首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Laminins are a family of multi-functional basement membrane proteins. Their C-terminal domain binds to cell surface receptors and is thereby responsible for cell anchorage and the initiation of specific outside-in and inside-out signals. With their N-terminal parts, laminins interact with proteins of the extracellular matrix scaffold to secure the basement membrane to the underlying mesenchymal tissue. Laminins 5A (alpha3Abeta3gamma2), 5B (alpha3Bbeta3gamma2) and 6 (alpha3Abeta1gamma1) are isoforms specific of the basement membrane underneath the epidermis and they undergo a sequential series of extracellular proteolytic changes, which might successively turn on and off one or several of their biological and mechanical functions. Under physiological conditions, such as in adult human skin, epithelial laminins have lost part of the C- and N-terminal domains of the alpha3 and gamma2 chains, respectively. In contrast, in cylindromatosis, a rare inherited disease characterised by major ultrastructural alterations of the basement membrane and altered expression/distribution of integrin receptors, laminin processing has not been completed. Together, these results suggest that laminin processing may regulate signalling pathways and the architecture of the basement membrane by restricting the repertoire of interactions with cell surface receptors and extracellular matrix components.  相似文献   

2.
Regulated adhesion of leukocytes to the extracellular matrix is essential for transmigration of blood vessels and subsequent migration into the stroma of inflamed tissues. Although beta(2)-integrins play an indisputable role in adhesion of polymorphonuclear granulocytes (PMN) to endothelium, we show here that beta(1)- and beta(3)-integrins but not beta(2)-integrin are essential for the adhesion to and migration on extracellular matrix molecules of the endothelial cell basement membrane and subjacent interstitial matrix. Mouse wild type and beta(2)-integrin null PMN and the progranulocytic cell line 32DC13 were employed in in vitro adhesion and migration assays using extracellular matrix molecules expressed at sites of extravasation in vivo, in particular the endothelial cell laminins 8 and 10. Wild type and beta(2)-integrin null PMN showed the same pattern of ECM binding, indicating that beta(2)-integrins do not mediate specific adhesion of PMN to the extracellular matrix molecules tested; binding was observed to the interstitial matrix molecules, fibronectin and vitronectin, via integrins alpha(5)beta(1) and alpha(v)beta(3), respectively; to laminin 10 via alpha(6)beta(1); but not to laminins 1, 2, and 8, collagen type I and IV, perlecan, or tenascin-C. PMN binding to laminins 1, 2, and 8 could not be induced despite surface expression of functionally active integrin alpha(6)beta(1), a major laminin receptor, demonstrating that expression of alpha(6)beta(1) alone is insufficient for ligand binding and suggesting the involvement of accessory factors. Nevertheless, laminins 1, 8, and 10 supported PMN migration, indicating that differential cellular signaling via laminins is independent of the extent of adhesion. The data demonstrate that adhesive and nonadhesive interactions with components of the endothelial cell basement membrane and subjacent interstitium play decisive roles in controlling PMN movement into sites of inflammation and illustrate that beta(2)-integrins are not essential for such interactions.  相似文献   

3.
The basement membrane is a highly intricate and organized portion of the extracellular matrix that interfaces with a variety of cell types including epithelial, endothelial, muscle, nerve, and fat cells. The laminin family of glycoproteins is a major constituent of the basement membrane. The 16 known laminin isoforms are formed from combinations of alpha, beta, and gamma chains, with each chain containing specific domains capable of interacting with cellular receptors such as integrins and other extracellular ligands. In addition to its role in the assembly and architectural integrity of the basement membrane, laminins interact with cells to influence proliferation, differentiation, adhesion, and migration, processes activated in normal and pathologic states. In vitro these functions are regulated by the post-translational modifications of the individual laminin chains. In vivo laminin knockout mouse studies have been particularly instructive in defining the function of specific laminins in mammalian development and have also highlighted its role as a key component of the basement membrane. In this review, we will define how laminin structure complements function and explore its role in both normal and pathologic processes.  相似文献   

