共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Video-rate confocal microscopy of Indo-1-loaded human skeletal myotubes was used to assess the relationship between the changes in sarcoplasmic ([Ca(2+)](S)) and nuclear ([Ca(2+)](N)) Ca(2+) concentration during low- and high-frequency electrostimulation. A single stimulus of 10 ms duration transiently increased [Ca(2+)] in both compartments with the same time of onset. Rate and amplitude of the [Ca(2+)] rise were significantly lower in the nucleus (4.0- and 2.5-fold, respectively). Similarly, [Ca(2+)](N) decayed more slowly than [Ca(2+)](S) (mono-exponential time constants of 6.1 and 2.5 s, respectively). After return of [Ca(2+)] to the prestimulatory level, a train of 10 stimuli was applied at a frequency of 1 Hz. The amplitude of the first [Ca(2+)](S) transient was 25% lower than that of the preceding single transient. Thereafter, [Ca(2+)](S) increased stepwise to a maximum that equalled that of the single transient. Similarly, the amplitude of the first [Ca(2+)](N) transient was 20% lower than that of the preceding single transient. In contrast to [Ca(2+)](S), [Ca(2+)](N) then increased to a maximum that was 2.3-fold higher than that of the single transient and equalled that of [Ca(2+)](S). In the nucleus, and to a lesser extent in the sarcoplasm, [Ca(2+)] decreased faster at the end of the stimulus train than after the preceding single stimulus (time constants of 3.3 and 2.1 s, respectively). To gain insight into the molecular principles underlying the shaping of the nuclear Ca(2+) signal, a 3-D mathematical model was constructed. Intriguingly, quantitative modelling required the inclusion of a satiable nuclear Ca(2+) buffer. Alterations in the concentration of this putative buffer had dramatic effects on the kinetics of the nuclear Ca(2+) signal. This finding unveils a possible mechanism by which the skeletal muscle can adapt to changes in physiological demand. 相似文献
3.
Nicotinic acid adenine dinucleotide phosphate (NAADP) is a potent Ca2+ mobilizing nucleotide essentially involved in T cell activation. Using combined microinjection and single cell calcium imaging, we demonstrate that co-injection of NAADP and the D-myo-inositol 1,4,5-trisphosphate antagonist heparin did not inhibit Ca2+ mobilization. In contrast, co-injection of the ryanodine receptor antagonist ruthenium red efficiently blocked NAADP induced Ca2+ signalling. This pharmacological approach was confirmed using T cell clones stably transfected with plasmids expressing antisense mRNA targeted specifically against ryanodine receptors. NAADP induced Ca2+ signaling was strongly reduced in these clones. In addition, inhibition of Ca2+ entry by SK&F 96365 resulted in a dramatically decreased Ca2+ signal upon NAADP injection. Gd3+, a known blocker of Ca2+ release activated Ca2+ entry, only partially inhibited NAADP mediated Ca2+ signaling. These data indicate that in T cells (i) ryanodine receptor are the major intracellular Ca2+ release channels involved in NAADP induced Ca2+ signals, and that (ii) such Ca2+ release events are largely amplified by Ca2+ entry. 相似文献
4.
Fundamental Ca2+ signaling mechanisms in mouse dendritic cells: CRAC is the major Ca2+ entry pathway
Hsu Sf O'Connell PJ Klyachko VA Badminton MN Thomson AW Jackson MB Clapham DE Ahern GP 《Journal of immunology (Baltimore, Md. : 1950)》2001,166(10):6126-6133
Although Ca(2+)-signaling processes are thought to underlie many dendritic cell (DC) functions, the Ca(2+) entry pathways are unknown. Therefore, we investigated Ca(2+)-signaling in mouse myeloid DC using Ca(2+) imaging and electrophysiological techniques. Neither Ca(2+) currents nor changes in intracellular Ca(2+) were detected following membrane depolarization, ruling out the presence of functional voltage-dependent Ca(2+) channels. ATP, a purinergic receptor ligand, and 1-4 dihydropyridines, previously suggested to activate a plasma membrane Ca(2+) channel in human myeloid DC, both elicited Ca(2+) rises in murine DC. However, in this study these responses were found to be due to mobilization from intracellular stores rather than by Ca(2+) entry. In contrast, Ca(2+) influx was activated by depletion of intracellular Ca(2+) stores with thapsigargin, or inositol trisphosphate. This Ca(2+) influx was enhanced by membrane hyperpolarization, inhibited by SKF 96365, and exhibited a cation permeability similar to the Ca(2+) release-activated Ca(2+) channel (CRAC) found in T lymphocytes. Furthermore, ATP, a putative DC chemotactic and maturation factor, induced a delayed Ca(2+) entry with a voltage dependence similar to CRAC. Moreover, the level of phenotypic DC maturation was correlated with the extracellular Ca(2+) concentration and enhanced by thapsigargin treatment. These results suggest that CRAC is a major pathway for Ca(2+) entry in mouse myeloid DC and support the proposal that CRAC participates in DC maturation and migration. 相似文献
5.
