首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ordered lipid domains enriched in sphingolipids and cholesterol (lipid rafts) have been implicated in numerous functions in biological membranes. We recently found that lipid domain/raft formation is dependent on the sterol component having a structure that allows tight packing with lipids having saturated acyl chains (Xu, X., and London, E. (2000) Biochemistry 39, 844-849). In this study, the domain-promoting activities of various natural sterols were compared with that of cholesterol using both fluorescence quenching and detergent insolubility methods. Using model membranes, it was shown that, like cholesterol, both plant and fungal sterols promote the formation of tightly packed, ordered lipid domains by lipids with saturated acyl chains. Surprisingly ergosterol, a fungal sterol, and 7-dehydrocholesterol, a sterol present in elevated levels in Smith-Lemli-Opitz syndrome, were both significantly more strongly domain-promoting than cholesterol. Domain formation was also affected by the structure of the sphingolipid (or that of an equivalent "saturated" phospholipid) component. Sterols had pronounced effects on domain formation by sphingomyelin and dipalmitoylphosphatidylcholine but only a weak influence on the ability of cerebrosides to form domains. Strikingly it was found that a small amount of ceramide (3 mol %) significantly stabilized domain/raft formation. The molecular basis for, and the implications of, the effects of different sterols and sphingolipids (especially ceramide) on the behavior and biological function of rafts are discussed.  相似文献   

2.
Many plasma membrane (PM) functions depend on the cholesterol concentration in the PM in strikingly nonlinear, cooperative ways: fully functional in the presence of physiological cholesterol levels (35~45 mol%), and nonfunctional below 25 mol% cholesterol; namely, still in the presence of high concentrations of cholesterol. This suggests the involvement of cholesterol‐based complexes/domains formed cooperatively. In this review, by examining the results obtained by using fluorescent lipid analogs and avoiding the trap of circular logic, often found in the raft literature, we point out the fundamental similarities of liquid‐ordered (Lo)‐phase domains in giant unilamellar vesicles, Lo‐phase‐like domains formed at lower temperatures in giant PM vesicles, and detergent‐resistant membranes: these domains are formed by cooperative interactions of cholesterol, saturated acyl chains, and unsaturated acyl chains, in the presence of >25 mol% cholesterol. The literature contains evidence, indicating that the domains formed by the same basic cooperative molecular interactions exist and play essential roles in signal transduction in the PM. Therefore, as a working definition, we propose that raft domains in the PM are liquid‐like molecular complexes/domains formed by cooperative interactions of cholesterol with saturated acyl chains as well as unsaturated acyl chains, due to saturated acyl chains' weak multiple accommodating interactions with cholesterol and cholesterol's low miscibility with unsaturated acyl chains and TM proteins. Molecules move within raft domains and exchange with those in the bulk PM. We provide a logically established collection of fluorescent lipid probes that preferentially partition into raft and non‐raft domains, as defined here, in the PM.  相似文献   

3.
N-3 polyunsaturated fatty acids (PUFAs) from fish oil exert their functional effects by targeting multiple mechanisms. One mechanism to emerge in the past decade is the ability of n-3 PUFA acyl chains to perturb the molecular organization of plasma membrane sphingolipid/cholesterol-enriched lipid raft domains. These domains are nanometer-scale assemblies that coalesce to compartmentalize select proteins for optimal function. Here we review recent evidence on how n-3 PUFAs modify lipid rafts from biophysical and biochemical experiments from several different model systems. A central theme emerges from these studies. N-3 PUFA acyl chains display tremendous conformational flexibility and a low affinity for cholesterol and saturated acyl chains. This unique flexibility of n-3 PUFA acyl chains impacts the organization of inner and outer leaflet lipid rafts by disrupting acyl chain packing and molecular order within rafts. Ultimately, the disruption in raft organization has consequences for protein clustering and thereby signaling. Overall, elucidating the complex mechanisms by which n-3 PUFA acyl chains reorganize membrane architecture will enhance the translation of these fatty acids into the clinic for treating several diseases.  相似文献   

