首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Gourlay CW  Hofer JM  Ellis TH 《The Plant cell》2000,12(8):1279-1294
The compound leaf primordium of pea represents a marginal blastozone that initiates organ primordia, in an acropetal manner, from its growing distal region. The UNIFOLIATA (UNI) gene is important in marginal blastozone maintenance because loss or reduction of its function results in uni mutant leaves of reduced complexity. In this study, we show that UNI is expressed in the leaf blastozone over the period in which organ primordia are initiated and is downregulated at the time of leaf primordium determination. Prolonged UNI expression was associated with increased blastozone activity in the complex leaves of afila (af), cochleata (coch), and afila tendril-less (af tl) mutant plants. Our analysis suggests that UNI expression is negatively regulated by COCH in stipule primordia, by AF in proximal leaflet primordia, and by AF and TL in distal and terminal tendril primordia. We propose that the control of UNI expression by AF, TL, and COCH is important in the regulation of blastozone activity and pattern formation in the compound leaf primordium of the pea.  相似文献   

2.
3.
Dark-grown Douglas-fir (Pseudotsuga menziesii [Mirb.] Franco) seedlings had approximately 30% of the major polypeptide of the light-harvesting chlorophyll a/b binding protein, 30% of cab mRNA, 54% of psbA mRNA, and 14% of total chlorophyll, in comparison with amounts in light-grown seedlings. Seedlings entrained under a 24-hour photoperiod of light and dark showed small diurnal fluctuations in cab and psbA mRNA levels and, when transferred to continuous conditions, no circadian rhythms in mRNA levels were apparent. These results suggest that regulation of cab gene expression in Douglas-fir differs from regulation in angiosperms, because in the latter, both light and circadian factors strongly influence the expression of cab genes.  相似文献   

4.
The wildtype leaf blade of Pisum sativum possesses proximalleaflets and distal tendrils, which may be altered by two recessivemutations that affect pinna morphology, afila (afaf) and tendrilless(tltl). Using morphological observations and SEM, the variationin leaf forms along the plant axis and leaf development werecharacterized for plants heterozygous at the Af and/or Tl loci.The Af and Tl genes interacted to affect many characteristicsof shoot ontogeny, including rate changes in leaf blade lengthand complexity increases, as well as time to flowering. TheAf gene retarded early vegetative development and acceleratedthe time to flowering. The leaf phenotypes of these heterozygousgenotypes were specified mainly by changes in the timing ofmajor developmental events. The data support the hypothesesthat both genes are heterochronic in nature and that the pealeaf blade consists of three genetically- and developmentally-determined regions: proximal, distal and terminal. Copyright2000 Annals of Botany Company Heterochrony, leaf development, shoot ontogeny, Pisum sativum L., garden pea, afila,tendrilless .  相似文献   

5.
Genes encoding ribosomal proteins and other components of the translational apparatus are coregulated to efficiently adjust the protein synthetic capacity of the cell. Ssb, a Saccharomyces cerevisiae Hsp70 cytosolic molecular chaperone, is associated with the ribosome-nascent chain complex. To determine whether this chaperone is coregulated with ribosomal proteins, we studied the mRNA regulation of SSB under several environmental conditions. Ssb and the ribosomal protein rpL5 mRNAs were up-regulated upon carbon upshift and down-regulated upon amino acid limitation, unlike the mRNA of another cytosolic Hsp70, Ssa. Ribosomal protein and Ssb mRNAs, like many mRNAs, are down-regulated upon a rapid temperature upshift. The mRNA reduction of several ribosomal protein genes and Ssb was delayed by the presence of an allele, EXA3-1, of the gene encoding the heat shock factor (HSF). However, upon a heat shock the EXA3-1 mutation did not significantly alter the reduction in the mRNA levels of two genes encoding proteins unrelated to the translational apparatus. Analysis of gene fusions indicated that the transcribed region, but not the promoter of SSB, is sufficient for this HSF-dependent regulation. Our studies suggest that Ssb is regulated like a core component of the ribosome and that HSF is required for proper regulation of SSB and ribosomal mRNA after a temperature upshift.  相似文献   

