首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Selenocysteine (Sec) is found in active sites of several oxidoreductases in which this residue is essential for catalytic activity. However, many selenoproteins have fully functional orthologs, wherein cysteine (Cys) occupies the position of Sec. The reason why some enzymes evolve into selenoproteins if the Cys versions may be sufficient is not understood. Among three mammalian methionine-R-sulfoxide reductases (MsrBs), MsrB1 is a Sec-containing protein, whereas MsrB2 and MsrB3 contain Cys in the active site, making these enzymes an excellent system for addressing the question of why Sec is used in biological systems. In this study, we found that residues, which are uniquely conserved in Cys-containing MsrBs and which are critical for enzyme activity in MsrB2 and MsrB3, were not required for MsrB1, but increased the activity of its Cys mutant. Conversely, selenoprotein MsrB1 had a unique resolving Cys reversibly engaged in the selenenylsulfide bond. However, this Cys was not necessary for activities of either MsrB2, MsrB3, or the Cys mutant of MsrB1. We prepared Sec-containing forms of MsrB2 and MsrB3 and found that they were more than 100-fold more active than the natural Cys forms. However, these selenoproteins could not be reduced by the physiological electron donor, thioredoxin. Yet, insertion of the resolving Cys, which was conserved in MsrB1, into the selenoprotein form of MsrB3 restored the thioredoxin-dependent activity of this enzyme. These data revealed differences in catalytic mechanisms between selenoprotein MsrB1 and non-selenoproteins MsrB2 and MsrB3, and identified catalytic advantages and disadvantages of Sec- and Cys-containing proteins. The data also suggested that Sec- and Cys-containing oxidoreductases require distinct sets of active-site features that maximize their catalytic efficiencies and provide strategies for protein design with improved catalytic properties.  相似文献   

2.
We verified and generalized the catalytic features that selenocysteine (Sec) and cysteine (Cys) contribute to the reduction of methionine-R-sulfoxide using an anaerobic bacterial MsrB from Clostridium sp. OhILA as a model protein. The Sec-containing Clostridium MsrB form exhibited 100-fold higher activity than its Cys-containing form, revealing that Sec provided the catalytic advantage of higher activity. However, a resolving Cys was required for the thioredoxin (Trx)-dependent recycling process of the Sec-containing form. Thus, Trx could reduce the selenenylsulfide bond, but its Trx-dependent recycling process was much less efficient compared to that for the disulfide bond in the Cys-containing form, demonstrating an obvious catalytic disadvantage. These data agreed well with our previous data on mammalian MsrBs, and therefore suggested that the catalytic mechanisms, as well as the catalytic advantages and disadvantages provided by the Sec and Cys residues, are most likely conserved from anaerobic bacteria to mammals. Taken together, we propose that the use of Sec in MsrB may depend on a balance between the catalytic advantage of higher activity and the disadvantage of a less efficient regeneration process provided by this residue.  相似文献   

3.
Kim HY  Fomenko DE  Yoon YE  Gladyshev VN 《Biochemistry》2006,45(46):13697-13704
Methionine sulfoxide reductases are key enzymes that repair oxidatively damaged proteins. Two distinct stereospecific enzyme families are responsible for this function: MsrA (methionine-S-sulfoxide reductase) and MsrB (methionine-R-sulfoxide reductase). In the present study, we identified multiple selenoprotein MsrA sequences in organisms from bacteria to animals. We characterized the selenocysteine (Sec)-containing Chlamydomonas MsrA and found that this protein exhibited 10-50-fold higher activity than either its cysteine (Cys) mutant form or the natural mouse Cys-containing MsrA, making this selenoenzyme the most efficient MsrA known. We also generated a selenoprotein form of mouse MsrA and found that the presence of Sec increased the activity of this enzyme when a resolving Cys was mutated in the protein. These data suggest that the presence of Sec improves the reduction of methionine sulfoxide by MsrAs. However, the oxidized selenoprotein could not always be efficiently reduced to regenerate the active enzyme. Overall, this study demonstrates that sporadically evolved Sec-containing forms of methionine sulfoxide reductases reflect catalytic advantages provided by Sec in these and likely other thiol-dependent oxidoreductases.  相似文献   