4.
A commonly-used method for analysing raft membrane domains is based on their resistance to extraction by non-ionic detergents at 4 degrees C. However, the selectivity of different detergents in defining raft membrane domains has been questioned. We have compared the lipid composition of detergent-resistant membranes (DRMs) obtained after Triton X-100 or Lubrol WX extraction in MDCK cells in order to understand the differential effect of these detergents on membranes and their selectivity in solubilizing or not proteins. Both Lubrol and Triton DRMs were enriched with cholesterol over the lysate, thus exhibiting characteristics consistent with the properties of membrane rafts. However, the two DRM fractions differed considerably in the ratio between lipids of the inner and outer membrane leaflets. Lubrol DRMs were especially enriched with phosphatidylethanolamine, including polyunsaturated species with long fatty acyl chains. Lubrol and Triton DRMs also differed in the amount of raft transmembrane proteins and raft proteins anchored to the cytoplasmic leaflet. Our results suggest that the inner side of rafts is enriched with phosphatidylethanolamine and cholesterol, and is more solubilized by Triton X-100 than by Lubrol WX.  相似文献   

5.
Biochemical and cell-biological experiments have identified cholesterol as an important component of lipid 'rafts' and related structures (e.g., caveolae) in mammalian cell membranes, and membrane cholesterol levels as a key factor in determining raft stability and organization. Studies using cholesterol-containing bilayers as model systems have provided important insights into the roles that cholesterol plays in determining lipid raft behavior. This review will discuss recent progress in understanding two aspects of lipid-cholesterol interactions that are particularly relevant to understanding the formation and properties of lipid rafts. First, we will consider evidence that cholesterol interacts differentially with different membrane lipids, associating particularly strongly with saturated, high-melting phospho- and sphingolipids and particularly weakly with highly unsaturated lipid species. Second, we will review recent progress in reconstituting and directly observing segregated raft-like (liquid-ordered) domains in model membranes that mimic the lipid compositions of natural membranes incorporating raft domains.  相似文献   

6.
Recent data suggest that membrane microdomains or rafts that are rich in sphingolipids and cholesterol are important in signal transduction and membrane trafficking. Two models of raft structure have been proposed. One proposes a unique role for glycosphingolipids (GSL), suggesting that GSL-head-group interactions are essential in raft formation. The other model suggests that close packing of the long saturated acyl chains found on both GSL and sphingomyelin plays a key role and helps these lipids form liquid-ordered phase domains in the presence of cholesterol. To distinguish between these models, we compared rafts in the MEB-4 melanoma cell line and its GSL-deficient derivative, GM-95. Rafts were isolated from cell lysates as detergent-resistant membranes (DRMs). The two cell lines had very similar DRM protein profiles. The yield of DRM protein was 2-fold higher in the parental than the mutant line, possibly reflecting cytoskeletal differences. The same amount of DRM lipid was isolated from both lines, and the lipid composition was similar except for up-regulation of sphingomyelin in the mutant that compensated for the lack of GSL. DRMs from the two lines had similar fluidity as measured by fluorescence polarization of diphenylhexatriene. Methyl-beta-cyclodextrin removed cholesterol from both cell lines with the same kinetics and to the same extent, and both a raft-associated glycosyl phosphatidylinositol-anchored protein and residual cholesterol showed the same distribution between DRMs and the detergent-soluble fraction after cholesterol removal in both cell lines. Finally, a glycosyl phosphatidylinositol-anchored protein was delivered to the cell surface at similar rates in the two lines, even after cholesterol depletion with methyl-beta-cyclodextrin. We conclude that GSL are not essential for the formation of rafts and do not play a major role in determining their properties.  相似文献   

7.
Biochemical and cell-biological experiments have identified cholesterol as an important component of lipid ‘rafts’ and related structures (e.g., caveolae) in mammalian cell membranes, and membrane cholesterol levels as a key factor in determining raft stability and organization. Studies using cholesterol-containing bilayers as model systems have provided important insights into the roles that cholesterol plays in determining lipid raft behavior. This review will discuss recent progress in understanding two aspects of lipid-cholesterol interactions that are particularly relevant to understanding the formation and properties of lipid rafts. First, we will consider evidence that cholesterol interacts differentially with different membrane lipids, associating particularly strongly with saturated, high-melting phospho- and sphingolipids and particularly weakly with highly unsaturated lipid species. Second, we will review recent progress in reconstituting and directly observing segregated raft-like (liquid-ordered) domains in model membranes that mimic the lipid compositions of natural membranes incorporating raft domains.  相似文献   

