首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gourlay CW  Hofer JM  Ellis TH 《The Plant cell》2000,12(8):1279-1294
The compound leaf primordium of pea represents a marginal blastozone that initiates organ primordia, in an acropetal manner, from its growing distal region. The UNIFOLIATA (UNI) gene is important in marginal blastozone maintenance because loss or reduction of its function results in uni mutant leaves of reduced complexity. In this study, we show that UNI is expressed in the leaf blastozone over the period in which organ primordia are initiated and is downregulated at the time of leaf primordium determination. Prolonged UNI expression was associated with increased blastozone activity in the complex leaves of afila (af), cochleata (coch), and afila tendril-less (af tl) mutant plants. Our analysis suggests that UNI expression is negatively regulated by COCH in stipule primordia, by AF in proximal leaflet primordia, and by AF and TL in distal and terminal tendril primordia. We propose that the control of UNI expression by AF, TL, and COCH is important in the regulation of blastozone activity and pattern formation in the compound leaf primordium of the pea.  相似文献   

2.
In order to dissect the genetic regulation of leafblade morphogenesis, 16 genotypes of pea, constructed by combining the wild-type and mutant alleles of MFP, AF, TL and UNI genes, were quantitatively phenotyped. The morphological features of the three domains of leafblades of four genotypes, unknown earlier, were described. All the genotypes were found to differ in leafblade morphology. It was evident that MFP and TL functions acted as repressor of pinna ramification, in the distal domain. These functions, with and without interaction with UNI, also repressed the ramification of proximal pinnae in the absence of AF function. The expression of MFP and TL required UNI function. AF function was found to control leafblade architecture multifariously. The earlier identified role of AF as a repressor of UNI in the proximal domain was confirmed. Negative control of AF on the UNI-dependent pinna ramification in the distal domain was revealed. It was found that AF establishes a boundary between proximal and distal domains and activates formation of leaflet pinnae in the proximal domain.  相似文献   

3.
4.
Plant diversity in nature is to a large extent reflected by morphological diversity of their leaves. Both simple and dissected (with multiple blades or leaflets) leaves are initiated from shoot apical meristem (SAM) in a highly ordered fashion. Similarly, development of leaflets from leaf marginal meristem (marginal blastozone) is also highly ordered. How morphological diversity of plant leaves is regulated remains an important topic of studies on plant form evolution. Here, we describe isolation and characterization of loss-of-function mutants of auxin efflux transporter MtPIN10 of a legume species, Medicago truncatula. Mtpin10 mutants exhibit defects in diverse developmental processes including leaf and leaflet development. Cross species genetic complementation demonstrates that MtPIN10 and Arabidopsis PIN1 are functional orthologs. Double mutant analyses reveal complex genetic interactions between MtPIN10 and Medicago SINGLE LEAFLET1 (SGL1) and CUP-SHAPED COTYLEDON2 (MtCUC2), three regulatory genes involved in developmental processes including dissected leaf and flower development.Key words: auxin, auxin transport, compound leaf development, MtPIN10, SGL1, MtCUC2, Medicago truncatula  相似文献   

5.
6.
Podostemaceae (the river weeds) are ecologically and morphologically unusual angiosperms. The subfamily Tristichoideae has typical shoot apical meristems (SAMs) that produce leaves, but Podostemoideae is devoid of SAMs and new leaves arise below the base of older leaves. To reveal the genetic basis for the evolution of novel shoot organogenesis in Podostemaceae, we examined the expression patterns of key regulatory genes for shoot development (i.e., SHOOT MERISTEMLESS (STM), WUSCHEL (WUS), and ASYMMETRIC LEAVES1/ROUGH SHEATH2/PHANTASTICA (ARP) orthologs) in Tristichoideae and Podostemoideae. In the SAM-mediated shoots of Tristichoideae, like in model plants, STM and WUS orthologs were expressed in the SAM. In the SAM-less shoots of Podostemoideae, STM and WUS orthologs were expressed in the initiating leaf/bract primordium. In older leaf/bract primordia, WUS expression disappeared and STM expression became restricted to the basal part, whereas ARP was expressed in the distal part in a complementary pattern to STM expression. In the reproductive shoots of Podostemoideae with a normal mode of flower development, STM and WUS were expressed in the floral meristem, but not in the floral organs, similar to the pattern in model plants. These results suggest that the leaf/bract of Podostemoideae is initiated as a SAM and differentiates into a single apical leaf/bract, resulting in the evolution of novel shoot-leaf mixed organs in Podostemaceae.  相似文献   