O Hatase T Itano H Matsui A Doi S Etoh H Nishio S Nakahara 《Biochemistry international》1987,15(4):793-799
Ca2+-induced mitochondrial swelling was inhibited by a low concentration of calmodulin antagonists. Two affinities of Ca2+ to mitochondrial swelling were observed: high (2-5 microM) and low (more than 100 microM) systems. The high-affinity change was inhibited by micromolar level of trifluoperazine and W-7, but not by W-5. The possible mechanism of this inhibition and the role of CaM in mitochondria are discussed. 相似文献
6.
The mechanisms of oxygen sensing in vascular smooth muscle have been studied extensively in a variety of tissue types and the results of these studies indicate that the mechanism of hypoxia-induced vasodilation probably involves several mechanisms that combined to assure the appropriate response. After a short discussion of the regulatory mechanisms for smooth muscle contractility, we present the evidence indicating that hypoxic vasorelaxation involves both Ca2+-dependent and Ca2+-independent mechanisms. More recent experiments using proteomic approaches in organ cultures of porcine coronary artery reveal important changes evoked by hypoxia in both Ca2+-dependent and Ca2+-independent pathways. 相似文献
7.
Endosomes, lysosomes and lysosome-related organelles are emerging as important Ca2+ storage cellular compartments with a central role in intracellular Ca2+ signalling. Endocytosis at the plasma membrane forms endosomal vesicles which mature to late endosomes and culminate in lysosomal biogenesis. During this process, acquisition of different ion channels and transporters progressively changes the endolysosomal luminal ionic environment (e.g. pH and Ca2+) to regulate enzyme activities, membrane fusion/fission and organellar ion fluxes, and defects in these can result in disease. In the present review we focus on the physiology of the inter-related transport mechanisms of Ca2+ and H+ across endolysosomal membranes. In particular, we discuss the role of the Ca2+-mobilizing messenger NAADP (nicotinic acid adenine dinucleotide phosphate) as a major regulator of Ca2+ release from endolysosomes, and the recent discovery of an endolysosomal channel family, the TPCs (two-pore channels), as its principal intracellular targets. Recent molecular studies of endolysosomal Ca2+ physiology and its regulation by NAADP-gated TPCs are providing exciting new insights into the mechanisms of Ca2+-signal initiation that control a wide range of cellular processes and play a role in disease. These developments underscore a new central role for the endolysosomal system in cellular Ca2+ regulation and signalling. 相似文献
8.
Sykes BD 《Structure (London, England : 1993)》2007,15(7):753-754
Insect flight muscle is capable of very high oscillatory frequencies. In this issue of Structure, De Nicola and colleagues (De Nicola et al., 2007) describe the structure of the Ca2+ binding protein that regulates asynchronous contraction, casting light on the mechanism of stretch activation. 相似文献
9.