4.
Laminins of the dermo-epidermal junction.   总被引:9,自引:0,他引:9  
Laminins are the most abundant structural non-collagenous glycoproteins ubiquitously present in basement membranes. They are multidomain molecules constituting a family of possibly more than 50 members. Some members such as laminins 5, 6 and 10 are specific of the basal lamina present under stratified epithelia. Although only few intact laminin isoforms have been purified from cultivated cells or tissues, genetic engineering has opened the way for a rapid development of laminin structural biology. Moreover, the phenotypes resulting from gene targeting in mouse or from laminin defects in acquired or inherited human diseases highlight the pivotal role of laminins in morphogenesis, development, and physiology. Indeed, the laminins display a remarkable repertoire of functions, most importantly as structural elements forming a network throughout the basement membrane to which other collagenous or non-collagenous glycoproteins and proteoglycans attach. Furthermore, they are signaling molecules providing adjacent cells with diverse information by interacting with cell surface components.  相似文献   

5.
Many cells in tissues are in contact with a highly specialized extracellular matrix, termed the basement membrane. Basement membranes have certain common components, including collagen IV, laminins, heparan sulfate proteoglycans, and growth factors which have a wide variety of biological activities. Extracts of basement membrane‐rich tissue have yielded material suitable for studying cell–basement membrane interactions. Cells cultured in a 3D basement membrane matrix allow the in vitro modeling of cell behavior, including differentiation, apoptosis, steps in capillary formation, cancer growth, invasion, etc. It has also led to the development of widely used assays for invasion and angiogenesis and more recently for tumor cell dormancy. Importantly, stem cell culture in 3D basement membrane matrices has provided important advances that allow for expansion of these cells in feeder layer‐free cultures and for studying their differentiation. 3D basement membrane culture has allowed the molecular dissection of pathways and genes important in differentiation, aided in the identification of progenitor cells, and led to the development of tissue constructs which may be models for regenerative medicine. This review will outline how this technology has led to important research assays and findings that have advanced our understanding of tissue development and disease and aided in the preclinical development of various therapeutics. J. Cell. Physiol. 221: 18–25. Published 2009 Wiley‐Liss, Inc.  相似文献   

6.
Basement membranes are specialized extracellular matrices consisting of tissue-specific organizations of multiple matrix molecules and serve as structural barriers as well as substrates for cellular interactions. The network of collagen IV is thought to define the scaffold integrating other components such as, laminins, nidogens or perlecan, into highly organized supramolecular architectures. To analyze the functional roles of the major collagen IV isoform alpha1(IV)(2)alpha2(IV) for basement membrane assembly and embryonic development, we generated a null allele of the Col4a1/2 locus in mice, thereby ablating both alpha-chains. Unexpectedly, embryos developed up to E9.5 at the expected Mendelian ratio and showed a variable degree of growth retardation. Basement membrane proteins were deposited and assembled at expected sites in mutant embryos, indicating that this isoform is dispensable for matrix deposition and assembly during early development. However, lethality occurred between E10.5-E11.5, because of structural deficiencies in the basement membranes and finally by failure of the integrity of Reichert's membrane. These data demonstrate for the first time that collagen IV is fundamental for the maintenance of integrity and function of basement membranes under conditions of increasing mechanical demands, but dispensable for deposition and initial assembly of components. Taken together with other basement membrane protein knockouts, these data suggest that laminin is sufficient for basement membrane-like matrices during early development, but at later stages the specific composition of components including collagen IV defines integrity, stability and functionality.  相似文献   

7.
《The Journal of cell biology》1996,132(6):1189-1198
Stable attachment of external epithelia to the basement membrane and underlying stroma is mediated by transmembrane proteins such as the integrin alpha6beta4 and bullous pemphigoid antigen 2 within the hemidesmosomes along the basolateral surface of the epithelial cell and their ligands that include a specialized subfamily of laminins. The laminin 5 molecule (previously termed kalinin/nicein/epiligrin) is a member of this epithelial-specific subfamily. Laminin 5 chains are not only considerably truncated within domains III-VI, but are also extensively proteolytically processed in vitro and in vivo. As a result, the domains expected to be required for the association of laminins with other basement membrane components are lacking in the mature laminin 5 molecule. Therefore, the tight binding of laminin 5 to the basement membrane may occur by a unique mechanism. To examine laminin 5 in tissue, we chose human amnion as the source, because of its availability and the similarity of the amniotic epithelial basement membrane with that of skin. We isolated the laminin 5 contained within the basement membrane of human amnion. In addition to monomeric laminin 5, we find that much of the laminin 5 isolated is covalently adducted with laminin 6 (alpha3beta1gamma1) and a novel laminin isotype we have termed laminin 7 (alpha3beta2gamma1). We propose that the association between laminin 5 and laminins 6 and 7 is a mechanism used in amnion to allow stable association of laminin 5 with the basement membrane. The beta2 chain is seen at the human amniotic epithelial-stromal interface and at the dermal-epidermal junction of fetal and adult bovine skin by immunofluorescence, but is not present, or only weakly present, in neonatal human skin.  相似文献   