4.
Methionine sulfoxide reductases protect cells by repairing oxidatively damaged methionine residues in proteins. Here, we report the first three-dimensional structure of the mammalian selenoprotein methionine sulfoxide reductase B1 (MsrB1), determined by high resolution NMR spectroscopy. Heteronuclear multidimensional spectra yielded NMR spectral assignments for the reduced form of MsrB1 in which catalytic selenocysteine (Sec) was replaced with cysteine (Cys). MsrB1 consists of a central structured core of two β-sheets and a highly flexible, disordered N-terminal region. Analysis of pH dependence of NMR signals of catalytically relevant residues, comparison with the data for bacterial MsrBs, and NMR-based structural analysis of methionine sulfoxide (substrate) and methionine sulfone (inhibitor) binding to MsrB1 at the atomic level reveal a mechanism involving catalytic Sec95 and resolving Cys4 residues in catalysis. The MsrB1 structure differs from the structures of Cys-containing MsrBs in the use of distal selenenylsulfide, residues needed for catalysis, and the mode in which the active form of the enzyme is regenerated. In addition, this is the first structure of a eukaryotic zinc-containing MsrB, which highlights the structural role of this metal ion bound to four conserved Cys. We integrated this information into a structural model of evolution of MsrB superfamily.  相似文献   

5.
Kim HY  Zhang Y  Lee BC  Kim JR  Gladyshev VN 《Proteins》2009,74(4):1008-1017
Selenocysteine (Sec) is incorporated into proteins in response to UGA codons. This residue is frequently found at the catalytic sites of oxidoreductases. In this study, we characterized the selenoproteome of an anaerobic bacterium, Clostridium sp. (also known as Alkaliphilus oremlandii) OhILA, and identified 13 selenoprotein genes, five of which have not been previously described. One of the detected selenoproteins was methionine sulfoxide reductase A (MsrA), an antioxidant enzyme that repairs oxidatively damaged methionines in a stereospecific manner. To date, little is known about MsrA from anaerobes. We characterized this selenoprotein MsrA which had a single Sec residue at the catalytic site but no cysteine (Cys) residues in the protein sequence. Its SECIS (Sec insertion sequence) element did not resemble those in Escherichia coli. Although with low translational efficiency, the expression of the Clostridium selenoprotein msrA gene in E. coli could be demonstrated by (75)Se metabolic labeling, immunoblot analyses, and enzyme assays, indicating that its SECIS element was recognized by the E. coli Sec insertion machinery. We found that the Sec-containing MsrA exhibited at least a 20-fold higher activity than its Cys mutant form, indicating a critical role of Sec in the catalytic activity of the enzyme. Furthermore, our data revealed that the Clostridium MsrA was inefficiently reducible by thioredoxin, which is a typical reducing agent for MsrA, suggesting the use of alternative electron donors in this anaerobic bacterium that directly act on the selenenic acid intermediate and do not require resolving Cys residues.  相似文献   