6.
7.
随着对DNA损伤修复基因研究的深入,其信号转导路径及调控网络也进一步明了,调控DNA损伤修复基因的微小RNA(miRNA)也越来越多地被认识和发现。简要综述了DNA损伤途径中调控主要的损伤修复基因的miRNA,有助于深入阐明DNA损伤修复机制,为开发抗辐射药物和临床上DNA损伤修复异常相关肿瘤的基因治疗提供新的靶点。  相似文献   

8.
9.
10.
Apical dominance is a phenomenon in which a terminal bud growspredominantly and the growth of the axillary buds is suppressed.Here, we investigated the molecular mechanisms associated withcell cycle control that occur in pea axillary buds as a resultof decapitation. Proliferating cell nuclear antigen (PCNA) proteinwas detected in both dormant and growing buds, while PCNA mRNAwas absent in dormant buds. Pissa;CycBl;2 and Cdc2 proteinswere undetectable during dormancy. To analyze an interactionbetween PCNA and Pissa;CycD3;l, we performed anti-PCNA immunoaffinitycolumn chromatography. Pissa;CycD3;l protein was detected inthe eluate prepared from the dormant buds, but not in the eluateprepared from the growing buds. Furthermore, we performed anti-Pissa;CycD3;limmunoaffinity column chromatography. PCNA protein was detectedin the eluate prepared from the dormant buds, but not in theeluate prepared from the growing buds. These results indicatedthat PCNA associated with Pissa;CycD3;l only during dormancy.In addition, the interaction between PCNA and Pissa;CycD3;lwas confirmed by a yeast two-hybrid system. (Received April 8, 1998; Accepted August 5, 1998)  相似文献   

11.
The INNER NO OUTER (INO) and AINTEGUMENTA (ANT) genes are essential for ovule integument development in Arabidopsis thaliana. Ovules of ino mutants initiate two integument primordia, but the outer integument primordium forms on the opposite side of the ovule from the normal location and undergoes no further development. The inner integument appears to develop normally, resulting in erect, unitegmic ovules that resemble those of gymnosperms. ino plants are partially fertile and produce seeds with altered surface topography, demonstrating a lineage dependence in development of the testa. ant mutations affect initiation of both integuments. The strongest of five new ant alleles we have isolated produces ovules that lack integuments and fail to complete megasporogenesis. ant mutations also affect flower development, resulting in narrow petals and the absence of one or both lateral stamens. Characterization of double mutants between ant, ino and other mutations affecting ovule development has enabled the construction of a model for genetic control of ovule development. This model proposes parallel independent regulatory pathways for a number of aspects of this process, a dependence on the presence of an inner integument for development of the embryo sac, and the existence of additional genes regulating ovule development.  相似文献   

12.
Myrosin cells, which accumulate myrosinase to produce toxic compounds when they are ruptured by herbivores, form specifically along leaf veins in Arabidopsis thaliana. However, the mechanism underlying this pattern formation is unknown. Here, we show that myrosin cell development requires the endocytosis-mediated polar localization of the auxin-efflux carrier PIN1 in leaf primordia. Defects in the endocytic/vacuolar SNAREs (syp22 and syp22 vti11) enhanced myrosin cell development. The syp22 phenotype was rescued by expressing SYP22 under the control of the PIN1 promoter. Additionally, myrosin cell development was enhanced either by lacking the activator of endocytic/vacuolar RAB5 GTPase (VPS9A) or by PIN1 promoter-driven expression of a dominant-negative form of RAB5 GTPase (ARA7). By contrast, myrosin cell development was not affected by deficiencies of vacuolar trafficking factors, including the vacuolar sorting receptor VSR1 and the retromer components VPS29 and VPS35, suggesting that endocytic pathway rather than vacuolar trafficking pathway is important for myrosin cell development. The phosphomimic PIN1 variant (PIN1-Asp), which is unable to be polarized, caused myrosin cells to form not only along leaf vein but also in the intervein leaf area. We propose that Brassicales plants might arrange myrosin cells near vascular cells in order to protect the flux of nutrients and water via polar PIN1 localization.  相似文献   

13.