8.
The interaction of endothelial cells and pericytes with their microenvironment, in particular with the basement membrane, plays a crucial role during vasculogenesis and angiogenesis. In this review, we focus on laminins, a major family of extracellular matrix molecules present in basement membranes. Laminins interact with cell surface receptors to trigger intracellular signalling that shapes cell behaviour. Each laminin exerts a distinct effect on endothelial cells and pericytes which largely depends on the adhesion receptor profile expressed on the cell surface. Moreover, proteolytic cleavage of laminins may affect their role in angiogenesis. We report in vitro and in vivo data on laminin-111, -411, -511 and -332 and their associated signalling that regulates cell behaviour and angiogenesis under normal and pathological conditions. We also discuss how tissue-specific deletion of laminin genes affects the behaviour of endothelial cells and pericytes and thus angiogenesis. Finally, we examine how coculture systems with defined laminin expression contribute to our understanding of the roles of laminins in normal and pathological vasculogenesis and angiogenesis.  相似文献   

9.
During adipogenic differentiation human mesenchymal stem cells (hMSC) produce collagen type IV. In immunofluorescence staining differentiating hMSCs started to express collagen type IV when Oil Red O-positive fat droplets appeared intracellularly. Quantitative real time-polymerase chain reaction confirmed progressive increase of collagen type IV α1 and α2 mRNA levels over time, 18.6- and 12.2-fold by day 28, respectively, whereas the copy numbers of α3-α6 mRNAs remained rather stable and low. Type IV collagen was in confocal laser scanning microscopy seen around adipocytes, where also laminins and nidogen were found, suggesting pericellular deposition of all key components of the fully developed basement membrane. Immunofluorescence staining of matrix metalloproteinase-2 (MMP-2, 72 kD type IV collagenase, gelatinase A) and MMP-9 (92 kD type IV collagenase, gelatinase B) disclosed only faint staining of MSCs, but MMP-9 was strongly induced during adipogenesis, whereas MSC supernatants disclosed in zymography pro-MMP-2 and faint pro-MMP-9 bands, which increased over time, with partial conversion of pro-MMP-2 to its active 62 kD form. Differentiation was associated with increasing membrane type 1-MMP/MMP-14 and tissue inhibitor of metalloproteinase-2 (TIMP-2) staining, which may enable participation of type IV collagenases in basement membrane remodelling via ternary MT1-MMP/TIMP-2/MMP-2 or -9 complexes, focalizing the fully active enzyme to the cell surface. MMP-9, which increased more in immunofluorescence staining, was perhaps preferentially bound to cell surface and/or remodelling adipocyte basement membrane. These results suggest that upon MSC-adipocyte differentiation collagen type IV synthesis and remodelling become necessary when intracellular accumulation of fat necessitates a dynamically supporting and instructive, partly denatured adipogenic pericellular type IV collagen scaffold.  相似文献   

10.
Vertebrate laminins and netrins share N-terminal domain structure, but appear to be only distantly related. Both families can be divided into different subfamilies on the basis of structural considerations. Recent observations suggest that specific laminin and netrin members have developmental functions that are highly conserved across species. Vertebrate laminin-1 (alpha1beta1gamma1) and laminin-10 (alpha5beta1gamma1), like the two Caenorhabditis elegans laminins, are embryonically expressed and are essential for basement membrane assembly. Basement membrane assembly is a cooperative process in which laminins polymerize through their LN domains and anchor to the cell surface through their G domains; this leads to cell signaling through integrins and dystroglycan (and possibly other receptors) recruited to the adherent laminin. Netrins may associate with this network through heterotypic LN domain interactions. Vertebrate netrin-1, like invertebrate UNC-6/netrins, is well known as an extracellular guidance cue that directs axon migration towards or away from the ventral midline. It also regulates cell adhesions and migrations, probably as a basement membrane component. Although sharing structural features, these two vertebrate protein families are quite distinct, having both retained members that mediate the ancestral developmental functions.  相似文献   