Anantamongkol U Takemura H Suthiphongchai T Krishnamra N Horio Y 《Biochemical and biophysical research communications》2007,352(2):537-542
Regulatory role of prolactin (PRL) on Ca2+ mobilization in human mammary gland cell line MCF-7 was examined. Direct addition of PRL did not affect cytoplasmic Ca2+ concentration ([Ca2+]i); however, treatment with PRL for 24h significantly decreased the peak level and duration time of [Ca2+]i elevation evoked by ATP or thapsigargin (TG). Intracellular Ca2+ release by IP3 or TG in permeablized cells was not decreased after PRL-treatment, indicating that the Ca2+ release was not impaired by PRL treatment. Extracellular Ca2+ entry evoked by ATP or TG was likely to be intact, because entry of extracellular Ba2+ was not affected by PRL treatment. Among Ca2+-ATPases expressed in MCF-7 cells, we found significant increase of secretory pathway Ca2+-ATPase type 2 (SPCA2) mRNA in PRL-treated cells by RT-PCR experiments including quantitative RT-PCR. Knockdown of SPCA2 by siRNA in PRL-treated cells showed similar Ca2+ mobilization to that in PRL-untreated cells. The present results suggest that PRL facilitates Ca2+ transport into Golgi apparatus and may contribute the supply of Ca2+ to milk. 相似文献
10.
The role of Ca2+ ions in the regulation of motility, cell cycle, and division of prokaryotes is discussed, as well as their involvement in the pathogenesis of some infectious diseases. The structural and functional organization of the prokaryotic Ca2+ signaling system and the mechanisms of Ca2+ membrane transport and homeostasis are described. Special attention is paid to the role of Ca2+ cation channels, Ca2+ transporters, and Ca2+-binding proteins in the regulation of the intercellular Ca2+ concentration. 相似文献
11.
《The Journal of cell biology》1995,129(3):797-804
Spatial and temporal aspects of Ca2+ signaling were investigated in PC12 cells differentiated with nerve growth factor, the well known nerve cell model. Activation of receptors coupled to polyphosphoinositide hydrolysis gave rise in a high proportion of the cells to Ca2+ waves propagating non decrementally and at constant speed (2-4 microns/s at 18 degrees C and approximately 10-fold faster at 37 degrees C) along the neurites. These waves relied entirely on the release of Ca2+ from intracellular stores since they could be generated even when the cells were incubated in Ca(2+)-free medium. In contrast, when the cells were depolarized with high K+ in Ca(2+)-containing medium, increases of cytosolic Ca2+ occurred in the neurites but failed to evolve into waves. Depending on the receptor agonist employed (bradykinin and carbachol versus ATP) the orientation of the waves could be opposite, from the neurite tip to the cell body or vice versa, suggesting different and specific distribution of the responsible surface receptors. Cytosolic Ca2+ imaging results, together with studies of inositol 1,4,5-trisphosphate generation in intact cells and inositol 1,4,5-trisphosphate-induced Ca2+ release from microsomes, revealed the sustaining process of the waves to be discharge of Ca2+ from the inositol 1,4,5-trisphosphate- (and not the ryanodine-) sensitive stores distributed along the neurites. The activation of the cognate receptor appears to result from the coordinate action of the second messenger and Ca2+. Because of their properties and orientation, the waves could participate in the control of not only conventional cell activities, but also excitability and differential processing of inputs, and thus of electrochemical computation in nerve cells. 相似文献
12.
De A 《Acta biochimica et biophysica Sinica》2011,43(10):745-756
The non-canonical Wnt/Ca(2+) signaling cascade is less characterized than their canonical counterpart, the Wnt/β-catenin pathway. The non-canonical Wnt signaling pathways are diverse, defined as planer cell polarity pathway, Wnt-RAP1 signaling pathway, Wnt-Ror2 signaling pathway, Wnt-PKA pathway, Wnt-GSK3MT pathway, Wnt-aPKC pathway, Wnt-RYK pathway, Wnt-mTOR pathway, and Wnt/calcium signaling pathway. All these pathways exhibit a considerable degree of overlap between them. The Wnt/Ca(2+) signaling pathway was deciphered as a crucial mediator in development. However, now there is substantial evidence that the signaling cascade is involved in many other molecular phenomena. Many aspects of Wnt/Ca(2+) pathway are yet enigmatic. This review will give a brief overview of the fundamental and evolving concepts of the Wnt/Ca(2+) signaling pathway. 相似文献
13.
