共查询到20条相似文献,搜索用时 0 毫秒
1.
Olfactory sensory neurons (OSNs) form synapses with local interneurons and second-order projection neurons to form stereotyped olfactory glomeruli. This primary olfactory circuit is hard-wired through the action of genetic cues. We asked whether individual glomeruli have the capacity for stimulus-evoked plasticity by focusing on the carbon dioxide (CO2) circuit in Drosophila. Specialized OSNs detect this gas and relay the information to a dedicated circuit in the brain. Prolonged exposure to CO2 induced a reversible volume increase in the CO2-specific glomerulus. OSNs showed neither altered morphology nor function after chronic exposure, but one class of inhibitory local interneurons showed significantly increased responses to CO2. Two-photon imaging of the axon terminals of a single PN innervating the CO2 glomerulus showed significantly decreased functional output following CO2 exposure. Behavioral responses to CO2 were also reduced after such exposure. We suggest that activity-dependent functional plasticity may be a general feature of the Drosophila olfactory system. 相似文献
2.
Z. Li 《Biological cybernetics》1990,62(4):349-361
It has been suggested that the olfactory bulb, the first processing center after the sensory cells in the olfactory pathway, plays a role in olfactory adaptation, odor sensitivity enhancement by motivation and other olfactory psychophysical phenomena. In a mathematical model based on the bulbar anatomy and physiology, the inputs from the higher olfactory centers to the inhibitory cells in the bulb are shown to be able to modulate the response, and thus the sensitivity of the bulb to specific odor inputs. It follows that the bulb can decrease its sensitivity to a pre-existing and detected odor (adaptation) while remaining sensitive to new odors, or increase its sensitivity to interested searching odors. Other olfactory psychophysical phenomena such as cross-adaptation etc. are discussed as well. 相似文献
3.
Cell death is widespread in the developing nervous system and is under complex regulation by numerous intra- and intercellular mechanisms. Blockade of the N-methyl-D-aspartate (NMDA) subtype of glutamate receptor has been shown to promote cell death in the developing brain (Ikonomidou et al., 1999), suggesting that afferent functional activation is an important regulator of cell survival. The olfactory bulb, the first central relay for olfactory information from the nose, is well suited for examining the role of afferent activity in neuronal development. Functional deprivation is easily performed by surgical blockade of airflow to one side of the nasal passage, which results in dramatic alterations in postnatal development of the bulb (Brunjes, 1994), including enhanced neuronal loss (Frazier and Brunjes, 1988; Najbauer and Leon, 1995). The present report examined the specific role of NMDA receptor activation in regulating cell survival within the rat bulb. Pharmacological blockade of receptors with the noncompetitive channel blocker MK-801 (3 x 0.5 mg/kg i.p.) resulted in profound increases in cell death within 24 h. Furthermore, in contrast to other regions, where the effects of receptor blockade were confined to the first 2 postnatal weeks (Ikonomidou et al., 1999), enhancement of cell death was seen in the deeper granule cell-containing regions of the bulb with injections as late as postnatal day 28. In addition, the effects of MK-801 were much more dramatic than those seen after unilateral naris closure, suggesting that NMDA receptor activation may mediate additional survival pathways in the bulb beyond that provided by first nerve input. 相似文献
4.
Inhibition in the olfactory bulb of the carp was studied by recording potentials from secondary neurons intracellularly. Three types of inhibition — trace, early, and late — can arise in neurons of the olfactory bulb. Trace inhibition corresponds to hyperpolarization about 20 msec in duration, which is closely connected with the spike, but it is not after-hyperpolarization but an IPSP. Early and late inhibition correspond to IPSPs of different parameters. The first has a latency of 0–50 msec (relative to the spike) and a duration of 60–400 msec; the corresponding values for the second are 100–400 msec and 0.5–3 sec. The possible mechanisms of these types of inhibition are discussed.M. V. Lomonosov Moscow State University. Translated from Neirofiziologiya, Vol. 3, No. 6, pp. 650–656, November–December, 1971. 相似文献
5.
Lowe G 《Current opinion in neurobiology》2003,13(4):476-481
The olfactory bulb employs lateral and feedback inhibitory pathways to distribute odor information across parallel assemblies of mitral and granule cells. The pathways involve dendritic action potentials that can interact with a variety of voltage-dependent conductances and synaptic transmission to produce complex and dynamic patterns of activity. Electrical coupling also helps to ensure proper coordination and synchronization of these patterns. These mechanisms provide numerous options for dynamic modulation and control of signaling in the olfactory bulb. 相似文献
6.