6.
Methionine sulfoxide reductases (Msrs) are oxidoreductases that catalyze thiol-dependent reduction of oxidized methionines. MsrA and MsrB are the best known Msrs that repair methionine-S-sulfoxide (Met-S-SO) and methionine-R-sulfoxide (Met-R-SO) residues in proteins, respectively. In addition, an Escherichia coli enzyme specific for free Met-R-SO, designated fRMsr, was recently discovered. In this work, we carried out comparative genomic and experimental analyses to examine occurrence, evolution, and function of fRMsr. This protein is present in single copies and two mutually exclusive subtypes in about half of prokaryotes and unicellular eukaryotes but is missing in higher plants and animals. A Saccharomyces cerevisiae fRMsr homolog was found to reduce free Met-R-SO but not free Met-S-SO or dabsyl-Met-R-SO. fRMsr was responsible for growth of yeast cells on Met-R-SO, and the double fRMsr/MsrA mutant could not grow on a mixture of methionine sulfoxides. However, in the presence of methionine, even the triple fRMsr/MsrA/MsrB mutant was viable. In addition, fRMsr deletion strain showed an increased sensitivity to oxidative stress and a decreased life span, whereas overexpression of fRMsr conferred higher resistance to oxidants. Molecular modeling and cysteine residue targeting by thioredoxin pointed to Cys101 as catalytic and Cys125 as resolving residues in yeast fRMsr. These residues as well as a third Cys, resolving Cys91, clustered in the structure, and each was required for the catalytic activity of the enzyme. The data show that fRMsr is the main enzyme responsible for the reduction of free Met-R-SO in S. cerevisiae.Among the 20 common amino acids in proteins, Met and Cys are the residues most susceptible to oxidation by reactive oxygen species (ROS).3 Upon oxidation, Met forms a diastereomeric mixture of methionine-S-sulfoxide (Met-S-SO) and methionine-R-sulfoxide (Met-R-SO). Met-S-SO and Met-R-SO can be reduced back to Met by MsrA (Met-S-SO reductase) and MsrB (Met-R-SO reductase), respectively (1). These enzymes have been reported to play important roles in the protection of cells and proteins against oxidative stress (28). Reversible Met oxidation has also been proposed to scavenge ROS, thereby protecting cells from oxidative damage (911). Increased expression of MsrA and MsrB can extend the life span of yeast cells and fruit flies, whereas deletion of the MsrA gene leads to the reduction in life span in mice and yeast (1214).Previously, three MsrB isozymes and a single MsrA were found in mammals. MsrB1 (also known as SelR or SelX) is a selenoprotein, which contains selenocysteine (Sec) in the active site and is localized to cytosol and nucleus. MsrB2 and MsrB3 are Cys-containing homologs of MsrB1. MsrB2 resides in mitochondria, whereas human MsrB3 has two alternative splice forms, wherein MsrB3A localizes to the endoplasmic reticulum and MsrB3B is targeted to mitochondria (15).The catalytic mechanism of MsrA involves a sulfenic acid intermediate at the catalytic Cys followed by the formation of a disulfide bond between the catalytic and resolving Cys. A third Cys may then form a disulfide with the resolving Cys (16, 17). The resulting disulfide is reduced by thioredoxin or other oxidoreductases, generating the initial, reduced form of the protein. X-ray structures of MsrAs from several organisms have been solved (17, 18).Cys-containing MsrBs (e.g. mammalian MsrB2 and MsrB3) follow the same mechanism, although the two Msr types have no homology and are characterized by different structural folds (1921). Sec-containing mammalian MsrB1 has also been characterized and compared with Cys-containing MsrBs (20). Interestingly, Cys-containing MsrBs share some active site features (e.g. conserved residues His77, Val81, and Asn97, numbering based on mouse MsrB1 sequence), which are absent in selenoprotein MsrB1s. When these three residues were introduced into the Sec-containing MsrB1, the enzyme was inactive. However, when the three residues were introduced into the Cys mutant form of MsrB1, the activity was partially recovered (20). This evidence supports the idea that catalytic Cys and Sec require different active site features.In addition to MsrA and MsrB functions, previous studies suggested the presence of additional Msr activities in Escherichia coli and yeast cells, which were especially evident in cells deficient in both enzymes (14, 2123). Recently, Lowther and colleagues (24) discovered a new enzyme, designated fRMsr (free Met-R-SO reductase), which catalyzes the reduction of free Met-R-SO in E. coli. They showed that this activity is associated with a GAF-like-domain-containing protein. Homologs of this enzyme were found in other bacteria as well as in eukaryotes, suggesting that these proteins also could function as fRMsrs. However, none of these other proteins have been functionally characterized.In this work, we cloned a yeast homolog of bacterial fRMsr and functionally characterized it with regard to the in vivo function and catalytic mechanism. In addition, we carried out comparative genomic analyses to examine evolution of this protein family. The data show that fRMsr is the main enzyme responsible for the reduction of free Met-R-SO in both prokaryotes and unicellular eukaryotes.  相似文献   