《Channels (Austin, Tex.)》2013,7(5):391-392
Ca2+ signaling in skeletal and cardiac muscles is a bi-directional process that involves cross-talk between signaling molecules in the sarcolemmal membrane and Ca2+ release machinery in the intracellular organelles. Maintenance of a junctional membrane structure between the sarcolemmal membrane and the sarcoplasmic reticulum (SR) provides a framework for the conversion of action potential arrived at the sarcolemma into release of Ca2+ from the SR, leading to activation of a variety of physiological processes. Activity-dependent changes in Ca2+ storage inside the SR provides a retrograde signal for the activation of store-operated Ca2+ channel (SOC) on the sarcolemmal membrane, which plays important roles in the maintenance of Ca2+ homeostasis in physiology and pathophysiology. Research progress during the last 30 years had advanced our understanding of the cellular and molecular mechanisms for the control of Ca2+ signaling in muscle and cardiovascular physiology. Here we summarize the functions of three key molecules that are located in the junctional membrane complex of skeletal and cardiac muscle cells: junctophilin as a “glue” that physiologically links the SR membrane to the sarcolemmal membrane for formation of the junctional membrane framework, mitsugumin29 as a muscle-specific synaptophysin family protein that contributes to maintain the coordinated Ca2+ signaling in skeletal muscle, and TRIC as a novel cation-selective channel located on the SR membrane that provides counter-ion current during the rapid process of Ca2+ release from the SR. 相似文献
14.
Ca2+ signaling in skeletal and cardiac muscles is a bi-directional process that involves cross-talk between signaling molecules in the sarcolemmal membrane and Ca2+ release machinery in the intracellular organelles. Maintenance of a junctional membrane structure between the sarcolemmal membrane and the sarcoplasmic reticulum (SR) provides a framework for the conversion of action potential arrived at the sarcolemma into release of Ca2+ from the SR, leading to activation of a variety of physiological processes. Activity-dependent changes in Ca2+ storage inside the SR provides a retrograde signal for the activation of store-operated Ca2+ channel (SOC) on the sarcolemmal membrane, which plays important roles in the maintenance of Ca2+ homeostasis in physiology and pathophysiology. Research progress during the last 30 years had advanced our understanding of the cellular and molecular mechanisms for the control of Ca2+ signaling in muscle and cardiovascular physiology. Here we summarize the functions of three key molecules that are located in the junctional membrane complex of skeletal and cardiac muscle cells: junctophilin as a "glue" that physiologically links the SR membrane to the sarcolemmal membrane for formation of the junctional membrane framework, mitsugumin29 as a muscle-specific synaptophysin family protein that contributes to maintain the coordinated Ca2+ signaling in skeletal muscle, and TRIC as a novel cation-selective channel located on the SR membrane that provides counter-ion current during the rapid process of Ca2+ release from the SR. 相似文献
15.
16.
《Journal of receptor and signal transduction research》2013,33(3):134-141
Background: Catalase catalyzes the reduction of H2O2 to water and it can also remove organic hydroperoxides. Nervous system in body is especially sensitive to free radical damage due to rich content of easily oxidizible fatty acids and relatively low content of antioxidants including catalase. Recent studies indicate that reactive oxygen species actually target active channel function, in particular TRP channels. I review the effects of catalase on Ca2+ signaling and on TRP channel activation in neuroglial cells such as microglia and substantia nigra.Materials: Review of the relevant literature and results from recent our basic studies, as well as critical analyses of published systematic reviews were obtained from the pubmed and the Science Citation Index.Results: It was observed that oxidative stress-induced activations of TRPM2, TRPC3, TRPC5 and TRPV1 cation channels in neuronal cells are modulated by catalase, suggesting antioxidant-dependent activation/inhibition of the channels. I provide also, a general overview of the most important oxidative stress-associated changes in neuronal mitochondrial Ca2+ homeostasis due to oxidative stress-induced channel neuropathies. Catalase incubation induces protective effects on rat brain mitochondrial function and neuronal survival. A decrease in catalase activity through oxidative stress may have an important role in etiology of Parkinson’s disease and sensory pain.Conclusion: The TRP channels can be activated by oxidative stress products, opening of nonspecific cation channels would result in Ca2+ influx, and then elevation of cytoplasmic free Ca2+ could stimulate mitochondrial Ca2+ uptake. Catalase modulates oxidative stress-induced Ca2+ influx and some TRP channels activity in neuronal cells. 相似文献
17.
