首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The genetic architecture underlying variation in embryonic developmental rate (DR) and genetic covariation with age of maturation (MAT) was investigated in rainbow trout Oncorhynchus mykiss. Highly significant additive parental effects and more limited evidence of epistatic effects on progeny hatching time were detected in three diallel sets of families. Genome scans with an average of 142 microsatellite loci from all 29 linkage groups in two families detected significant quantitative trait loci (QTL) for developmental rate on RT-8 and RT-30 with genome-wide and chromosome-wide effects, respectively. The QTL on linkage group RT-8 explained 23·7% of the phenotypic variation and supports results from previous studies. The co-localization of QTL for both DR and MAT to several linkage groups and the observation that alleles associated with faster developmental rate were found significantly more often in early maturing rather than typical and later maturing male ancestors supports the hypothesis of genetic covariation between DR and MAT. The maturation background and schedule of additional sires, however, did not have a consistent association with their progeny hatching times, suggesting that other genetic, environmental and physiological effects contribute to variation in these life-history traits.  相似文献   

2.
ABSTRACT: BACKGROUND: Quantitative trait locus (QTL) studies show that variation in salinity tolerance in Arctic charr and rainbow trout has a genetic basis, even though both these species have low to moderate salinity tolerance capacities. QTL were observed to localize to homologous linkage group segments within putative chromosomal regions possessing multiple candidate genes. We compared salinity tolerance QTL in rainbow trout and Arctic charr to those detected in a higher salinity tolerant species, Atlantic salmon. The highly derived karyotype of Atlantic salmon allows for the assessment of whether disparity in salinity tolerance in salmonids is associated with differences in genetic architecture. To facilitate these comparisons, we examined the genomic synteny patterns of key candidate genes in the other model teleost fishes that have experienced three whole-genome duplication (3R) events which preceded a fourth (4R) whole genome duplication event common to all salmonid species. RESULTS: Nine linkage groups contained chromosome-wide significant QTL (AS-2, -4p, -4q, -5, -9, -12p, -12q, -14q -17q, -22, and [MINUS SIGN]23), while a single genome-wide significant QTL was located on AS-4q. Salmonid genomes shared the greatest marker homology with the genome of three-spined stickleback. All linkage group arms in Atlantic salmon were syntenic with at least one stickleback chromosome, while 18 arms had multiple affinities. Arm fusions in Atlantic salmon were often between multiple regions bearing salinity tolerance QTL. Nine linkage groups in Arctic charr and six linkage group arms in rainbow trout currently have no synteny alignments with stickleback chromosomes, while eight rainbow trout linkage group arms were syntenic with multiple stickleback chromosomes. Rearrangements in the stickleback lineage involving fusions of ancestral arm segments could account for the 21 chromosome pairs observed in the stickleback karyotype. CONCLUSIONS: Salinity tolerance in salmonids from three genera is to some extent controlled by the same loci. Synteny between QTL in salmonids and candidate genes in stickleback suggests genetic variation at candidate gene loci could affect salinity tolerance in all three salmonids investigated. Candidate genes often occur in pairs on chromosomes, and synteny patterns indicate these pairs are generally conserved in 2R, 3R, and 4R genomes. Synteny maps also suggest that the Atlantic salmon genome contains three larger syntenic combinations of candidate genes that are not evident in any of the other 2R, 3R, or 4R genomes examined. These larger synteny tracts appear to have resulted from ancestral arm fusions that occurred in the Atlantic salmon ancestor. We hypothesize that the superior hypo-osmoregulatory efficiency that is characteristic of Atlantic salmon may be related to these clusters.  相似文献   

