共查询到20条相似文献,搜索用时 15 毫秒
1.
Analysis of the VPg-proteinase (NIa) encoded by tobacco etch potyvirus: effects of mutations on subcellular transport, proteolytic processing, and genome amplification. 总被引:9,自引:5,他引:4 下载免费PDF全文
A mutational analysis was conducted to investigate the functions of the tobacco etch potyvirus VPg-proteinase (NIa) protein in vivo. The NIa N-terminal domain contains the VPg attachment site, whereas the C-terminal domain contains a picornavirus 3C-like proteinase. Cleavage at an internal site separating the two domains occurs in a subset of NIa molecules. The majority of NIa molecules in TEV-infected cells accumulate within the nucleus. By using a reporter fusion strategy, the NIa nuclear localization signal was mapped to a sequence within amino acid residues 40 to 49 in the VPg domain. Mutations resulting in debilitation of NIa nuclear translocation also debilitated genome amplification, suggesting that the NLS overlaps a region critical for RNA replication. The internal cleavage site was shown to be a poor substrate for NIa proteolysis because of a suboptimal sequence context around the scissile bond. Mutants that encoded NIa variants with accelerated internal proteolysis exhibited genome amplification defects, supporting the hypothesis that slow internal processing provides a regulatory function. Mutations affecting the VPg attachment site and proteinase active-site residues resulted in amplification-defective viruses. A transgenic complementation assay was used to test whether NIa supplied in trans could rescue amplification-defective viral genomes encoding altered NIa proteins. Neither cells expressing NIa alone nor cells expressing a series of NIa-containing polyproteins supported increased levels of amplification of the mutants. The lack of complementation of NIa-defective mutants is in contrast to previous results obtained with RNA polymerase (NIb)-defective mutants, which were relatively efficiently rescued in the transgenic complementation assay. It is suggested that, unlike NIb polymerase, NIa provides replicative functions that are cis preferential. 相似文献
2.
Internal cleavage and trans-proteolytic activities of the VPg-proteinase (NIa) of tobacco etch potyvirus in vivo. 总被引:8,自引:8,他引:8 下载免费PDF全文
The NIa protein of plant potyviruses is a bifunctional protein containing an N-terminal VPg domain and a C-terminal proteinase region. The majority of tobacco etch potyvirus (TEV) NIa molecules are localized to the nucleus of infected cells, although a proportion of NIa is attached covalently as VPg to viral RNA in the cytoplasm. A suboptimal cleavage site that is recognized by the NIa proteinase is located between the two domains. This site was found to be utilized in the VPg-associated, but not the nuclear, pool of NIa. A mutation converting Glu-189 to Leu at the P1 position of the processing site inhibited internal cleavage. Introduction of this mutation into TEV-GUS, an engineered variant of TEV that expresses a reporter protein (beta-glucuronidase [GUS]) fused to the N terminus of the helper component-proteinase (HC-Pro), rendered the virus replication defective in tobacco protoplasts. Site-specific reversion of the mutant internal processing site to the wild-type sequence restored virus viability. In addition, the trans-processing activity of NIa proteinase was tested in vivo after introduction of an artificial cleavage site between the GUS and HC-Pro sequences in the cytoplasmic GUS/HC-Pro polyprotein encoded by TEV-GUS. The novel site was recognized and processed in plants infected by the engineered virus, indicating the presence of excess NIa processing capacity in the cytoplasm. The potential roles of internal NIa processing in TEV-infected cells are discussed. 相似文献
3.
Functional Analysis of the Interaction between VPg-Proteinase (NIa) and RNA Polymerase (NIb) of Tobacco Etch Potyvirus, Using Conditional and Suppressor Mutants 总被引:1,自引:0,他引:1 下载免费PDF全文
The tobacco etch potyvirus (TEV) RNA-dependent RNA polymerase (NIb) has been shown to interact with the proteinase domain of the VPg-proteinase (NIa). To investigate the significance of this interaction, a Saccharomyces cerevisiae two-hybrid assay was used to isolate conditional NIa mutant proteins with temperature-sensitive (ts) defects in interacting with NIb. Thirty-six unique tsNIa mutants with substitutions affecting the proteinase domain were recovered. Most of the mutants coded for proteins with little or no proteolytic activity at permissive and nonpermissive temperatures. However, three mutant proteins retained proteolytic activity at both temperatures and, in two cases (tsNIa-Q384P and tsNIa-N393D), the mutations responsible for the ts interaction phenotype could be mapped to single positions. One of the mutations (N393D) conferred a ts-genome-amplification phenotype when it was placed in a recombinant TEV strain. Suppressor NIb mutants that restored interaction with the tsNIa-N393D protein at the restrictive temperature were recovered by a two-hybrid selection system. Although most of the suppressor mutants failed to stimulate amplification of genomes encoding the tsNIa-N393D protein, two suppressors (NIb-I94T and NIb-C380R) stimulated amplification of virus containing the N393D substitution by approximately sevenfold. These results support the hypothesis that interaction between NIa and NIb is important during TEV genome replication. 相似文献
4.