8.
A commonly-used method for analysing raft membrane domains is based on their resistance to extraction by non-ionic detergents at 4 °C. However, the selectivity of different detergents in defining raft membrane domains has been questioned. We have compared the lipid composition of detergent-resistant membranes (DRMs) obtained after Triton X-100 or Lubrol WX extraction in MDCK cells in order to understand the differential effect of these detergents on membranes and their selectivity in solubilizing or not proteins. Both Lubrol and Triton DRMs were enriched with cholesterol over the lysate, thus exhibiting characteristics consistent with the properties of membrane rafts. However, the two DRM fractions differed considerably in the ratio between lipids of the inner and outer membrane leaflets. Lubrol DRMs were especially enriched with phosphatidylethanolamine, including polyunsaturated species with long fatty acyl chains. Lubrol and Triton DRMs also differed in the amount of raft transmembrane proteins and raft proteins anchored to the cytoplasmic leaflet. Our results suggest that the inner side of rafts is enriched with phosphatidylethanolamine and cholesterol, and is more solubilized by Triton X-100 than by Lubrol WX.  相似文献   

9.
T Y Wang  R Leventis  J R Silvius 《Biochemistry》2001,40(43):13031-13040
We have used a fluorescence assay and detergent fractionation to examine the partitioning of different fluorescent lipidated peptides, with sequences and lipid substituents matching those found in various classes of lipidated cellular proteins, into liquid-ordered (raft-like) domains in lipid bilayers. Peptides incorporating isoprenyl groups, or multiple unsaturated acyl chains, show negligible affinity for liquid-ordered domains in mixed-phase liquid-ordered/liquid-disordered (l(o)/l(d)) bilayers composed of dipalmitoylphosphatidylcholine, a spin-labeled unsaturated phosphatidylcholine, and cholesterol. By contrast, peptides incorporating multiple S- and/or N-acyl chains, or a cholesterol residue plus an N-terminal palmitoyl chain, show significant partitioning into liquid-ordered domains under the same conditions. Interestingly, the affinity of a lipidated peptide for l(o) domains can be strongly influenced, not only by the structures of the lipid substituents but also by the nature and the positions of their attachment to the peptide chain. These results are well correlated with those obtained from parallel assays based on low-temperature detergent fractionation. Using the latter approach, we further demonstrate that a truly minimal l(o) domain partitioning motif [myristoylGlyCys(palmitoyl)-] can mediate efficient incorporation into the "raft" fraction of COS-7 cell membranes.  相似文献   

10.
The structural and dynamical properties of lipid membranes rich in phospholipids and cholesterol are known to be strongly affected by the unsaturation of lipid acyl chains. We show that not only unsaturation but also the position of a double bond has a pronounced effect on membrane properties. We consider how cholesterol interacts with phosphatidylcholines comprising two 18-carbon long monounsaturated acyl chains, where the position of the double bond is varied systematically along the acyl chains. Atomistic molecular dynamics simulations indicate that when the double bond is not in contact with the cholesterol ring, and especially with the C18 group on its rough β-side, the membrane properties are closest to those of the saturated bilayer. However, any interaction between the double bond and the ring promotes membrane disorder and fluidity. Maximal disorder is found when the double bond is located in the middle of a lipid acyl chain, the case most commonly found in monounsaturated acyl chains of phospholipids. The results suggest a cholesterol-mediated lipid selection mechanism in eukaryotic cell membranes. With saturated lipids, cholesterol promotes the formation of highly ordered raft-like membrane domains, whereas domains rich in unsaturated lipids with a double bond in the middle remain highly fluid despite the presence of cholesterol.  相似文献   

11.
Although the functional significance of caveolae/lipid rafts in cellular signaling and cholesterol transfer is increasingly recognized, almost nothing is known regarding the lipids, cholesterol dynamics, and factors regulating these properties in caveolae/lipid rafts as opposed to nonlipid raft domains of the plasma membrane. The present findings demonstrate the utility of con-A affinity chromatography for simultaneous isolation of caveolae/lipid raft and nonlipid raft domains from plasma membranes of L-cell fibroblasts. These domains differed markedly in both protein and lipid constituents. Although caveolae/lipid rafts were enriched in total lipid, cholesterol, and phospholipid as well as other markers for these domains, the cholesterol/phospholipid ratio of caveolae/lipid rafts did not differ from that of nonlipid rafts. Nevertheless, spontaneous sterol transfer was 7-12-fold faster from caveolae/lipid raft than nonlipid raft domains of the plasma membrane. This was largely due to the near absence of exchangeable sterol in the nonlipid rafts. SCP-2 dramatically and selectively enhanced sterol transfer from caveolae/lipid rafts, but not from nonlipid rafts. Finally, overexpression of SCP-2 significantly altered the sterol dynamics of caveolae/lipid rafts to facilitate retention of cholesterol within the cell. These results established for the first time that (i) caveolae/lipid rafts, rather than the nonlipid raft domains, contain significant levels of rapidly transferable sterol, consistent with their role in spontaneous sterol transfer from and through the plasma membrane, and (ii) SCP-2 selectively regulates how caveolae/lipid rafts, but not nonlipid raft domains, mediate cholesterol trafficking through the plasma membrane.  相似文献   