Background

Vascular fibrinolytic balance is maintained primarily by interplay of tissue plasminogen activator (t-PA) and plasminogen activator inhibitor type 1 (PAI-1). Previous research has shown that polymorphisms in genes from the renin-angiotensin (RA), bradykinin, and fibrinolytic systems affect plasma concentrations of both t-PA and PAI-1 through a set of gene-gene interactions. In the present study, we extend this finding by exploring the effects of polymorphisms in genes from these systems on incident cardiovascular disease, explicitly examining two-way interactions in a large population-based study.

Methodology/Principal Findings

Data from the population-based PREVEND study in Groningen, The Netherlands (n = 8,138) were analyzed. The effects of the polymorphisms and their interactions on cardiovascular events were analyzed via Cox proportional hazards models. There was no association between five of the six polymorphisms singly and risk of cardiovascular disease. There was a significant main effect for the ACE I/D polymorphism for both dominant and additive coding schemes. There were significant interactions between the following polymorphism pairs even after adjustment for known risk factors: ACE I/D & PAI-1 4G/5G (p = 0.012), BDKRB2 C181T & ACE I/D (p = 0.016), BDKRB2 C58T & ACE I/D (p = 0.025), BDKRB2 exon 1 I/D & AT1R A1166C (p = 0.017), and BDKRB2 C58T & AT1R A1166C (p = 0.015).

Conclusions/Significance

This study suggests possible interactions between genes from the RA, bradykinin, and fibrinolytic systems on the risk of cardiovascular disease, extending previous research that has demonstrated that interactions among genes from these systems influence plasma concentrations of both t-PA and PAI-1. Further explorations of these interactions are needed.  相似文献   

14.
15.
16.
Precise regulation of Wnt signaling is important in many contexts, as in development of the vertebrate forebrain, where excessive or ectopic Wnt signaling leads to severe brain defects. Mutation of the widely expressed oto gene causes loss of the anterior forebrain during mouse embryogenesis. Here we report that oto is the mouse ortholog of the gpi deacylase gene pgap1, and that the endoplasmic reticulum (ER)-resident Oto protein has a novel and deacylase-independent function during Wnt maturation. Oto increases the hydrophobicities of Wnt3a and Wnt1 by promoting the addition of glycophosphatidylinositol (gpi)-like anchors to these Wnts, which results in their retention in the ER. We also report that oto-deficient embryos exhibit prematurely robust Wnt activity in the Wnt1 domain of the early neural plate. We examine the effect of low oto expression on Wnt1 in vitro by knocking down endogenous oto expression in 293 and M14 melanoma cells using shRNA. Knockdown of oto results in increased Wnt1 secretion which is correlated with greatly enhanced canonical Wnt activity. These data indicate that oto deficiency increases Wnt signaling in vivo and in vitro. Finally, we address the mechanism of Oto-mediated Wnt retention under oto-abundant conditions, by cotransfecting Wnt1 with gpi-specific phospholipase D (GPI-PLD). The presence of GPI-PLD in the secretory pathway results in increased secretion of soluble Wnt1, suggesting that the gpi-like anchor lipids on Wnt1 mediate its retention in the ER. These data now provide a mechanistic framework for understanding the forebrain defects in oto mice, and support a role for Oto-mediated Wnt regulation during early brain development. Our work highlights a critical role for ER retention in regulating Wnt signaling in the mouse embryo, and gives insight into the notoriously inefficient secretion of Wnts.  相似文献   