Two critical interactions within the poliovirus RNA replication complex are those of the RNA-dependent RNA polymerase 3D with the viral proteins 3AB and VPg. 3AB is a membrane-binding protein responsible for the localization of the polymerase to the membranous vesicles at which replication occurs. VPg (a peptide comprising the 3B region of 3AB) is the 22-residue soluble product of 3AB cleavage and serves as the protein primer for RNA replication. The detailed interactions of these proteins with the RNA-dependent RNA polymerase 3D were analyzed to elucidate the precise roles of 3AB and VPg in the viral RNA replication complex. Using a membrane-based pull-down assay, we have identified a binding "hot-spot" spanning residues 100 to 104 in the 3B (VPg) region of 3AB which plays a critical role in mediating the interaction of 3AB with the polymerase. Isothermal titration calorimetry shows that the interaction of VPg with 3D is enthalpically driven, with a dissociation constant of 11 microM. Mutational analyses of VPg indicate that a subset of the residues important for 3AB-3D binding are also important for VPg-3D binding. Two residues in particular, P14 and R17, were shown to be absolutely critical for the binding interaction. This work provides the direct characterization of two binding interactions critical for the replication of this important class of viruses and identifies a conserved polymerase binding sequence responsible for targeting the polymerase. 相似文献
5.
Subba-Reddy CV Tragesser B Xu Z Stein B Ranjith-Kumar CT Kao CC 《Journal of virology》2012,86(8):4317-4327
Brome mosaic virus (BMV) is a model positive-strand RNA virus whose replication has been studied in a number of surrogate hosts. In transiently transfected human cells, the BMV polymerase 2a activated signaling by the innate immune receptor RIG-I, which recognizes de novo-initiated non-self-RNAs. Active-site mutations in 2a abolished RIG-I activation, and coexpression of the BMV 1a protein stimulated 2a activity. Mutations previously shown to abolish 1a and 2a interaction prevented the 1a-dependent enhancement of 2a activity. New insights into 1a-2a interaction include the findings that helicase active site of 1a is required to enhance 2a polymerase activity and that negatively charged amino acid residues between positions 110 and 120 of 2a contribute to interaction with the 1a helicase-like domain but not to the intrinsic polymerase activity. Confocal fluorescence microscopy revealed that the BMV 1a and 2a colocalized to perinuclear region in human cells. However, no perinuclear spherule-like structures were detected in human cells by immunoelectron microscopy. Sequencing of the RNAs coimmunoprecipitated with RIG-I revealed that the 2a-synthesized short RNAs are derived from the message used to translate 2a. That is, 2a exhibits a strong cis preference for BMV RNA2. Strikingly, the 2a RNA products had initiation sequences (5'-GUAAA-3') identical to those from the 5' sequence of the BMV genomic RNA2 and RNA3. These results show that the BMV 2a polymerase does not require other BMV proteins to initiate RNA synthesis but that the 1a helicase domain, and likely helicase activity, can affect RNA synthesis by 2a. 相似文献
6.
7.
Amarnath Maitra Jesus Moreno V James Hernandez 《Protein expression and purification》2002,24(1):163-170
Studies of the Escherichia coli RNA polymerase subunit sigma-70 employing limited proteolytic digestion and binding by monoclonal antibodies indicate that conserved region 3 is solvent accessible in the free protein and in the RNA polymerase holoenzyme. Conversely, when sigma-70 binds to core RNA polymerase, proteolytic cleavage of region 3 is dramatically reduced. The former set of results seems to indicate the physical presence of region 3 on or near the surface of the holoenzyme while the latter of these results suggest that region 3 is sequestered in a direct protein-protein contact within the RNA holoenzyme which alters its protease sensitivity. To further investigate these possibilities we inserted an internal histidine-tag within region 3 of sigma(70) (sigma(70)-R3-His6) between amino acids 508 and 509. Confirmation that the internal His-tag insertion does not disrupt normal sigma(70) function was verified by genetic complementation. His-tagged protein was immobilized on nickel-agarose and core RNAP was tethered via the sigma-core interaction. Our results are consistent with the localization of region 3 on or near the surface both of free sigma(70) and of RNA polymerase holoenzyme. Furthermore, we find that the sigma(70)-core interaction is resistant to high ionic conditions but is completely disrupted by the presence of the low-molecular-weight hydrophobic amino acids phenylalanine and leucine free in solution. These results demonstrate the general usefulness of this approach to the disruption of protein-protein interactions and its potential application for protein purification. 相似文献
8.