7.
The wildtype leaf of the garden pea possesses proximal pairsof leaflets and distal pairs of tendrils in the blade region.Theafila (af) mutation causes leaflets to be replaced by compound(branched) tendrils. We characterized the morphological variationin leaf form along the plant axis and leaf development in earlyand late postembryonic leaves onafilaplants to infer the roleof theAfgene. Leaf forms are more diverse early in shoot ontogenyonafilaplants.Afinfluences pinna length and pinna branchingin addition to pinna type. Pinna initiation in the proximalregion ofafilaleaf primordia is basipetal and delayed comparedto wildtype plants. In addition, pinna development in the proximalregion ofafilaleaves occurs for a longer period of time thanon wildtype leaf primordia. Therefore,Afregulates the timingand direction of leaf developmental processes in the proximalregion of the leaf, but has little effect on the distal region.These data support the heterochronic model of pea leaf morphogenesisproposed by Luet al. (International Journal of Plant Science157:311–355, 1996).Copyright 1999 Annals of Botany Company. afila,Fabaceae, garden pea, heterochrony, leaf morphogenesis,Pisum sativum.  相似文献   

8.
9.
Pea Leaf Morphogenesis: A Simple Model   总被引:1,自引:0,他引:1  
YOUNG  J. P. W. 《Annals of botany》1983,52(3):311-316
  相似文献   

10.
The stipule mutant cochleata(coch) and the simple-leaf mutantunifoliata(uni) are utilized to increase understanding of the controlof compound leaf and flower development in pea. The phenotypeof the coch mutant, which affects the basal stipules of thepea leaf, is described in detail. Mutant coch flowers have supernumeraryorgans, abnormal fusing of flower parts, mosaic organs and partialmale and female sterility. The wild-type Coch gene is shownto have a role in inflorescence development, floral organ identityand in the positioning of leaf parts. Changes in meristem sizemay be related to changes in leaf morphology. In the coch mutant,stipule primordia are small and their development is retardedin comparison with that of the first leaflet primordia. Thediameter of the shoot apical meristem of the uni mutant is approx.25% less than that of its wild-type siblings. This is the firsttime that a significant difference in apical meristem size hasbeen observed in a pea leaf mutant. Genetic controls in thebasal part of the leaf are illustrated by interactions betweencoch and other mutants. The mutantcoch gene is shown to changestipules into a more ‘compound leaf-like’ identitywhich is not affected by thestipules reduced mutation. The interactionof coch and tendril-less(tl) genes reveals that the expressionof the wild-type Tl gene is reduced at the base of the leaf,supporting the theories of gradients of gene action. Copyright2001 Annals of Botany Company Pisum sativum, garden pea, leaf morphogenesis, compound leaf, leaf mutants, flower morphology  相似文献   

11.
The mutually exclusive relationship between ARP and KNOX1 genes in the shoot apical meristem and leaf primordia in simple leaved plants such as Arabidopsis has been well characterized. Overlapping expression domains of these genes in leaf primordia have been described for many compound leaved plants such as Solanum lycopersicum and Cardamine hirsuta and are regarded as a characteristic of compound leaved plants. Here, we present several datasets illustrating the co-expression of ARP and KNOX1 genes in the shoot apical meristem, leaf primordia, and developing leaves in plants with simple leaves and simple primordia. Streptocarpus plants produce unequal cotyledons due to the continued activity of a basal meristem and produce foliar leaves termed “phyllomorphs” from the groove meristem in the acaulescent species Streptocarpus rexii and leaves from a shoot apical meristem in the caulescent Streptocarpus glandulosissimus. We demonstrate that the simple leaves in both species possess a greatly extended basal meristematic activity that persists over most of the leaf’s growth. The area of basal meristem activity coincides with the co-expression domain of ARP and KNOX1 genes. We suggest that the co-expression of ARP and KNOX1 genes is not exclusive to compound leaved plants but is associated with foci of meristematic activity in leaves.  相似文献   

