice. Plasma and heart tyrosine levels were not altered in -Cu mice. Elevated DA in -Cu rodents may be due to limiting dopamine-beta-monooxygenase. Higher urinary NE and lower organ NE may be due to a combination of decreased synthesis and enhanced turnover. The magnitude of decreased organ copper was not predictive of altered catecholamine pool size.  相似文献   

6.
Abstract: The purpose of the present study was to investigate the effects of repeated administration of the neurotensin receptor antagonist, SR 48692, on the activity of the mesocortical and mesolimbic dopaminergic (DA) systems. We showed that daily administration of SR 48692 for 15 days (1 mg/kg i.p.) to Wistar rats increased the expression of tyrosine hydroxylase mRNA and protein in the ventral mesencephalon. Simultaneous in vivo microdialysis in the shell part of the nucleus accumbens (AcbSh) and the medial prefrontal cortex (mPFC) revealed that blockade of neurotensin receptors for 15 days decreased basal extracellular levels of DA (∼50%) and its metabolites in the AcbSh, whereas no modification in DA levels was observed in the mPFC. In animals submitted to a forced swimming stress, which preferentially enhanced extracellular DA levels in the mPFC, treatment with SR 48692 failed to affect the stress-induced increase in DA. Moreover, given that glucocorticoids can modulate the activity of mesencephalic DA neurons, we examined the effect of the same SR 48692 treatment on corticosterone levels in dialysates from the AcbSh. We found that repeated SR 48692 did not affect the basal levels of free corticosterone, but significantly reduced the increase induced by forced swimming stress. The present results demonstrate that repeated treatment with SR 48692 modulates selectively the DA mesolimbic system when compared with the mesocortical pathway. These findings suggest that long-term treatment with selective neurotensin receptor antagonists could have potential clinical utility in the treatment of neuropsychiatric disorders associated with hyperactivity of the mesolimbic DA systems or the hypothalamic-pituitary-adrenal axis.  相似文献   

7.
Methylphenidate (MPD) is a psychostimulant widely used to treat behavioral problems such as attention deficit hyperactivity disorder. MPD competitively inhibits the dopamine (DA) transporter. Previous studies demonstrated that stimulants of abuse, such as cocaine (COC) and methamphetamine differentially alter rat brain neurotensin (NT) systems through DA mechanisms. As NT is a neuropeptide primarily associated with the regulation of the nigrostriatal and mesolimbic DA systems, the effect of MPD on NT-like immunoreactivity (NTLI) content in several basal ganglia regions was assessed. MPD, at doses of 2.0 or 10.0 mg/kg, s.c., significantly increased the NTLI contents in dorsal striatum, substantia nigra and globus pallidus; similar increases in NTLI were observed in these areas after administration of COC (30.0 mg/kg, i.p.). No changes in NTLI occurred within the nucleus accumbens, frontal cortex and ventral tegmental area following MPD treatment. In addition, the NTLI changes in basal ganglia regions induced by MPD were prevented when D(1) (SCH 23390) or D(2) (eticlopride) receptor antagonists were coadministered with MPD. MPD treatment also increased dynorphin (DYN) levels in basal ganglia structures. These findings provide evidence that basal ganglia, but not limbic, NT systems are significantly affected by MPD through D(1) and D(2) receptor mechanisms, and these NTLI changes are similar, but not identical to those which occurred with COC administration. In addition, the MPD effects on NT systems are mechanistically distinct from the effects of methamphetamine.  相似文献   

8.
The effect of lesions of the catecholamine nerve terminals in the medial prefrontal cortex of the rat on neurotransmitter mechanisms within the basal ganglia has been investigated. Bilateral 6-hydroxydopamine lesions were stereotaxically placed in the dopamine-rich (DA) area of th frontal cortex. Animals were pretreated with desmethylimipramine to block the uptake of neurotoxin into noradrenergic (NA) terminals and to make it more selective for DA terminals. The lesion produced a selective reduction of both NA and DA from the medial prefrontal cortex, a result related to falls in tyrosine hydroxylase activity at this site. Lesioned animals showed enhanced DA turnover and utilisation in striatal and limbic regions. There was no change in subcortical tyrosine hydroxylase activity. In addition there were significant falls in other putative neurotransmitters within basal sites, including 5-hydroxytryptamine and GABA. Decreased activity of the neurotransmitter-synthesizing enzyme glutamate decarboxylase and choline acetyltransferase was also recorded in certain regions of the basal ganglia. The results suggest that frontal cortical catecholamine systems may serve to regulate various neurotransmitter mechanisms in the basal ganglia.  相似文献   