Brenda B. Suh-Lailam 《Analytical biochemistry》2009,387(1):130-132
Protein arginine methyltransferases (PRMTs) are enzymes that are involved in many biological processes. Several studies have shown that the identity of the N-terminal fusion tag affects the substrate selectivity of PRMTs. Therefore, to accurately study substrate recognition, it is imperative that a tagless PRMT be used. However, cleavage of tagged PRMTs has been problematic. We have developed a successful method by which untagged PRMTs can be made using a tobacco etch virus (TEV) cleavage site at the N-terminal domain. This method may be useful for cleaving other challenging target proteins that have the TEV protease recognition site. 相似文献
9.
The genome of tobacco etch virus contains a single open reading frame with the potential to encode a 346-kilodalton (kDa) polyprotein. The large polyprotein is cleaved at several positions by a tobacco etch virus genome-encoded, 49-kDa proteinase. The locations of the 49-kDa proteinase-mediated cleavage sites flanking the 71-kDa cytoplasmic pinwheel inclusion protein, 6-kDa protein, 49-kDa proteinase, and 58-kDa putative polymerase have been determined by using cell-free expression, proteolytic processing, and site-directed mutagenesis systems. Each of these sites is characterized by the conserved sequence motif Glu-Xaa-Xaa-Tyr-Xaa-Gln-Ser or Gly (in which cleavage occurs after the Gln residue). The amino acid residue (Gln) predicted to occupy the -1 position relative to the scissile bond has been substituted, by mutagenesis of cloned cDNA, at each of four cleavage sites. The altered sites were not cleaved by the 49-kDa proteinase. A series of synthetic polyproteins that contained the 49-kDa proteinase linked to adjoining proteins via defective cleavage sites were expressed, and their proteolytic activities were analyzed. As part of a polyprotein, the proteinase was found to exhibit cis (intramolecular) and trans (intermolecular) activity. 相似文献
10.
Cap-independent translation of tobacco etch virus is conferred by an RNA pseudoknot in the 5'-leader
The tobacco etch virus (TEV) 5'-leader promotes cap-independent translation in a 5'-proximal position and promotes internal initiation when present in the intercistronic region of a dicistronic mRNA, indicating that the leader contains an internal ribosome entry site. The TEV 143-nucleotide 5'-leader folds into a structure that contains two domains, each of which contains an RNA pseudoknot. Mutational analysis of the TEV 5'-leader identified pseudoknot (PK) 1 within the 5'-proximal domain and an upstream single-stranded region flanking PK1 as necessary to promote cap-independent translation. Mutations to either stem or to loops 2 or 3 of PK1 substantially disrupted cap-independent translation. The sequence of loop 3 in PK1 is complementary to a region in 18 S rRNA that is conserved throughout eukaryotes. Mutations within L3 that disrupted its potential base pairing with 18 S rRNA reduced cap-independent translation, whereas mutations that maintained the potential for base pairing with 18 S rRNA had little effect. These results indicated that the TEV 5'-leader functionally substitutes for a 5'-cap and promotes cap-independent translation through a 45-nucleotide pseudoknot-containing domain. 相似文献
11.
We studied the inhibition of tryptic digestion of the subassembly alpha 2 beta of Escherichia coli DNA-dependent RNA polymerase to investigate its interaction with RNA and rifampicin. Both agents decreased distinctly the cleavage of subunit beta in the subassembly as well as the degradation of the transiently formed polypeptides (Mr greater than 80000). Short RNAs with a chain length of approximately 35 nucleotides were most protective at a concentration of 1 mg/ml while long RNAs were less effective at the same concentration. DNA did not exert any observable protective effects. The association of RNA with alpha 2 beta was shown by chromatography on phosphocellulose, which separates alpha 2 beta bound to RNA from free alpha 2 beta. The association of alpha 2 beta with RNA was inhibited by rifampicin. 相似文献
12.