The olfactory bulb as an independent developmental domain 总被引:2,自引:0,他引:2
The olfactory system is a good model to study the mechanisms underlying guidance of growing axons to their appropriate targets. The formation of the olfactory bulb involves differentiation of several populations of cells and the initiation of the central projections, all under the temporal and spatial patterns of gene expression. Moreover, the nature of interactions between the olfactory epithelium, olfactory bulb and olfactory cortex at early developmental stages is currently of great interest. To explore these questions more fully, the present review aims to correlate recent data from different developmental studies, to gain insight into the mechanisms involved in the specification and development of the olfactory system. From our studies in the pax6 mutant mice (Sey(Neu)/Sey(Neu)), it was concluded that the initial establishment of the olfactory bulb central projections is able to proceed independently of the olfactory sensory axons from the olfactory epithelium. The challenge that now remains is to consider the validity of the olfactory bulb as an independent development domain. In the course of evaluating these ideas, we will review the orchestra of molecular cues involved in the formation of the projection from the OB to the olfactory cortex. 相似文献
7.
8.
On the basis of its primary circuit it has been postulated that the olfactory bulb (OB) is analogous to the retina in mammals. In retina, repeated exposure to the same visual stimulus results in a neural representation that remains relatively stable over time, even as the meaning of that stimulus to the animal changes. Stability of stimulus representation at early stages of processing allows for unbiased interpretation of incoming stimuli by higher order cortical centers. The alternative is that early stimulus representation is shaped by previously derived meaning, which could allow more efficient sampling of odor space providing a simplified yet biased interpretation of incoming stimuli. This study helps place the olfactory system on this continuum of subjective versus objective early sensory representation. Here we show that odor responses of the output cells of the OB, mitral cells, change transiently during a go–no-go odor discrimination task. The response changes occur in a manner that increases the ability of the circuit to convey information necessary to discriminate among closely related odors. Remarkably, a switch between which of the two odors is rewarded causes mitral cells to switch the polarity of their divergent responses. Taken together these results redefine the function of the OB as a transiently modifiable (active) filter, shaping early odor representations in behaviorally meaningful ways. 相似文献
9.
10.
Olfactory sensory neurons (OSNs) in the nose form precise connections with neurons in the brain. However, mechanisms that account for the formation of such precise neuronal connections are incompletely understood. Recent studies implicate the function of Wnt growth factors in the formation of neuronal connections. To assess the role of Wnt signaling in the olfactory system, we examined the expression of beta-galactosidase (beta-gal) in the TOPGAL mouse, a transgenic strain in which beta-gal expression reports the activation of the canonical Wnt signaling pathway. In the olfactory epithelium, no beta-gal expression was observed at any developmental stages. In the olfactory bulb (OB), beta-gal expression was observed in a population of cells located at the interface of the olfactory nerve layer and the glomerular layer. The beta-gal expression was developmentally regulated with the peak expression occurring at late embryonic and early postnatal stages and a greatly reduced expression in adulthood. Further, forced OSN regeneration and subsequent reinnervation of the OB led to a reactivation of beta-gal expression in mature animals. The temporal coincidence between the peak of beta-gal expression and formation of OSN connections, together with the spatial localization of these cells, suggests a potential role of these cells and canonical Wnt signaling in the formation of OSN connections in the OB during development and regeneration. 相似文献
12.
Dendrodendritic interactions between excitatory mitral cells and inhibitory granule cells in the olfactory bulb create a dense interaction network, reorganizing sensory representations of odors and, consequently, perception. Large-scale computational models are needed for revealing how the collective behavior of this network emerges from its global architecture. We propose an approach where we summarize anatomical information through dendritic geometry and density distributions which we use to calculate the connection probability between mitral and granule cells, while capturing activity patterns of each cell type in the neural dynamical systems theory of Izhikevich. In this way, we generate an efficient, anatomically and physiologically realistic large-scale model of the olfactory bulb network. Our model reproduces known connectivity between sister vs. non-sister mitral cells; measured patterns of lateral inhibition; and theta, beta, and gamma oscillations. The model in turn predicts testable relationships between network structure and several functional properties, including lateral inhibition, odor pattern decorrelation, and LFP oscillation frequency. We use the model to explore the influence of cortex on the olfactory bulb, demonstrating possible mechanisms by which cortical feedback to mitral cells or granule cells can influence bulbar activity, as well as how neurogenesis can improve bulbar decorrelation without requiring cell death. Our methodology provides a tractable tool for other researchers. 相似文献
13.