7.
The defining entity of a selenoprotein is the inclusion of at least one selenocysteine (Sec) residue in its sequence. Sec, the 21st naturally occurring genetically encoded amino acid, differs from its significantly more common structural analog cysteine (Cys) by the identity of a single atom: Sec contains selenium instead of the sulfur found in Cys. Selenium clearly has unique chemical properties that differ from sulfur, but more striking are perhaps the similarities between the two elements. Selenium was discovered by Jöns Jacob Berzelius, a renowned Swedish scientist instrumental in establishing the institution that would become Karolinska Institutet. Written at the occasion of the bicentennial anniversary of Karolinska Institutet, this mini review focuses on the unique selenium-derived properties that may potentially arise in a protein upon the inclusion of Sec in place of Cys. With 25 human genes encoding selenoproteins and in total several thousand selenoproteins yet described in nature, it seems likely that the presence of that single selenium atom of Sec should convey some specific feature, thereby explaining the existence of selenoproteins in spite of demanding and energetically costly Sec-specific synthesis machineries. Nonetheless, most, if not all, of the currently known selenoproteins are also found as Cys-containing non-selenoprotein orthologues in other organisms, wherefore any potentially unique properties of selenoproteins are yet a matter of debate. The pKa of free Sec (approximately 5.2) being significantly lower than that of free Cys (approximately 8.5) has often been proposed as one of the unique features of Sec. However, as discussed herein, this pKa difference between Sec and Cys can hardly provide an evolutionary pressure for maintenance of selenoproteins. Moreover, the typically 10- to 100-fold lower enzymatic efficiencies of Sec-to-Cys mutants of selenoprotein oxidoreductases, are also weak arguments for the overall existence of selenoproteins. Here, it is however emphasized that the inherent high nucleophilicity of Sec and thereby its higher chemical reaction rate with electrophiles, as compared to Cys, seems to be a truly unique property of Sec that cannot easily be mimicked by the basicity of Cys, even within the microenvironment of a protein. The chemical rate enhancement obtained with Sec can have other consequences than those arising from a low redox potential of some Cys-dependent proteins, typically aiming at maintaining redox equilibria. Another unique aspect of Sec compared to Cys seems to be its efficient potency to support one-electron transfer reactions, which, however, has not yet been unequivocally shown as a Sec-dependent step during the natural catalysis of any known selenoprotein enzyme.  相似文献   

8.
Several engineered selenocysteine (Sec)-containing glutaredoxins (Grxs) and their enzymatic properties have been reported, but natural selenoprotein Grxs have not been previously characterized. We expressed a bacterial selenoprotein Grx from Clostridium sp. (also known as Alkaliphilus oremlandii) OhILAs in Escherichia coli and characterized this selenoenzyme and its natural Cys homologues in Clostridium and E. coli. The selenoprotein Grx had a 200-fold higher activity than its Sec-to-Cys mutant form, suggesting that Sec is essential for catalysis by this thiol-disulfide oxidoreductase. Kinetic analysis also showed that the selenoprotein Grx had a 10-fold lower K(m) than Cys homologues. Interestingly, this selenoenzyme efficiently reduced a Clostridium selenoprotein methionine sulfoxide reductase A (MsrA), suggesting that it is the natural reductant for the protein that is not reducible by thioredoxin, a common reductant for Cys-containing MsrAs. We also found that the selenoprotein Grx could not efficiently reduce a Cys version of Clostridium MsrA, whereas natural Clostridium and E. coli Cys-containing Grxs, which efficiently reduce Cys-containing MsrAs, poorly acted on the selenoprotein MsrA. This specificity for MsrA reduction could explain why Sec is utilized in Clostridium Grx and more generally provides a novel example of the use of Sec in biological systems.  相似文献   