11.
Laminins are heterotrimeric extracellular matrix molecules, present in a wide range of basement membranes within human tissues. They consist of a combination of different alpha, beta, and gamma subunits. Three different gamma subunits have been described to date. Two of them, the gamma1 and gamma2 chains are constituents of basement membrane related laminins, while the gamma3 chain was detected in skin, heart, lung, reproductive tract, brain, and in the retina. Unlike other laminins, the expression of the gamma3 chain was localized to peripheral nerves and to the apical surface of ciliated epithelial cells and in the retina. To further investigate the function and the possible pathogenic role of laminin gamma3 in human disease, we elucidated the structure of the corresponding LAMC3 gene which encodes this polypeptide. Here we report the genomic organization of the LAMC3 gene and a mutation detection strategy for use in genetic studies.  相似文献   

12.
Laminins   总被引:1,自引:0,他引:1  
  相似文献   

13.
In the testis, the base of the Sertoli cells is in contact with the basement membrane matrix, in which the laminins constitute the major noncollagenous components. We have previously demonstrated that antibodies against a preparation enriched in basement membranes of seminiferous tubules (STBM) or a noncollagenous fraction of STBM passively transferred induced modifications to the basement membranes and focal sloughing of the seminiferous epithelium in the rat. In the present report, we tested the effect of passive immunization with anti-laminin IgG on the limiting membrane of the seminiferous tubules, spermatogenesis, and maintenance of the blood-testis barrier in the adult guinea pig. Rabbit antibodies to laminin 1 (IgG fraction) were injected in adult male guinea pigs (GP). Nonimmunized GP and GP immunized with normal rabbit serum IgG were used as controls. Measurements of variations in the diameter and lumen of the tubules and in the size of individual components of the tubular limiting membrane showed that the highest percentage of tubules with reduced lumen occurred 30 days after passive immunization with anti-laminin, when the limiting membrane was thickest and lesions to the seminiferous epithelium were most severe. The lesions included thickening of the limiting membrane, infolding in the basal lamina, deposits of immune complexes coincident with sloughing of pachytene spermatocytes and spermatids, and vacuolization of the Sertoli cells. Mononuclear cell infiltration of the tubules was rare. Permeability tracer studies revealed that Sertoli cell tight junctions remained impermeable. Fifty and 80 days after treatment, the basement membrane of the tubules and the progression of the spermatogenesis were normal. Passive immunization with anti-laminin IgG provided a valuable experimental model for the in vivo study of the influence of the basement membrane on the issue of spermatogenesis and the integrity of the seminiferous epithelium.  相似文献   

14.
Extracellular matrix (ECM) remodeling regulates multiple cellular functions required for normal development and tissue repair. Matrix metalloproteinases (MMPs) are key mediators of this process and membrane targeted MMPs (MT-MMPs) in particular have been shown to be important in normal development of specific organs. In this study we investigated the role of MT1-MMP in kidney development. We demonstrate that loss of MT1-MMP leads to a renal phenotype characterized by a moderate decrease in ureteric bud branching morphogenesis and a severe proliferation defect. The kidneys of MT1-MMP-null mice have increased deposition of collagen IV, laminins, perlecan, and nidogen and the phenotype is independent of the MT-1MMP target, MMP-2. Utilizing in vitro systems we demonstrated that MTI-MMP proteolytic activity is required for renal tubule cells to proliferate in three dimensional matrices and to migrate on collagen IV and laminins. Together these data suggest an important role for MT1-MMP in kidney development, which is mediated by its ability to regulate cell proliferation and migration by proteolytically cleaving kidney basement membrane components.  相似文献   

15.
Intestinal epithelial cells are characterized by continuous renewal and differentiation events, which may be influenced by the basement membrane, and in particular laminins, which are major components of this specialized extracellular matrix. The function and signaling pathways of laminins in these processes are still poorly documented. In this study, we investigated the possible role and the subcellular localization of nucleolin, a nuclear shuttling protein, in relation to differentiation of human intestinal epithelial Caco2/TC7 cells triggered by exogenous laminin-1. Immunofluorescence and Western blot analysis indicated that laminin-1 induced early differentiation of the cells concomitantly to a decrease in nuclear nucleolin and its a cell surface location. We also showed that both effects of laminin-1 on Caco2/TC7 cells--induction of the differentiation marker sucrase-isomaltase and redistribution of nucleolin--could be mediated by a beta1-integrin dependent cascade that implicated activation of the p38 MAPK pathway. In addition, knock-down of nucleolin expression by the small interfering RNA strategy mimicked the effect of laminin-1 as it resulted in the induction of cell polarization and differentiation. Thus, our study suggests that changes in the subcellular distribution and expression level of nucleolin play an important role in intestinal cell differentiation and relay the signaling pathway induced by laminin-1.  相似文献   