3.
Somorjai IM  Danzmann RG  Ferguson MM 《Genetics》2003,165(3):1443-1456
We searched for quantitative trait loci (QTL) affecting upper temperature tolerance (UTT) in crosses between the Nauyuk Lake and Fraser River strains of Arctic charr (Salvelinus alpinus) using survival analysis. Two QTL were detected by using two microsatellite markers after correcting for experiment-wide error. A comparative mapping approach localized these two QTL to homologous linkage groups containing UTT QTL in rainbow trout (Oncorhynchus mykiss). Additional marginal associations were detected in several families in regions homologous to those with QTL in rainbow trout. Thus, the genes underlying UTT QTL may antedate the divergence of these two species, which occurred by approximately 16 MYA. The data also indicate that one pair of homeologs (ancestrally duplicated chromosomal segments) have contained QTL in Arctic charr since the evolution of salmonids from a tetraploid ancestor 25-100 MYA. This study represents one of the first examples of comparative QTL mapping in an animal polyploid group and illustrates the fate of QTL after genome duplication and reorganization.  相似文献   

4.
As part of our efforts to characterize Na,K-ATPase isoforms in salmonid fish, we investigated the linkage arrangement of genes coding for the alpha and beta-subunits of the enzyme complex in the tetraploid-derived genome of the rainbow trout (Oncorhynchus mykiss). Genetic markers were developed from four of five previously characterized alpha-subunit isoforms (alpha1b, alpha1c, alpha2 and alpha3) and four expressed sequence tags derived from yet undescribed beta-subunit isoforms (beta1a, beta1b, beta3a and beta3b). Sex-specific linkage analysis of polymorphic loci in a reference meiotic panel revealed that Na,K-ATPase genes are generally dispersed throughout the rainbow trout genome. A notable exception was the colocalization of two alpha-subunit genes and one beta-subunit gene on linkage group RT-12, which may thus share a conserved orthologous segment with linkage group 1 in zebrafish (Danio rerio). Consistent with previously reported homeologous relationships among the chromosomes of the rainbow trout, primers designed from the alpha3-isoform detected a pair of duplicated genes on linkage groups RT-27 and RT-31. Similarly, the evolutionary conservation of homeologous regions on linkage groups RT-12 and RT-16 was further supported by the map localization of gene duplicates for the beta1b isoform. The detection of homeologs within each gene family also raises the possibility that novel isoforms may be discovered as functional duplicates.  相似文献   

5.
Genotypes at 91 microsatellite loci in three full-sib families were used to search for QTL affecting body weight (BW) and condition factor in North American Atlantic salmon (Salmo salar). More than one informative marker was identified on 16-18 linkage groups in each family, allowing at least one chromosomal interval to be analyzed per linkage group. Two significant QTL for BW on linkage groups AS-8 and AS-11, and four significant QTL for condition factor on linkage groups AS-2, AS-5, AS-11, and AS-14 were identified. QTL for both BW and condition factor were located on linkage groups AS-1, 6, 8, 11, and 14 when considering both significant and suggestive QTL effects. The largest QTL effects for BW (AS-8) and for condition factor (AS-14) accounted for 20.1 and 24.9% of the trait variation, respectively. Three of the QTL for BW occur on linkage groups where similar effects have been detected on the homologous regions in either rainbow trout (Oncorhynchus mykiss) or Arctic charr (Salvelinus alpinus).  相似文献   

6.
In salmonid fishes, life-history changes may often be coupled to early individual growth trajectories. We identified quantitative trait loci (QTL) for body weight (BW), condition factor (K) and age at sexual maturation (MT) in two full-sib families of Arctic charr (Salvelinus alpinus) to ascertain if QTL for MT were confounded with BW QTL intervals. Three significant QTL for BW, three QTL for MT and one significant QTL for K were identified. A BW QTL with major effect was localized to linkage group 8 (AC-8) and explained more than 34% of the phenotypic variation. Markers on AC-8 have previously been identified as being associated with variation in fork length and BW in this species. Similarly, a major QTL (PEV = 23%) with an influence on the female MT was localized to AC-23. Some of these regions are homologous to those in the genomes of rainbow trout (Oncorhynchus mykiss) and Atlantic salmon (Salmo salar), where similar QTL effects have been detected. Our results also suggest the conservation of MT QTL on the homeologous linkage group pair AC-3/24 in Arctic charr. We further identified chromosomal regions that harbor QTL for multiple traits. In particular, markers on AC-4, -20 and -36 had detectable QTL for all traits studied. Significant MT QTL detected on AC-23, -24, and -27 were autonomous of any BW QTL regions, suggesting that the regulation of MT may be more independent of BW control within this species than in other species of salmonids.  相似文献   