9.
Methionine residues in proteins are susceptible to oxidation by reactive oxygen species, but can be repaired via reduction of the resulting methionine sulfoxides by methionine-S-sulfoxide reductase (MsrA) and methionine-R-sulfoxide reductase (MsrB). However, the identity of all methionine sulfoxide reductases involved, their cellular locations and relative contributions to the overall pathway are poorly understood. Here, we describe a methionine-R-sulfoxide reduction system in mammals, in which two MsrB homologues were previously described. We found that human and mouse genomes possess three MsrB genes and characterized their protein products, designated MsrB1, MsrB2, and MsrB3. MsrB1 (Selenoprotein R) was present in the cytosol and nucleus and exhibited the highest methionine-R-sulfoxide reductase activity because of the presence of selenocysteine (Sec) in its active site. Other mammalian MsrBs contained cysteine in place of Sec and were less catalytically efficient. MsrB2 (CBS-1) resided in mitochondria. It had high affinity for methionine-R-sulfoxide, but was inhibited by higher concentrations of the substrate. The human MsrB3 gene gave rise to two protein forms, MsrB3A and MsrB3B. These were generated by alternative splicing that introduced contrasting N-terminal and C-terminal signals, such that MsrB3A was targeted to the endoplasmic reticulum and MsrB3B to mitochondria. We found that only mitochondrial forms of mammalian MsrBs (MsrB2 and MsrB3B) could compensate for MsrA and MsrB deficiency in yeast. All mammalian MsrBs belonged to a group of zinc-containing proteins. The multiplicity of MsrBs contrasted with the presence of a single mammalian MsrA gene as well as with the occurrence of single MsrA and MsrB genes in yeast, fruit flies, and nematodes. The data suggested that different cellular compartments in mammals maintain a system for repair of oxidized methionine residues and that this function is tuned in enzyme- and stereo-specific manner.  相似文献   

10.
Selenium is an important trace element that occurs in proteins in the form of selenocysteine (Sec) and in tRNAs in the form of selenouridine. Recent large-scale metagenomics projects provide an opportunity for understanding global trends in trace element utilization. Herein, we characterized the selenoproteome of the microbial marine community derived from the Global Ocean Sampling (GOS) expedition. More than 3,600 selenoprotein gene sequences belonging to 58 protein families were detected, including sequences representing 7 newly identified selenoprotein families, such as homologs of ferredoxin–thioredoxin reductase and serine protease. In addition, a new eukaryotic selenoprotein family, thiol reductase GILT, was identified. Most GOS selenoprotein families originated from Cys-containing thiol oxidoreductases. In both Pacific and Atlantic microbial communities, SelW-like and SelD were the most widespread selenoproteins. Geographic location had little influence on Sec utilization as measured by selenoprotein variety and the number of selenoprotein genes detected; however, both higher temperature and marine (as opposed to freshwater and other aquatic) environment were associated with increased use of this amino acid. Selenoproteins were also detected with preference for either environment. We identified novel fusion forms of several selenoproteins that highlight redox activities of these proteins. Almost half of Cys-containing SelDs were fused with NADH dehydrogenase, whereas such SelD forms were rare in terrestrial organisms. The selenouridine utilization trait was also analyzed and showed an independent evolutionary relationship with Sec utilization. Overall, our study provides insights into global trends in microbial selenium utilization in marine environments.  相似文献   

11.
Methionine sulfoxide reductases are antioxidant enzymes that repair oxidatively damaged methionine residues in proteins. Mammals have three members of the methionine-R-sulfoxide reductase family, including cytosolic MsrB1, mitochondrial MsrB2, and endoplasmic reticulum MsrB3. Here, we report the solution structure of reduced Mus musculus MsrB2 using high resolution nuclear magnetic resonance (NMR) spectroscopy. MsrB2 is a β-strand rich globular protein consisting of eight antiparallel β-strands and three N-terminal α-helical segments. The latter secondary structure elements represent the main structural difference between mammalian MsrB2 and MsrB1. Structural comparison of mammalian and bacterial MsrB structures indicates that the general topology of this MsrB family is maintained and that MsrB2 more resembles bacterial MsrBs than MsrB1. Structural and biochemical analysis supports the catalytic mechanism of MsrB2 that, in contrast to MsrB1, does not involve a resolving cysteine (Cys). pH dependence of catalytically relevant residues in MsrB2 was accessed by NMR spectroscopy and the pK(a) of the catalytic Cys162 was determined to be 8.3. In addition, the pH-dependence of MsrB2 activity showed a maximum at pH 9.0, suggesting that deprotonation of the catalytic Cys is a critical step for the reaction. Further mobility analysis showed a well-structured N-terminal region, which contrasted with the high flexibility of this region in MsrB1. Our study highlights important structural and functional aspects of mammalian MsrB2 and provides a unifying picture for structure-function relationships within the MsrB protein family.  相似文献   