12.
Use of cyclodextrin for AFM monitoring of model raft formation   总被引:5,自引:0,他引:5       下载免费PDF全文
The lipid rafts membrane microdomains, enriched in sphingolipids and cholesterol, are implicated in numerous functions of biological membranes. Using atomic force microscopy, we have examined the effects of cholesterol-loaded methyl-beta-cyclodextrin (MbetaCD-Chl) addition to liquid disordered (l(d))-gel phase separated dioleoylphosphatidylcholine (DOPC)/sphingomyelin (SM) and 1-palmitoyl-2-oleoyl phosphatidylcholine (POPC)/SM supported bilayers. We observed that incubation with MbetaCD-Chl led to the disappearance of domains with the formation of a homogeneously flat bilayer, most likely in the liquid-ordered (l(o)) state. However, intermediate stages differed with the passage through the coexistence of l(o)-l(d) phases for DOPC/SM samples and of l(o)-gel phases for POPC/SM bilayers. Thus, gel phase SM domains surrounded by a l(o) matrix rich in cholesterol and POPC could be observed just before reaching the uniform l(o) state. This suggests that raft formation in biological membranes could occur not only via liquid-liquid but also via gel-liquid immiscibility. The data also demonstrate that MbetaCD-Chl as well as the unloaded cyclodextrin MbetaCD make holes and preferentially extract SM in supported bilayers. This strongly suggests that interpretation of MbetaCD and MbetaCD-Chl effects on cell membranes only in terms of cholesterol movements have to be treated with caution.  相似文献   

13.
Lipid rafts in the plasma membrane, domains rich in cholesterol and sphingolipids, have been implicated in a number of important membrane functions. Detergent insolubility has been used to define membrane "rafts" biochemically. However, such an approach does not directly contribute to the understanding of the size and the lifetime of rafts, dynamics of the raft-constituent molecules, and the function of rafts in the membrane in situ. To address these issues, we have developed pulse EPR spin labeling and single molecule tracking optical techniques for studies of rafts in both artificial and cell membranes. In this review, we summarize our results and perspectives obtained by using these methods. We emphasize the importance of clearly distinguishing small/unstable rafts (lifetime shorter than a millisecond) in unstimulated cells and stabilized rafts induced by liganded and oligomerized (GPI-anchored) receptor molecules (core receptor rafts, lifetime over a few minutes). We propose that these stabilized rafts further induce temporal, greater rafts (signaling rafts, lifetime on the order of a second) for signaling by coalescing other small/unstable rafts, including those in the inner leaflet of the membrane, each containing perhaps one molecule of the downstream effector molecules. At variance with the general view, we emphasize the importance of cholesterol segregation from the liquid-crystalline unsaturated bulk-phase membrane for formation of the rafts, rather than the affinity of cholesterol and saturated alkyl chains. In the binary mixture of cholesterol and an unsaturated phospholipid, cholesterol is segregated out from the bulk unsaturated liquid-crystalline phase, forming cholesterol-enriched domains or clustered cholesterol domains, probably due to the lateral nonconformability between the rigid planar transfused ring structure of cholesterol and the rigid bend of the unsaturated alkyl chain at C9-C10. However, such cholesterol-rich domains are small, perhaps consisting of only several cholesterol molecules, and are short-lived, on the order of 1-100 ns. We speculate that these cholesterol-enriched domains may be stabilized by the presence of saturated alkyl chains of sphingomyelin or glycosphingolipids, and also by clustered raft proteins. In the influenza viral membrane, one of the simplest forms of a biological membrane, the lifetime of a protein and cholesterol-rich domain was evaluated to be on the order of 100 micro, again showing the short lifetime of rafts in an unstimulated state. Finally, we propose a thermal Lego model for rafts as the basic building blocks for signaling pathways in the plasma membrane.  相似文献   