7.
Unlike mammals, bony fish appear to possess multiple genes encoding glutamine synthetase (GS), the nitrogen metabolism enzyme responsible for the conversion of glutamate and ammonia into glutamine at the expense of ATP. This study reports on the development of genetic markers for each of the four isoforms identified thus far in rainbow trout (Oncorhynchus mykiss) and their genome localization by linkage mapping. We found that genes coding for GS01, GS02, GS03, and GS04 map to four different linkage groups in the trout genome, namely RT-24, RT-23, RT-08, and RT-13, respectively. Linkage groups RT-23 and RT-13 appear to represent distinct chromosomes sharing duplicated marker regions, which lends further support to the previous suggestion that GS02 and GS04 may be duplicate gene copies that evolved from a whole-genome duplication in the trout ancestor. In contrast, there is at present no further evidence that RT-24 and RT-08 share ancestrally homologous segments and additional genomic studies will be needed to clarify the evolutionary origin of genes coding for GS01 and GS03.  相似文献   

8.
Effects of maternal cytoplasmic environment (MCE) on development rate in rainbow trout were evaluated within a quantitative trait loci (QTL) analysis framework. Previous research had identified QTL for development rate in doubled haploid (DH) progeny produced from a cross between the Oregon State University (OSU) and the Swanson (SW) River rainbow trout clonal lines. In this study, progeny for QTL mapping were produced from a cross between the OSU and Clearwater (CW) River clonal lines. Doubled haploids were produced from the OSU x CW F1 by androgenesis using eggs from different females (or MCEs); with androgenesis, the maternal nuclear genome was destroyed by irradiation and diploidy was restored by blocking the first embryonic cleavage by heat shock. All embryos were incubated at the same temperature and development rate quantified as time to hatch. Using a linkage map constructed primarily with AFLP markers, QTL mapping was performed, including MCE covariates and QTL x MCE effects in models for testing. The major QTL for development rate in the OSU x SW cross overlaps with the major QTL found in this OSU x CW cross; effects at this locus were the same across MCEs. Both MCE and QTL x MCE effects contribute to variability in development rate, but QTL x MCE were minor and detected only at small-effect QTL.  相似文献   

9.
The high commercial value from the aquaculture of salmonid fishes has prompted many studies into the genetic architecture of complex traits and the need to identify genomic regions that have repeatable associations with trait variation both within and among species. We searched for quantitative trait loci (QTL) for body weight (BW), condition factor (CF) and age of sexual maturation (MAT) in families of Arctic charr (Salvelinus alpinus) from an Icelandic breeding program. QTL with genome-wide significance were detected for each trait on multiple Arctic charr (AC) linkage groups (BW: AC-4, AC-20; CF: AC-7, AC-20, AC-23, AC-36; MAT: AC-13/34, AC-39). In addition to the genome-wide significant QTL for both BW and CF on AC-20, linkage groups AC-4, AC-7, AC-8, and AC-16 contain QTL for both BW and CF with chromosome-wide significance. These regions had effects (albeit weaker) on MAT with the exception of the region on AC-8. Comparisons with a North American cultured strain of Arctic charr, as well as North American populations of Atlantic salmon (Salmo salar), and rainbow trout (Oncorhynchus mykiss), reveal some conservation in QTL location and structure, particularly with respect to the joint associations of QTL influencing BW and CF. The detection of some differences in genetic architecture between the two aquaculture strains of Arctic charr may be reflective of the differential evolutionary histories experienced by these fishes, and illustrates the importance of including different strains to investigate genetic variation in a species where the intent is to use that variation in selective breeding programs.  相似文献   