12.
Previous reports described thioredoxin (Trx) as a very poor reductant for mammalian MsrB2 and MsrB3, which lack a resolving Cys residue. In contrast, we here report that Trx could reduce both MsrB2 and MsrB3 enzymes, similarly to the reduction of mammalian MsrA. We demonstrated that functional Trx is required for the reduction of these enzymes. We further identified MsrB2- or MsrB3-Trx complexes formed through intermolecular disulfide bonds involving catalytic residue of Trx. The present study provides evidence that the sulfenic acid intermediate of oxidized MsrBs lacking resolving Cys could interact with Trx and be directly reduced by this protein.  相似文献   

13.

Background

Selenium is an essential trace element in mammals due to its presence in proteins in the form of selenocysteine (Sec). Human genome codes for 25 Sec-containing protein genes, and mouse and rat genomes for 24.

Methodology/Principal Findings

We characterized the selenoproteomes of 44 sequenced vertebrates by applying gene prediction and phylogenetic reconstruction methods, supplemented with the analyses of gene structures, alternative splicing isoforms, untranslated regions, SECIS elements, and pseudogenes. In total, we detected 45 selenoprotein subfamilies. 28 of them were found in mammals, and 41 in bony fishes. We define the ancestral vertebrate (28 proteins) and mammalian (25 proteins) selenoproteomes, and describe how they evolved along lineages through gene duplication (20 events), gene loss (10 events) and replacement of Sec with cysteine (12 events). We show that an intronless selenophosphate synthetase 2 gene evolved in early mammals and replaced functionally the original multiexon gene in placental mammals, whereas both genes remain in marsupials. Mammalian thioredoxin reductase 1 and thioredoxin-glutathione reductase evolved from an ancestral glutaredoxin-domain containing enzyme, still present in fish. Selenoprotein V and GPx6 evolved specifically in placental mammals from duplications of SelW and GPx3, respectively, and GPx6 lost Sec several times independently. Bony fishes were characterized by duplications of several selenoprotein families (GPx1, GPx3, GPx4, Dio3, MsrB1, SelJ, SelO, SelT, SelU1, and SelW2). Finally, we report identification of new isoforms for several selenoproteins and describe unusually conserved selenoprotein pseudogenes.

Conclusions/Significance

This analysis represents the first comprehensive survey of the vertebrate and mammal selenoproteomes, and depicts their evolution along lineages. It also provides a wealth of information on these selenoproteins and their forms.  相似文献   

14.
Selenocysteine (Sec) residues occur in thiol oxidoreductase families, and functionally characterized selenoenzymes typically have a single Sec residue used directly for redox catalysis. However, how new Sec residues evolve and whether non-catalytic Sec residues exist in proteins is not known. Here, we computationally identified several genes with multiple Sec insertion sequence (SECIS) elements, one of which was a methionine-R-sulfoxide reductase (MsrB) homolog from Metridium senile that has four in-frame UGA codons and two nearly identical SECIS elements. One of the UGA codons corresponded to the conserved catalytic Sec or Cys in MsrBs, whereas the three other UGA codons evolved recently and had no homologs with Sec or Cys in these positions. Metabolic (75)Se labeling showed that all four in-frame UGA codons supported Sec insertion and that both SECIS elements were functional and collaborated in Sec insertion at each UGA codon. Interestingly, recombinant M. senile MsrB bound iron, and further analyses suggested the possibility of binding an iron-sulfur cluster by the protein. These data show that Sec residues may appear transiently in genes containing SECIS elements and be adapted for non-catalytic functions.  相似文献   