9.
High-frequency stimulation of the subthalamic nucleus is believed to exert its main effects via the basal ganglia output structures. Previously, we have shown a concomitant increase in striatal dopamine (DA) metabolites in normal and 6-hydroxydopamine-lesioned rats. The present study was designed to determine whether this increase in striatal DA metabolites reflects enhanced intraneuronal DA turnover or, alternatively, is due to increased DA release with subsequent rapid and efficient reuptake and/or metabolism. Thus, high-frequency stimulation of the subthalamic nucleus was performed in normal rats after inhibition of DA reuptake, metabolism or DA depletion. Extracellular levels of striatal DA and its metabolites were assessed using microdialysis. Our data suggest that subthalamic high-frequency stimulation increases striatal DA release and activates independent striatal DA metabolism. Since such changes could be triggered by modification of either the activity or the gene expression of the rate-limiting enzyme tyrosine hydroxylase, an activity assay and RT-PCR of striatal and nigral samples were performed. Subthalamic stimulation increased striatal tyrosine hydroxylase activity without affecting gene expression. We, therefore, conclude that the application of subthalamic high-frequency stimulation could partially compensate for the DA deficit by inducing increased striatal DA release and metabolism.  相似文献   

10.
When incubated in a tyrosine-free medium, the tissue dopamine (DA) level of rat striatal slices increased by about 921 ± 15 pmol/mg protein during 90 min of preincubation. In contrast, the tissue-free tyrosine level declined only 130 pmol/mg protein in the same assay period. Depolarization of the slices with high K+ increased both DA and DOPAC outputs and depleted tissue DA level by about 75%. Although 60 min of resting after high K+ depolarization significantly restored the tissue DA levels, neither this restoration nor depolarization-induced DA release was altered by exogenous tyrosine. Similarly, failure of exogenous tyrosine was also observed during three successive depolarization periods of striatal slices. These results indicate that nigrostriatal dopaminergic neurons are able to synthesize and release the DA in the absence of exogenous tyrosine in the medium. Since the free tyrosine level in the slices does not seem to be a sufficient source, it is likely that tyrosine mobilized from its bound source(s) supports the DA synthesis under in vitro experimental conditions.  相似文献   

11.
Skvorak et al. [1] demonstrated the therapeutic efficacy of HTx in a murine model of iMSUD, confirming significant metabolic improvement and survival. To determine the effect of HTx on extrahepatic organs, we examined the metabolic effects of HTx in brain from iMSUD animals. Amino acid analysis revealed that HTx corrected increased ornithine, partially corrected depleted glutamine, and revealed a trend toward alloisoleucine correction. For amino acid and monoamine neurotransmitters, decreased GABA was partially corrected with HTx, while the l-histidine dipeptide of GABA, homocarnosine, was decreased in iMSUD mice and hypercorrected following HTx. Elevated branched-chain amino acids (BCAA; leucine, isoleucine, and valine) in MSUD can deplete brain tyrosine and tryptophan (the precursors of monoamine neurotransmitters, dopamine (DA) and serotonin (5-hydroxytryptamine; 5-HT)) through competition via the large neutral amino acid transporter. HTx corrected decreased DA levels and the DA metabolite, 3-methoxytyramine, and partially corrected the DA intermediate 3,4-dihydroxyphenylacetate (DOPAC) and 5-HT levels, despite normal tyrosine and tryptophan levels in iMSUD mouse brain. We further observed enhanced intracellular turnover of both DA and 5-HT in iMSUD mouse brain, both of which partially corrected with HTx. Our results suggest new pathomechanisms of neurotransmitter metabolism in this disorder and support the therapeutic relevance of HTx in iMSUD mice, while providing proof-of-principle that HTx has corrective potential in extrahepatic organs.  相似文献   