The Ca2+-induced Ca2+ release channel in the heavy fraction of the sarcoplasmic reticulum (SR) from rabbit skeletal muscle is inactivated during ATP-dependent Ca2+ uptake (Morii, H., Takisawa, H., & Yamamoto, T. (1985) J. Biol. Chem. 260, 11536-11541). AMP, one of the adenine nucleotides which activate the Ca2+ release, delayed the onset of the channel inactivation when added early during the course of the Ca2+ uptake. However, AMP could no longer activate the channel but accelerated the inactivation when added during the later phase of the Ca2+ uptake. In SR passively loaded with Ca2+, the Ca2+ channel which had been activated by AMP and Ca2+ was not spontaneously inactivated. Similarly, during GTP-dependent Ca2+ uptake, the channel activated by AMP was not inactivated. In addition acid phosphatase markedly delayed the onset of the inactivation during ATP-dependent Ca2+ uptake, without affecting Ca2+ ATPase activity or GTP-dependent Ca2+ uptake by heavy SR. The effect of the phosphatase was completely blocked by ruthenium red, a potent inhibitor of the channel. These results suggest that the channel is inactivated through an ATP-dependent process, presumably phosphorylation of proteins in the SR membrane. This was supported by the findings that the reactivation of the inactivated channel by added Ca2+ was markedly accelerated by the addition of acid phosphatase and that several proteins of heavy SR were phosphorylated during ATP-dependent Ca2+ uptake. 相似文献
18.
L-type (CaV1.2) and P/Q-type (CaV2.1) calcium channels possess lobe-specific CaM regulation, where Ca2+ binding to one or the other lobe of CaM triggers regulation, even with inverted polarity of modulation between channels. Other major members of the CaV1-2 channel family, R-type (CaV2.3) and N-type (CaV2.2), have appeared to lack such CaM regulation. We report here that R- and N-type channels undergo Ca(2+)-dependent inactivation, which is mediated by the CaM N-terminal lobe and present only with mild Ca2+ buffering (0.5 mM EGTA) characteristic of many neurons. These features, together with the CaM regulatory profiles of L- and P/Q-type channels, are consistent with a simplifying principle for CaM signal detection in CaV1-2 channels-independent of channel context, the N- and C-terminal lobes of CaM appear invariably specialized for decoding local versus global Ca2+ activity, respectively. 相似文献
19.
20.
Ca2+-dependent gating mechanisms for dSlo, a large-conductance Ca2+-activated K+ (BK) channel.
下载免费PDF全文

The Ca2+-dependent gating mechanism of cloned BK channels from Drosophila (dSlo) was studied. Both a natural variant (A1/C2/E1/G3/IO) and a mutant (S942A) were expressed in Xenopus oocytes, and single-channel currents were recorded from excised patches of membrane. Stability plots were used to define stable segments of data. Unlike native BK channels from rat skeletal muscle in which increasing internal Ca2+ concentration (Cai2+) in the range of 5 to 30 microM increases mean open time, increasing Cai2+ in this range for dSlo had little effect on mean open time. However, further increases in Cai2+ to 300 or 3000 microM then typically increased dSlo mean open time. Kinetic schemes for the observed Ca2+-dependent gating kinetics of dSlo were evaluated by fitting two-dimensional dwell-time distributions using maximum likelihood techniques and by comparing observed dependency plots with those predicted by the models. Previously described kinetic schemes that largely account for the Ca2+-dependent kinetics of native BK channels from rat skeletal muscle did not adequately describe the Ca2+ dependence of dSlo. An expanded version of these schemes which, in addition to the Ca2+-activation steps, permitted a Ca2+-facilitated transition from each open state to a closed state, could approximate the Ca2+-dependent kinetics of dSlo, suggesting that Ca2+ may exert dual effects on gating. 相似文献