Zhdanov AS Phan J Evdokimov AG Tropea JE Kapust RB Li M Wlodawer A Waugh DS 《Bioorganicheskaia khimiia》2003,29(5):457-460
Tobacco Etch Virus Protease (TEV protease) is widely used as a tool for separation of recombinant target proteins from their fusion partners. The crystal structures of two mutants of TEV protease, active autolysis-resistant mutant TEV-S219D in complex with the proteolysis product, and inactive mutant TEV-C151A in complex with a substrate, have been determined at 1.8 and 2.2 A resolution, respectively. The active sites of both mutants, including their oxyanion holes, have identical structures. The C-terminal residues 217-221 of the enzyme are involved in formation of the binding pockets S3-S6. This indicates that the autolysis of the peptide bond Met218-Ser219 exerts a strong effect on the fine-tuning of the substrate in the enzyme active site, which results in considerable decrease in the enzymatic activity. 相似文献
13.
Binding analyses for the interaction between plant virus genome-linked protein (VPg) and plant translational initiation factors 总被引:2,自引:0,他引:2
Miyoshi H Suehiro N Tomoo K Muto S Takahashi T Tsukamoto T Ohmori T Natsuaki T 《Biochimie》2006,88(3-4):329-340
The turnip mosaic virus (TuMV) genome-linked protein (VPg) and Arabidopsis thaliana translation initiation factors were expressed and purified in order to investigate their binding properties and kinetics. Affinity chromatography on m(7)GTP-sepharose showed that bound A. thaliana eIF(iso)4E was eluted with crude TuMV VPg. Further column studies with purified VPg and other A. thaliana eIF4E isoforms showed that VPg preferentially bound eIF(iso)4E. Structural data implicate Trp-46 and Trp-92 in eIF(iso)4E in cap recognition. When Trp-46 or Trp-92 were changed to Leu, eIF(iso)4E lost the ability to form a complex with both VPg and m(7)GTP-sepharose. This suggests that the VPg-binding site is located in or near the cap-recognition pocket on eIF(iso)4E. Affinity constants for the interactions with eIF(iso)4E of VPg and capped RNA oligomer were determined using surface plasmon resonance (SPR). The K(D) values showed that the binging affinity of VPg for eIF(iso)4E is stronger than that of capped RNA. This suggests that viral VPg can interfere with formation of a translational initiation complex on host plant cellular mRNA by sequestering eIF(iso)4E. Further experiments with affinity chromatography showed that VPg forms a ternary complex with eIF(iso)4E and eIF(iso)4G. Thus, VPg may participate in viral translational initiation by functioning as an alternative cap-like structure. 相似文献
14.
Conditions were established for the introduction of both tobacco mosaic virus (TMV) and cucumber mosaic virus (CMV) RNAs into tobacco mesophyll protoplasts by electroporation. The proportion of infected protoplasts was quantified by staining with viral coat protein-specific antibodies conjugated to fluorescein isothiocyanate. Approximately 30–40% of the protoplasts survived electroporation. Under optimal conditions, up to 75% of these were infected with TMV-RNA. Successful infection was demonstrated in 19 out of 20 experiments. Optimal infection was achieved with several direct current pulses of 90 sec at a field strength of 5 to 10 kV/cm. Changing the position of the protoplasts within the chamber between electric pulses was essential for achievement of high rates of infection. Optimal viral RNA concentration was about 10 g/ml in a solution of 0.5 M mannitol without buffer salts. 相似文献
15.
16.
In vitro synthesis of minus-strand RNA by an isolated cereal yellow dwarf virus RNA-dependent RNA polymerase requires VPg and a stem-loop structure at the 3' end of the virus RNA 下载免费PDF全文
Cereal yellow dwarf virus (CYDV) RNA has a 5'-terminal genome-linked protein (VPg). We have expressed the VPg region of the CYDV genome in bacteria and used the purified protein (bVPg) to raise an antiserum which was able to detect free VPg in extracts of CYDV-infected oat plants. A template-dependent RNA-dependent RNA polymerase (RdRp) has been produced from a CYDV membrane-bound RNA polymerase by treatment with BAL 31 nuclease. The RdRp was template specific, being able to utilize templates from CYDV plus- and minus-strand RNAs but not those of three unrelated viruses, Red clover necrotic mosaic virus, Cucumber mosaic virus, and Tobacco mosaic virus. RNA synthesis catalyzed by the RdRp required a 3'-terminal GU sequence and the presence of bVPg. Additionally, synthesis of minus-strand RNA on a plus-strand RNA template required the presence of a putative stem-loop structure near the 3' terminus of CYDV RNA. The base-paired stem, a single-nucleotide (A) bulge in the stem, and the sequence of a tetraloop were all required for the template activity. Evidence was produced showing that minus-strand synthesis in vitro was initiated by priming by bVPg at the 3' end of the template. The data are consistent with a model in which the RdRp binds to the stem-loop structure which positions the active site to recognize the 3'-terminal GU sequence for initiation of RNA synthesis by the addition of an A residue to VPg. 相似文献
17.
18.
19.