12.
The early ontogeny of the pinnately, palmately, and ternately compound leaves in the Lardizabalaceae was studied by SEM. The leaf primordium of each of the three leaf types emerges as an identical short protrusion on the shoot apex; the leaf primordium produces the first leaflet initials laterally on its margin. Successive acropetal growth of the leaf axis and the following inception of the leaflet primordia are responsible for the pinnately compound leaf, whereas short basipetal growth accompanied with initiation of two or more pairs of leaflet initials results in a palmately compound leaf. If no elongation of the leaf axis nor additional inception of leaflet primordia occur during early ontogeny, a ternate leaf ensues.  相似文献   

13.
Dissected leaves in Papaveraceae-Eschscholzioideae have an architecture frequently encountered in the basal eudicot clade Ranunculales that could represent an ancestral condition for eudicots. Developmental morphology of foliage leaves was investigated using scanning electron microscopy and focusing on primordium formation activity (primary morphogenesis) at the leaf margin. Eschscholzia californica, E. lobii, and Hunnemannia fumariaefolia had a polyternate-acropetal mode of leaf dissection. Segment formation continued around the whole leaf blade periphery. Differences in mature leaf architecture was traced to variations in regional blastozone activity and duration. Epidermal cell size measurements in E. californica indicated that the leaf tip tissue starts to differentiate already at the onset of organogenic activity and that tip cells remain larger than epidermal cells at the basal margins during further growth. It is argued that early differentiation of the tip does not set up a general basipetal differentiation gradient, but is a local effect that allows acropetal pinna initiation to occur in subapical blastozones. In Dendromecon, secondarily entire leaves have evolved through the loss of primordium formation activity. Marginal corrugations found in Dendromecon form late in development and are not reminiscent of lateral primordia.  相似文献   

14.
During their symbiotic interaction with rhizobia, legume plants develop symbiosis-specific organs on their roots, called nodules, that house nitrogen-fixing bacteria. The molecular mechanisms governing the identity and maintenance of these organs are unknown. Using Medicago truncatula nodule root (noot) mutants and pea (Pisum sativum) cochleata (coch) mutants, which are characterized by the abnormal development of roots from the nodule, we identified the NOOT and COCH genes as being necessary for the robust maintenance of nodule identity throughout the nodule developmental program. NOOT and COCH are Arabidopsis thaliana BLADE-ON-PETIOLE orthologs, and we have shown that their functions in leaf and flower development are conserved in M. truncatula and pea. The identification of these two genes defines a clade in the BTB/POZ-ankyrin domain proteins that shares conserved functions in eudicot organ development and suggests that NOOT and COCH were recruited to repress root identity in the legume symbiotic organ.  相似文献   

15.
16.
The adaxial-abaxial axis in leaf primordia is thought to be established first and is necessary for the expansion of the leaf lamina along the mediolateral axis. To understand axis information in leaf development, we isolated the adaxialized leaf1 (adl1) mutant in rice, which forms abaxially rolled leaves. adl1 leaves are covered with bulliform-like cells, which are normally distributed only on the adaxial surface. An adl1 double mutant with the adaxially snowy leaf mutant, which has albino cells that specifically appear in the abaxial mesophyll tissue, indicated that adl1 leaves show adaxialization in both epidermal and mesophyll tissues. The expression of HD-ZIPIII genes in adl1 mutant increased in mature leaves, but not in the young primordia or the SAM. This indicated that ADL1 may not be directly involved in determining initial leaf polarity, but rather is associated with the maintenance of axis information. ADL1 encodes a plant-specific calpain-like cysteine proteinase orthologous to maize DEFECTIVE KERNEL1. Furthermore, we identified intermediate and strong alleles of the adl1 mutant that generate shootless embryos and globular-arrested embryos with aleurone layer loss, respectively. We propose that ADL1 plays an important role in pattern formation of the leaf and embryo by promoting proper epidermal development.  相似文献   