15.
Selenocysteine (Sec) is co-translationally inserted into selenoproteins in response to codon UGA with the help of the selenocysteine insertion sequence (SECIS) element. The number of selenoproteins in animals varies, with humans having 25 and mice having 24 selenoproteins. To date, however, only one selenoprotein, thioredoxin reductase, has been detected in Caenorhabditis elegans, and this enzyme contains only one Sec. Here, we characterize the selenoproteomes of C.elegans and Caenorhabditis briggsae with three independent algorithms, one searching for pairs of homologous nematode SECIS elements, another searching for Cys- or Sec-containing homologs of potential nematode selenoprotein genes and the third identifying Sec-containing homologs of annotated nematode proteins. These methods suggest that thioredoxin reductase is the only Sec-containing protein in the C.elegans and C.briggsae genomes. In contrast, we identified additional selenoproteins in other nematodes. Assuming that Sec insertion mechanisms are conserved between nematodes and other eukaryotes, the data suggest that nematode selenoproteomes were reduced during evolution, and that in an extreme reduction case Sec insertion systems probably decode only a single UGA codon in C.elegans and C.briggsae genomes. In addition, all detected genes had a rare form of SECIS element containing a guanosine in place of a conserved adenosine present in most other SECIS structures, suggesting that in organisms with small selenoproteomes SECIS elements may change rapidly.  相似文献   

16.
Novel mouse models were developed in which the hepatic selenoprotein population was targeted for removal by disrupting the selenocysteine (Sec) tRNA([Ser]Sec) gene (trsp), and selenoprotein expression was then restored by introducing wild type or mutant trsp transgenes. The selenoprotein population was partially replaced in liver with mutant transgenes encoding mutations at either position 34 (34T-->A) or 37 (37A-->G) in tRNA([Ser]Sec). The A34 transgene product lacked the highly modified 5-methoxycarbonylmethyl-2'-O-methyluridine, and its mutant base A was converted to I34. The G37 transgene product lacked the highly modified N(6)-isopentenyladenosine. Both mutant tRNAs lacked the 2'-methylribose at position 34 (Um34), and both supported expression of housekeeping selenoproteins (e.g. thioredoxin reductase 1) in liver but not stress-related proteins (e.g. glutathione peroxidase 1). Thus, Um34 is responsible for synthesis of a select group of selenoproteins rather than the entire selenoprotein population. The ICA anticodon in the A34 mutant tRNA decoded Cys codons, UGU and UGC, as well as the Sec codon, UGA. However, metabolic labeling of A34 transgenic mice with (75)Se revealed that selenoproteins incorporated the label from the A34 mutant tRNA, whereas other proteins did not. These results suggest that the A34 mutant tRNA did not randomly insert Sec in place of Cys, but specifically targeted selected selenoproteins. High copy numbers of A34 transgene, but not G37 transgene, were not tolerated in the absence of wild type trsp, further suggesting insertion of Sec in place of Cys in selenoproteins.  相似文献   

17.
The citrus phospholipid hydroperoxide glutathione peroxidase (cit-PHGPx) was the first plant peroxidase demonstrated to exhibit PHGPx-specific enzymatic activity, although it was 500-fold weaker than that of the pig heart analog. This relatively low activity is accounted for the catalytic residue of cit-PHGPx, which was found to be cysteine and not the rare selenocysteine (Sec) present in animal enzymes. Sec incorporation into proteins is encoded by a UGA codon, usually a STOP codon, which, in prokaryotes, is suppressed by an adjacent downstream mRNA stem-loop structure, the Sec insertion sequence (SECIS). By performing appropriate nucleotide substitutions into the gene encoding cit-PHGPx, we introduced bacterial-type SECIS elements that afforded the substitution of the catalytic Cys(41) by Sec, as established by mass spectrometry, while preserving the functional integrity of the peroxidase. The recombinant enzyme, whose synthesis is selenium-dependent, displayed a 4-fold enhanced peroxidase activity as compared with the Cys-containing analog, thus confirming the higher catalytic power of Sec compared with Cys in cit-PHGPx active site. The study led also to refinement of the minimal sequence requirements of the bacterial-type SECIS, and, for the first time, to the heterologous expression in Escherichia coli of a eukaryotic selenoprotein containing a SECIS in its open reading frame.  相似文献   