17.
The ability of cells to rapidly detect and react to alterations in their chemical environment, such as pH, ionic strength and redox potential, is essential for cell function and survival. We present here evidence that cells can respond to such environmental alterations by rapid induction of matriptase autoactivation. Specifically, we show that matriptase autoactivation can occur spontaneously at physiological pH, and is significantly enhanced by acidic pH, both in a cell-free system and in living cells. The acid-accelerated autoactivation can be attenuated by chloride, a property that may be part of a safety mechanism to prevent unregulated matriptase autoactivation. Additionally, the thio-redox balance of the environment also modulates matriptase autoactivation. Using the cell-free system, we show that matriptase autoactivation is suppressed by cytosolic reductive factors, with this cytosolic suppression being reverted by the addition of oxidizing agents. In living cells, we observed rapid induction of matriptase autoactivation upon exposure to toxic metal ions known to induce oxidative stress, including CoCl2 and CdCl2. The metal-induced matriptase autoactivation is suppressed by N-acetylcysteine, supporting the putative role of altered cellular redox state in metal induced matriptase autoactivation. Furthermore, matriptase knockdown rendered cells more susceptible to CdCl2-induced cell death compared to control cells. This observation implies that the metal-induced matriptase autoactivation confers cells with the ability to survive exposure to toxic metals and/or oxidative stress. Our results suggest that matriptase can act as a cellular sensor of the chemical environment of the cell that allows the cell to respond to and protect itself from changes in the chemical milieu.  相似文献   

18.
Crossovers (COs) are at the origin of genetic variability, occurring across successive generations, and they are also essential for the correct segregation of chromosomes during meiosis. Their number and position are precisely controlled, however the mechanisms underlying these controls are poorly understood. Neddylation/rubylation is a regulatory pathway of posttranslational protein modification that is required for numerous cellular processes in eukaryotes, but has not yet been linked to homologous recombination. In a screen for meiotic recombination-defective mutants, we identified several axr1 alleles, disrupting the gene encoding the E1 enzyme of the neddylation complex in Arabidopsis. Using genetic and cytological approaches we found that axr1 mutants are characterised by a shortage in bivalent formation correlated with strong synapsis defects. We determined that the bivalent shortage in axr1 is not due to a general decrease in CO formation but rather due to a mislocalisation of class I COs. In axr1, as in wild type, COs are still under the control of the ZMM group of proteins. However, in contrast to wild type, they tend to cluster together and no longer follow the obligatory CO rule. Lastly, we showed that this deregulation of CO localisation is likely to be mediated by the activity of a cullin 4 RING ligase, known to be involved in DNA damage sensing during somatic DNA repair and mouse spermatogenesis. In conclusion, we provide evidence that the neddylation/rubylation pathway of protein modification is a key regulator of meiotic recombination. We propose that rather than regulating the number of recombination events, this pathway regulates their localisation, through the activation of cullin 4 RING ligase complexes. Possible targets for these ligases are discussed.  相似文献   

19.
20.
The effects of genetically determined changes in leaf morphology on the characteristics of growth, pigment complex, and productivity were studied in pea plants (Pisum sativum L.). The homeotic afila(af) mutation, which transformed leaflets into tendrils, decreased the leaf area and the chlorophyll (Chl) content per plant (CCP) in the af/af plants 1.5-fold as compared to the wild type (Af/Af). The loss of leaflets in the af/af plants was partly recompensed by expansion of the tendrils and stipules and by extra accumulation of Chl (a + b). The mutation did not affect Chl (a + b) that fell to the share of light-harvesting complexes (LHC) and the ratio of Chl a/b (representing the relative distribution of chlorophylls between LHC and the reaction centers); neither it affected the quantum efficiency of the primary charge separation (F v/F m). The diminished assimilating area (AA) in the af/af plants at the preflowering period did not reduce the final biomass and grain yield. The measurement of the area shaded by plants in the glasshouse experiments and the direct assessment of the vertical profile of solar radiation in the field stand canopies demonstrated that this phenomenon was in particular related to the fact that, in the af/af plants, the solar radiation was available to the apical and subapical leaves (as in the wild-type plants) and also to the lower metamers. As a result, the actively functioning AA expanded, and the photoassimilating potential of the af/af plants was enhanced. Our data presume the direct relationship between plant production and CCP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号