14.
Ceramide is a membrane lipid involved in a number of crucial biological processes. Recent evidence suggests that ceramide is likely to reside and function within lipid rafts; ordered sphingolipid and cholesterol-rich lipid domains believed to exist within many eukaryotic cell membranes. Using lipid vesicles containing co-existing raft domains and disordered fluid domains, we find that natural and saturated synthetic ceramides displace sterols from rafts. Other raft lipids remain raft-associated in the presence of ceramide, showing displacement is relatively specific for sterols. Like cholesterol-containing rafts, ceramide-rich "rafts" remain in a highly ordered state. Comparison of the sterol-displacing abilities of natural ceramides with those of saturated diglycerides and an unsaturated ceramide demonstrates that tight lipid packing is critical for sterol displacement by ceramide. Based on these results, and the fact that cholesterol and ceramides both have small polar headgroups, we propose that ceramides and cholesterol compete for association with rafts because of a limited capacity of raft lipids with large headgroups to accommodate small headgroup lipids in a manner that prevents unfavorable contact between the hydrocarbon groups of the small headgroup lipids and the surrounding aqueous environment. Minimizing the exposure of cholesterol and ceramide to water may be a strong driving force for the association of other molecules with rafts. Furthermore, displacement of sterol from rafts by ceramide is very likely to have marked effects upon raft structure and function, altering liquid ordered properties as well as molecular composition. In this regard, certain previously observed physiological processes may be a result of displacement. In particular, a direct connection to the previously observed sphingomyelinase-induced displacement of cholesterol from plasma membranes in cells is proposed.  相似文献   

15.
Lipid rafts in the plasma membrane, domains rich in cholesterol and sphingolipids, have been implicated in a number of important membrane functions. Detergent insolubility has been used to define membrane “rafts” biochemically. However, such an approach does not directly contribute to the understanding of the size and the lifetime of rafts, dynamics of the raft-constituent molecules, and the function of rafts in the membrane in situ. To address these issues, we have developed pulse EPR spin labeling and single molecule tracking optical techniques for studies of rafts in both artificial and cell membranes. In this review, we summarize our results and perspectives obtained by using these methods. We emphasize the importance of clearly distinguishing small/unstable rafts (lifetime shorter than a millisecond) in unstimulated cells and stabilized rafts induced by liganded and oligomerized (GPI-anchored) receptor molecules (core receptor rafts, lifetime over a few minutes). We propose that these stabilized rafts further induce temporal, greater rafts (signaling rafts, lifetime on the order of a second) for signaling by coalescing other small/unstable rafts, including those in the inner leaflet of the membrane, each containing perhaps one molecule of the downstream effector molecules. At variance with the general view, we emphasize the importance of cholesterol segregation from the liquid-crystalline unsaturated bulk-phase membrane for formation of the rafts, rather than the affinity of cholesterol and saturated alkyl chains. In the binary mixture of cholesterol and an unsaturated phospholipid, cholesterol is segregated out from the bulk unsaturated liquid-crystalline phase, forming cholesterol-enriched domains or clustered cholesterol domains, probably due to the lateral nonconformability between the rigid planar transfused ring structure of cholesterol and the rigid bend of the unsaturated alkyl chain at C9-C10. However, such cholesterol-rich domains are small, perhaps consisting of only several cholesterol molecules, and are short-lived, on the order of 1-100 ns. We speculate that these cholesterol-enriched domains may be stabilized by the presence of saturated alkyl chains of sphingomyelin or glycosphingolipids, and also by clustered raft proteins. In the influenza viral membrane, one of the simplest forms of a biological membrane, the lifetime of a protein and cholesterol-rich domain was evaluated to be on the order of 100 μs, again showing the short lifetime of rafts in an unstimulated state. Finally, we propose a thermal Lego model for rafts as the basic building blocks for signaling pathways in the plasma membrane.  相似文献   

16.
A central feature of the lipid raft concept is the formation of cholesterol-rich lipid domains. The introduction of relatively rigid cholesterol molecules into fluid liquid-disordered (Ld) phospholipid bilayers can produce liquid-ordered (Lo) mixtures in which the rigidity of cholesterol causes partial ordering of the flexible hydrocarbon acyl chains of the phospholipids. Several lines of evidence support this concept, but direct structural information about Lo membranes is lacking. Here we present the structure of Lo membranes formed from cholesterol and dioleoylphosphatidylcholine (DOPC). Specific deuteration of the DOPC acyl-chain methyl groups and neutron diffraction measurements reveal an extraordinary disorder of the acyl chains of neat Ld DOPC bilayers. The disorder is so great that >20% of the methyl groups are in intimate contact with water in the bilayer interface. The ordering of the DOPC acyl chains by cholesterol leads to retraction of the methyl groups away from the interface. Molecular dynamics simulations based on experimental systems reveal asymmetric transbilayer distributions of the methyl groups associated with each bilayer leaflet.  相似文献   