18.
Proteins containing the 21st amino acid selenocysteine (Sec) are present in the three domains of life. However, within lower eukaryotes, particularly parasitic protists, the dependence on the trace element selenium is variable as many organisms lost the ability to utilize Sec. Herein, we analyzed the genomes of Trypanosoma and Leishmania for the presence of genes coding for Sec-containing proteins. The selenoproteomes of these flagellated protozoa have three selenoproteins, including distant homologs of mammalian SelK and SelT, and a novel multidomain selenoprotein designated SelTryp. In SelK and SelTryp, Sec is near the C-terminus, and in all three selenoproteins, it is within predicted redox motifs. SelTryp has neither Sec- nor cysteine-containing homologs in the human host and appears to be a Kinetoplastida-specific protein. The use of selenium for protein synthesis was verified by metabolically labeling Trypanosoma cells with 75Se. In addition, genes coding for components of the Sec insertion machinery were identified in the Kinetoplastida genomes. Finally, we found that Trypanosoma brucei brucei cells were highly sensitive to auranofin, a compound that specifically targets selenoproteins. Overall, these data establish that Trypanosoma, Leishmania and likely other Kinetoplastida utilize and depend on the trace element selenium, and this dependence is due to occurrence of selenium in at least three selenoproteins.  相似文献   

19.
The presence of selenocysteine in a protein confers many unique properties that make the production of recombinant selenoproteins desirable. Targeted incorporation of Sec into a protein of choice is possible by exploiting elongation factor Tu-dependent reassignment of UAG codons, a strategy that has been continuously improved by a variety of means. Improving selenoprotein yield by directed evolution requires selection and screening markers that are titratable, have a high dynamic range, enable high-throughput screening, and can discriminate against nonspecific UAG decoding. Current screening techniques are limited to a handful of reporters where a cysteine (Cys) or Sec residue normally affords activity. Unfortunately, these existing Cys/Sec-dependent reporters lack the dynamic range of more ubiquitous reporters or suffer from other limitations. Here we present a versatile strategy to adapt established reporters for specific Sec incorporation. Inteins are intervening polypeptides that splice themselves from the precursor protein in an autocatalytic splicing reaction. Using an intein that relies exclusively on Sec for splicing, we show that this intein cassette can be placed in-frame within selection and screening markers, affording reporter activity only upon successful intein splicing. Furthermore, because functional splicing can only occur when a catalytic Sec is present, the amount of synthesized reporter directly measures UAG-directed Sec incorporation. Importantly, we show that results obtained with intein-containing reporters are comparable to the Sec incorporation levels determined by mass spectrometry of isolated recombinant selenoproteins. This result validates the use of these intein-containing reporters to screen for evolved components of a translation system yielding increased selenoprotein amounts.  相似文献   

20.
Methionine sulfoxide reductases A and B (MsrA and MsrB) have been known to be thioredoxin (Trx)-dependent enzymes that catalyze the reduction of methionine sulfoxide in a stereospecific manner. This work reports that glutaredoxin, another major thiol-disulfide oxidoreductase, can serve as a reductant for both MsrA and MsrB. Glutaredoxins efficiently reduced 1-Cys MsrA lacking a resolving Cys, which is not reducible by Trx. Glutaredoxins also reduced 3-Cys MsrA containing two resolving Cys. The glutaredoxin-dependent activity of the 3-Cys MsrA was comparable with the Trx-dependent activity. The kinetic data suggest that 1-Cys MsrA is more efficiently reduced by glutaredoxin than 3-Cys form. Also, glutaredoxins could function as a reductant for 1-Cys MsrB lacking a resolving Cys as previously reported. In contrast to the previous report, 2-Cys MsrB containing a resolving Cys was reducible by the glutaredoxins. Collectively, this study demonstrates that glutaredoxins reduce MsrAs and MsrBs with or without resolving Cys.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号