12.
Abstract— Apomorphine (A) inhibited dopamine deamination by rat brain mitochondria, but did not influence catechol- O -methyltransferase (COMT) activity by brain homogenates. The administration of apomorphine (10mg/kg i.p.) to normal rats increased brain dopamine (DA) by 34 per cent and decreased homovanillic acid (HVA) and dihydroxyphenylacetic acid (DOPAC) by 60 per cent. In rats treated with reserpine 15 min prior to A, the latter prevented the rise of cerebral HVA and DOPAC and the depletion of DA produced by the former. Finally, A decreased the L-DOPA-induced accumulation of HVA and DOPAC in the rat basal ganglia. These results indicate that A inhibits DA deamination by monoamine oxidase.
This inhibition seems to be specific since apomorphine did not influence 5-HIAA levels in normal rats and prevented neither central 5-HT depletion nor 5-HIAA rise induced by reserpine.  相似文献   

13.
In studying the main indices that characterize the neurochemical system of biosynthesis and degradation of a dopamine neuromediator, tyrosine hydroxylase-dopamine-monoamine oxidase, in different brain regions 5-6 min, 1 and 18 h after whole-body irradiation with high energy electrons (100 Gy) the authors have revealed a 25-40% inhibition of tyrosine hydroxylase and monoamine oxidase activity, and a 40% increase in the dopamine content of basal ganglia of the brain that control behavioural reactions of the organism. The neurochemical disturbances revealed are involved in the mechanisms of early transient incapacity after irradiation with superhigh doses.  相似文献   

14.
Push-pull perfusion technique was used to infuse IL-1 beta into and collect perfusate from the medial basal hypothalamus of freely moving male rats. Dopamine (DA) and its metabolite, dihydroxyphenylacetic acid (DOPAC), were measured in the perfusate using high performance liquid chromatography with electrochemical detection. In the control group, release rates of DA and DOPAC decreased and were 62% and 40%, respectively, below pretreatment levels after 325 min. In contrast, treatment with 50 ng of IL-1 beta produced substantial reductions in these decreases, and treatment with 100 ng of IL-1 beta produced increases of up to 118% and 89% in the release rates of DA and DOPAC, respectively. It is concluded that IL-1 beta affects the metabolism of catecholamines (and probably other neurotransmitters) in the brain, which, in turn, mediate its central and neuroendocrine actions.  相似文献   

15.
Previously reported studies have suggested that acute and chronic treatment with ethanol induces alterations in adenosine-3′, 5′-cyclic monophosphate (c-AMP) levels in the brain. Because the methods used in those studies to minimize postmortem accumulation of c-AMP are now considered to be inadequate, the effects of ethanol were reinvestigated using focused microwave irradiation to prevent postmortem c-AMP accumulation. These studies were extended to include measurements in seven areas of the rat brain after acute administration of ethanol and in animals rendered ethanol-dependent. Three treatment groups were examined: acutely treated while intoxicated (6 g/kg, p.o.), ethanol-dependent while intoxicated, and ethanol-dependent while undergoing a withdrawal syndrome. No changes in c-AMP levels were observed in any of the brain areas studied after any of the ethanol treatments. The data suggest that changes in c-AMP levels in the brain do not play any role in the acute and chronic effects of ethanol.  相似文献   

16.
Traumatic brain injury features deficits are often ameliorated by dopamine (DA) agonists. We have previously shown deficits in striatal DA neurotransmission using fast scan cyclic voltammetry after controlled cortical impact (CCI) injury that are reversed after daily treatment with the DA uptake inhibitor methylphenidate (MPH). The goal of this study was to determine how a single dose of MPH (5 mg/kg) induces changes in basal DA and metabolite levels and with electrically evoked overflow (EO) DA in the striatum of CCI rats. MPH-induced changes in EO DA after a 2-week daily pre-treatment regime with MPH was also assessed. There were no baseline differences in basal DA or metabolite levels. MPH injection significantly increased basal [DA] output in dialysates for control but not injured rats. Also, MPH injection increased striatal peak EO [DA] to a lesser degree in CCI (176% of baseline) versus control rats (233% of baseline). However, daily pre-treatment with MPH resulted in CCI rats having a comparable increase in EO [DA] after MPH injection when compared with controls. The findings further support the concept that daily MPH therapy restores striatal DA neurotransmission after CCI.  相似文献   