Taurine (TAU) is a free amino acid that is particularly abundant in the olfactory bulb. In the frog, TAU is located in the terminations of the primary olfactory axons and in the granular cell layer. TAU action seems to be associated with gamma amino butyric acid (GABA), the main inhibitory neurotransmitter involved in the processing of the sensory signal. The present study was designed to assess the action of TAU in vivo during the olfactory network's stimulation by odors. It was performed by recording the single-unit activity of mitral cells, the main bulbar output neurons. TAU effects were tested on both their spontaneous and odor-induced firing activity. Interactions between TAU and GABA were examined by analyzing TAU effects under the selective blocking action of GABAA or GABAB antagonists. TAU was found to suppress the spontaneous firing of mitral cells, mainly without altering their odor response properties. By testing GABA antagonists, we further show that TAU action is associated with GABAergic inhibitory mechanisms mainly via GABAB receptors. Thus, TAU action clearly reduces background activity in favor of the emergence of the odor-induced activity in the same manner as GABA action does via GABAB receptors. As a conclusion, we propose that, in the frog olfactory bulb, the joint actions of TAU and GABA may favor the processing of the primary sensory information by increasing the signal to noise ratio. 相似文献
14.
15.
Ernesto Salcedo Nicole M. Cruz Xuan Ly Beth A. Welander Kyle Hanson Eugene Kronberg Diego Restrepo 《Open biology》2013,3(5)
Major histocompatibility class I (MHCI) molecules are well known for their immunological role in mediating tissue graft rejection. Recently, these molecules were discovered to be expressed in distinct neuronal subclasses, dispelling the long-held tenet that the uninjured brain is immune-privileged. Here, we show that MHCI molecules are expressed in the main olfactory bulb (MOB) of adult animals. Furthermore, we find that mice with diminished levels of MHCI expression have enlarged MOBs containing an increased number of small, morphologically abnormal and ectopically located P2 glomeruli. These findings suggest that MHCI molecules may play an important role in the proper formation of glomeruli in the bulb. 相似文献
16.
Costanzo RM 《Chemical senses》2005,30(Z1):i133-i134
17.
A novel cell line isolated from the murine olfactory mucosa 总被引:3,自引:0,他引:3
Neil I. Goldstein Michael R. Quinn 《In vitro cellular & developmental biology. Plant》1981,17(7):593-598
Summary A clonal cell line (designated MOE CL1) was isolated from the olfactory mucosa of the mouse. A number of growth and biochemical
parameters were studied. Our experiments suggest that MOE CL1 cells are olfactory basal cells (undifferentiated neuroblasts).
A portion of this research was supported by USPHS Research Grant AM-18932. 相似文献
18.
During development, primary olfactory axons typically grow to their topographically correct target zone without extensive remodelling. Similarly, in adults, new axons arising from the normal turnover of sensory neurons essentially project to their target without error. In the present study we have examined axon targeting in the olfactory pathway following extensive chemical ablation of the olfactory neuroepithelium in the P2-tau:LacZ line of mice. These mice express LacZ in the P2 subpopulation of primary olfactory neurons whose axons target topographically fixed glomeruli on the medial and lateral surfaces of the olfactory bulb. Intraperitoneal injections of dichlobenil selectively destroyed the sensory neuroepithelium of the nasal cavity without direct physical insult to the olfactory neuron pathway. Primary olfactory neurons regenerated and LacZ staining revealed the trajectory of the P2 axons. Rather than project solely to their topographically appropriate glomeruli, the regenerating P2 axons now terminated in numerous inappropriate glomeruli which were widely dispersed over the olfactory bulb. While these errors in targeting were refined over time, there was still considerable mis-targeting after four months of regeneration. 相似文献
19.
Inhibition in neurons of the lizard olfactory bulb was investigated by intracellular recording. The hyperpolarization arising in the neurons after the spike in the response to orthodromic and antidromic activation is similar in composition and reflects the development of early and late IPSPs, differing from one another in latency, duration, and mechanism of generation. The early IPSP is evidently generated by the functioning of dendrodendritic synapses, formed by dendrites of the interglomerular cell on the membrane of the apical dendrites of the secondary neurons, whereas synapses generating the late IPSP are located on the basal dendrites and are formed by endings of the granular cells. The mechanisms of generation of the early and late IPSPs in the secondary neurons are discussed. A classification of neurons of the lizard olfactory bulb is given on the basis of analysis of their intracellular activity. 相似文献
20.
Contrast enhancement in sensory systems often relies on spatial filters implemented by lateral inhibition. However, in this issue of Neuron, Fantana et al. provide evidence that lateral inhibition in the olfactory bulb selectively acts between sparse populations of principal neurons without regard to spatial relations. 相似文献