17.
Eukaryotic cell membranes contain microdomains called lipid rafts, which are cholesterol-rich domains in which lipid acyl chains are tightly packed and highly extended. A variety of proteins associate preferentially with rafts, and this raft association is important in a wide range of functions. A powerful and widely-used method for studying lipid rafts takes advantage of their insolubility in non-ionic detergents. Here we describe the basis of detergent insolubility, and review strengths, limitations, and unresolved puzzles regarding this method.  相似文献   

18.
A fluorescence-quenching method has been used to assess the potential formation of segregated liquid-ordered domains in lipid bilayers combining cholesterol with mixtures of amino and choline phospholipids like those found in the cytoplasmic leaflet of the mammalian cell plasma membrane. When present in proportions >20-30 mol %, different saturated phospholipids show a strong proclivity to form segregated domains when combined with unsaturated phospholipids and cholesterol, in a manner that is only weakly affected by the nature of the phospholipid headgroups. By contrast, mixtures containing purely unsaturated phospholipids and cholesterol do not exhibit detectable segregation of domains, even in systems whose components differ in headgroup structure, mono- versus polyunsaturation and/or acyl chain heterogeneity. These results indicate that mixtures of phospholipids resembling those found in the inner leaflet of the plasma membrane do not spontaneously form segregated liquid-ordered domains. Instead, our findings suggest that factors extrinsic to the inner-monolayer lipids themselves (e.g., transbilayer penetration of long sphingolipid acyl chains) would be essential to confer a distinctive, more highly ordered organization to the cytoplasmic leaflet of "lipid raft" structures in animal cell membranes.  相似文献   

19.
Upon interaction with cholesterol, perfringolysin O (PFO) inserts into membranes and forms a rigid transmembrane (TM) β-barrel. PFO is believed to interact with liquid ordered lipid domains (lipid rafts). Because the origin of TM protein affinity for rafts is poorly understood, we investigated PFO raft affinity in vesicles having coexisting ordered and disordered lipid domains. Fluorescence resonance energy transfer (FRET) from PFO Trp to domain-localized acceptors indicated that PFO generally has a raft affinity between that of LW peptide (low raft affinity) and cholera toxin B (high raft affinity) in vesicles containing ordered domains rich in brain sphingomyelin or distearoylphosphatidylcholine. FRET also showed that ceramide, which increases exposure of cholesterol to water and thus displaces it from rafts, does not displace PFO from ordered domains. This can be explained by shielding of PFO-bound cholesterol from water. Finally, FRET showed that PFO affinity for ordered domains was higher in its non-TM (prepore) form than in its TM form, demonstrating that the TM portion of PFO interacts unfavorably with rafts. Microscopy studies in giant unilamellar vesicles confirmed that PFO exhibits intermediate raft affinity, and showed that TM PFO (but not non-TM PFO) concentrated at the edges of liquid ordered domains. These studies suggest that a combination of binding to raft-associating molecules and having a rigid TM structure that is unable to pack well in a highly ordered lipid environment can control TM protein domain localization. To accommodate these constraints, raft-associated TM proteins in cells may tend to locate within liquid disordered shells encapsulated within ordered domains.  相似文献   

20.
Sphingolipid and cholesterol-rich liquid ordered lipid domains (lipid rafts) have been studied in both eukaryotic cells and model membranes. However, while the coexistence of ordered and disordered liquid phases can now be easily demonstrated in model membranes, the situation in cell membranes remains ambiguous. Unlike the usual situation in model membranes, under most conditions, cell membranes rich in sphingolipid and cholesterol may have a "granular" organization in which the size of ordered and/or disordered domains is extremely small and domains may be of borderline stability. This review attempts to explain the origin of the divergence between of our understanding of rafts in model membranes and in cells, and how the physical properties of model membranes can help explain many of the ambiguities concerning raft formation and properties in cells. How physical principles of ordered domain formation relate to limitations of detergent insolubility and cholesterol depletion methods used to infer the presence of rafts in cells is also discussed. Possible modifications of these techniques that may increase their reliability are considered. It will be necessary to study model membrane systems more closely approximating cell membranes in order gain a complete understanding of raft properties in cells. Very high concentrations of membrane cholesterol and proteins may explain key physical characteristics of domains in cellular membranes, and are the two of the most obvious factors requiring additional study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号