17.
Methamphetamine (METH) is a neurotoxic drug of abuse that damages the dopamine (DA) neuronal system in a highly delimited manner. The brain structure most affected by METH is the caudate–putamen (CPu) where long-term DA depletion and microglial activation are most evident. Even damage within the CPu is remarkably heterogenous with lateral and ventral aspects showing the greatest deficits. The nucleus accumbens (NAc) is largely spared of the damage that accompanies binge METH intoxication. Increases in cytoplasmic DA produced by reserpine, l -DOPA or clorgyline prior to METH uncover damage in the NAc as evidenced by microglial activation and depletion of DA, tyrosine hydroxylase (TH), and the DA transporter. These effects do not occur in the NAc after treatment with METH alone. In contrast to the CPu where DA, TH, and DA transporter levels remain depleted chronically, DA nerve ending alterations in the NAc show a partial recovery over time. None of the treatments that enhance METH toxicity in the NAc and CPu lead to losses of TH protein or DA cell bodies in the substantia nigra or the ventral tegmentum. These data show that increases in cytoplasmic DA dramatically broaden the neurotoxic profile of METH to include brain structures not normally targeted for damage by METH alone. The resistance of the NAc to METH-induced neurotoxicity and its ability to recover reveal a fundamentally different neuroplasticity by comparison to the CPu. Recruitment of the NAc as a target of METH neurotoxicity by alterations in DA homeostasis is significant in light of the important roles played by this brain structure.  相似文献   

18.
The effect of chronic treatment with tyroxine (T4) or propylthiouracile (PTU) on the turnover of norepinephrine (NE), dopamine (DA) and 5-hydroxytryptamine (5-HT) has been studied in various areas of the rat brain (brain stem, hypothalamus, striatum and "rest of the brain"). The turnover of NE and DA was determined by the decay in endogenous levels after inhibition of tyrosine hydroxylase by alpha-methylparatyrosine and the turnover of 5-HT was evaluated by the initial accumulation of endogenous 5-HT after inhibition of monoamine oxydase by pargyline. T4 treatment accelerated the release of DA from the striatum but had no significant effects on NA release in the various cerebral areas : nevertheless the NE endogenous level was significantly reduced in the brain stem. PTU treatment delayed the release of DA and NA only from the "rest of the brain". Concerning 5-HT, the only significant variation was observed in the hypothalamus of PTU-treated rats and implied increased turnover. The possible relations between the changes in cerebral monoamines turnover and the behavioural alterations which are observed in thyroid disfunction are discussed.  相似文献   

19.
Monoamine metabolism in the central nervous system is altered by dietary iron deficiency, with a stronger effect seen during the active than rest span of the circadian cycle. In this report, we examined changes in intracellular and extracellular monoamine levels, synthetic enzymes, transporter and receptor densities, and responses to amphetamine‐induced dopamine (DA) efflux in iron‐deficient and iron‐sufficient mice. Extracellular striatal DA levels were 15–20% higher in all groups during the active dark phase compared to the inactive light phase, with correspondingly lower dopamine transporter (DAT) and higher tyrosine hydroxylase levels. Iron deficiency decreased DAT density by 20% and 28% in the light and dark phases, respectively, and elevated the DOPAC/DA ratio only in the dark, indicating that iron deficiency does interact with the normal diurnal cues for cyclicity. Enhanced DA efflux after amphetamine stimulation indicates no limitation on monoamine synthesis and release and is consistent with altered synaptic efficacy and perhaps recycling of DA in iron deficiency. These experimental findings provide new evidence that brain iron insufficiency does have a differential effect on the DA system at different biological times of the day and night and may be causally related to the phasic motor symptoms observed in Restless Legs Syndrome.  相似文献   

20.
The administration of phencyclidine (PCP) to mice resulted in no change in brain levels of tyrosine, dopamine (DA), norepinephrine (NE), or homovanillic acid (HVA). Although PCP reduced plasma tyrosine levels, no effect of PCP on the utilization of DA of NE after blockade of synthesis with α-methyl-p-tyrosine (AMPT) was observed. In addition, PCP did not affect the probenecid-induced accumulation of HVA. However, PCP was observed to potentiate the haloperidol-induced increase in HVA concentration, and the haloperidol-induced decline in DA levels after AMPT. The former effect was blocked by baclofen, suggesting that PCP mobilizes DA for impulse-dependent release. This effect could not be attributed to an antagonism of presynaptic DA receptors. These effects are similar to those of the “non-amphetamine” stimulant class of drugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号