17.
The development of primordia as leaves, petals, or as organsintermediate between leaves and petals can be regulated by photoperiodin Impatiens. In intermediate organs only some parts of theorgan differentiated as petal, and then only in some cell layers.Allometric measurements of primordium shape suggested that intermediateorgans may begin development as petals, and that their intermediatecharacter at maturity resulted from a switch of some parts ofthe organs from petal to leaf development when the primordiawere between 0.5 and 1 mm long. In reverted apices made to re-flower,primordia were not completely determined as leaves until theywere about 750 µm long. Determination typically occurredfirst at the tips and last at the bases of these primordia.The determination of primordia as leaves or petals in Impatiensis discussed in relation to primordium determination in otherspecies. It is suggested that the lack of commitment to flowermay result in relatively late primordium determination in Impatiens. Impatiens balsamina, determination, differentiation, leaf and petal development, flowering, reversion  相似文献   

18.
Observations of young leaf primordia give information about the origin of the fertile spike ofOphioglossum pedunculosum Desv. Each primordium shows a certain asymmetry that is visible in form and position of the fertile spike primordium, but above all in the course of the marginal meristem. The fertile spike primordium is connected with the marginal meristem on the right or that on the left side of the sterile segment. On the basis ot these observations the following concept of the origin of the fertile spike is formed: The marginal meristem curves on one side of the leaf primordium and turns towards the ventral side. This process is followed by meristem fractionation in the course of which the smaller part curved towards the middle of the leaf primordium becomes independent and initiates the development of the fertile spike, whereas the larger part of the marginal meristem contributes to the growth of the sterile segment.
  相似文献   

19.
One of the most fascinating aspects of plant morphology is the regular geometric arrangement of leaves and flowers, called phyllotaxy. The shoot apical meristem (SAM) determines these patterns, which vary depending on species and developmental stage. Auxin acts as an instructive signal in leaf initiation, and its transport has been implicated in phyllotaxy regulation in Arabidopsis (Arabidopsis thaliana). Altered phyllotactic patterns are observed in a maize (Zea mays) mutant, aberrant phyllotaxy1 (abph1, also known as abphyl1), and ABPH1 encodes a cytokinin-inducible type A response regulator, suggesting that cytokinin signals are also involved in the mechanism by which phyllotactic patterns are established. Therefore, we investigated the interaction between auxin and cytokinin signaling in phyllotaxy. Treatment of maize shoots with a polar auxin transport inhibitor, 1-naphthylphthalamic acid, strongly reduced ABPH1 expression, suggesting that auxin or its polar transport is required for ABPH1 expression. Immunolocalization of the PINFORMED1 (PIN1) polar auxin transporter revealed that PIN1 expression marks leaf primordia in maize, similarly to Arabidopsis. Interestingly, maize PIN1 expression at the incipient leaf primordium was greatly reduced in abph1 mutants. Consistently, auxin levels were reduced in abph1, and the maize PIN1 homolog was induced not only by auxin but also by cytokinin treatments. Our results indicate distinct roles for ABPH1 as a negative regulator of SAM size and a positive regulator of PIN1 expression. These studies highlight a complex interaction between auxin and cytokinin signaling in the specification of phyllotactic patterns and suggest an alternative model for the generation of altered phyllotactic patterns in abph1 mutants. We propose that reduced auxin levels and PIN1 expression in abph1 mutant SAMs delay leaf initiation, contributing to the enlarged SAM and altered phyllotaxy of these mutants.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号