16.
17.
Endocrine pancreatic beta cells require endothelial signals for their differentiation and function. However, the molecular basis for such signals remains unknown. Here, we show that beta cells, in contrast to the exocrine pancreatic cells, do not form a basement membrane. Instead, by using VEGF-A, they attract endothelial cells, which form capillaries with a vascular basement membrane next to the beta cells. We have identified laminins, among other vascular basement membrane proteins, as endothelial signals, which promote insulin gene expression and proliferation in beta cells. We further demonstrate that beta1-integrin is required for the beta cell response to the laminins. The proposed mechanism explains why beta cells must interact with endothelial cells, and it may apply to other cellular processes in which endothelial signals are required.  相似文献   

18.
An active involvement of blood-brain barrier endothelial cell basement membranes in development of inflammatory lesions in the central nervous system (CNS) has not been considered to date. Here we investigated the molecular composition and possible function of the extracellular matrix encountered by extravasating T lymphocytes during experimental autoimmune encephalomyelitis (EAE).Endothelial basement membranes contained laminin 8 (alpha4beta1gamma1) and/or 10 (alpha5beta1gamma1) and their expression was influenced by proinflammatory cytokines or angiostatic agents. T cells emigrating into the CNS during EAE encountered two biochemically distinct basement membranes, the endothelial (containing laminins 8 and 10) and the parenchymal (containing laminins 1 and 2) basement membranes. However, inflammatory cuffs occurred exclusively around endothelial basement membranes containing laminin 8, whereas in the presence of laminin 10 no infiltration was detectable. In vitro assays using encephalitogenic T cell lines revealed adhesion to laminins 8 and 10, whereas binding to laminins 1 and 2 could not be induced. Downregulation of integrin alpha6 on cerebral endothelium at sites of T cell infiltration, plus a high turnover of laminin 8 at these sites, suggested two possible roles for laminin 8 in the endothelial basement membrane: one at the level of the endothelial cells resulting in reduced adhesion and, thereby, increased penetrability of the monolayer; and secondly at the level of the T cells providing direct signals to the transmigrating cells.  相似文献   

19.
Laminins are heterotrimeric molecules composed of an alpha, a beta, and a gamma chain; they have broad functional roles in development and in stabilizing epithelial structures. Here, we identified a novel laminin, composed of known alpha and beta chains but containing a novel gamma chain, gamma3. We have cloned gene encoding this chain, LAMC3, which maps to chromosome 9 at q31-34. Protein and cDNA analyses demonstrate that gamma3 contains all the expected domains of a gamma chain, including two consensus glycosylation sites and a putative nidogen-binding site. This suggests that gamma3-containing laminins are likely to exist in a stable matrix. Studies of the tissue distribution of gamma3 chain show that it is broadly expressed in: skin, heart, lung, and the reproductive tracts. In skin, gamma3 protein is seen within the basement membrane of the dermal-epidermal junction at points of nerve penetration. The gamma3 chain is also a prominent element of the apical surface of ciliated epithelial cells of: lung, oviduct, epididymis, ductus deferens, and seminiferous tubules. The distribution of gamma3-containing laminins on the apical surfaces of a variety of epithelial tissues is novel and suggests that they are not found within ultrastructurally defined basement membranes. It seems likely that these apical laminins are important in the morphogenesis and structural stability of the ciliated processes of these cells.  相似文献   

20.
Correct interactions with extracellular matrix are essential to human pluripotent stem cells (hPSC) to maintain their pluripotent self-renewal capacity during in vitro culture. hPSCs secrete laminin 511/521, one of the most important functional basement membrane components, and they can be maintained on human laminin 511 and 521 in defined culture conditions. However, large-scale production of purified or recombinant laminin 511 and 521 is difficult and expensive. Here we have tested whether a commonly available human choriocarcinoma cell line, JAR, which produces high quantities of laminins, supports the growth of undifferentiated hPSCs. We were able to maintain several human pluripotent stem cell lines on decellularized matrix produced by JAR cells using a defined culture medium. The JAR matrix also supported targeted differentiation of the cells into neuronal and hepatic directions. Importantly, we were able to derive new human induced pluripotent stem cell (hiPSC) lines on JAR matrix and show that adhesion of the early hiPSC colonies to JAR matrix is more efficient than to matrigel. In summary, JAR matrix provides a cost-effective and easy-to-prepare alternative for human pluripotent stem cell culture and differentiation. In addition, this matrix is ideal for the efficient generation of new hiPSC lines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号