10.
We applied a candidate gene mapping approach to an existing quantitative trait loci (QTL) data set for spawning date in rainbow trout (Oncorynchus mykiss) to ascertain whether these genes could potentially account for any observed QTL effects. Several genes were chosen for their known or suspected roles in reproduction, circadian, or circannual timing, including salmon-type gonadotropin-releasing hormone 3A and 3B (GnRH3A and GnRH3B), Clock, Period1, and arylalkylamine N-acetlytransferase-1 and -2 (AANAT-1 and AANAT-2). Genes were sequenced, and polymorphisms were identified in parents of two rainbow trout mapping families, one of which was used previously to detect spawn timing QTL. Interval mapping was used to identify associations between genetic markers and spawning date effects. Using a genetic map that was updated with 574 genetic markers (775 total), we found evidence for 11 significant or suggestive QTL regions. Most QTL were only localized within one of the parents; however, a strong QTL region was identified in both female and male parents on linkage group RT-8 that explained 20% and 50% of trait variance, respectively. The Clock gene mapped to this region. Period1 mapped to a region in the female parent associated with a marginal effect (P = .056) on spawn timing. Other candidate genes were not associated with significant QTL effects.  相似文献   

11.
To identify the chromosomal regions affecting wood quality traits, we conducted a genome-wide quantitative trait locus (QTL) analysis of wood quality traits in Eucalyptus nitens. This information is important to exploit the full potential of the impending Eucalyptus genome sequence. A three generational mapping population consisting of 296 progeny trees was used to identify QTL associated with several wood quality traits in E. nitens. Thirty-six QTL positions for cellulose content, pulp yield, lignin content, density, and microfibril angle (MFA) were identified across different linkage groups. On linkage groups (LG)2 and 8, cellulose QTL cluster with pulp yield and extractives QTL while on LG4 and 10 cellulose and pulp yield QTLs cluster together. Similarly, on LG4, 5, and 6 QTL for lignin traits were clustered together. At two positions, QTL for MFA, a physical trait related to wood stiffness, were clustered with QTL for lignin traits. Several cell wall candidate genes were co-located to QTL positions affecting different traits. Comparative QTL analysis with Eucalyptus globulus revealed two common QTL regions for cellulose and pulp yield. The QTL positions identified in this study provide a resource for identifying wood quality genes using the impending Eucalyptus genome sequence. Candidate genes identified in this study through co-location to QTL regions may be useful in association studies.  相似文献   

12.
A consolidated linkage map for rainbow trout (Oncorhynchus mykiss)   总被引:20,自引:0,他引:20  
Androgenetic doubled haploid progeny produced from a cross between the Oregon State University and Arlee clonal rainbow trout (Oncorhynchus mykiss) lines, used for a previous published rainbow trout map, were used to update the map with the addition of more amplified fragment length polymorphic (AFLP) markers, microsatellites, type I and allozyme markers. We have added more than 900 markers, bringing the total number to 1359 genetic markers and the sex phenotype including 799 EcoRI AFLPs, 174 PstI AFLPs, 226 microsatellites, 72 VNTR, 38 SINE markers, 29 known genes, 12 minisatellites, five RAPDs, and four allozymes. Thirty major linkage groups were identified. Synteny of linkage groups in our map with the outcrossed microsatellite map has been established for all except one linkage group in this doubled haploid cross. Putative homeologous relationships among linkage groups, resulting from the autotetraploid nature of the salmonid genome, have been revealed based on the placement of duplicated microsatellites and type I loci.  相似文献   

13.
In this study, we conducted a genome-wide linkage analysis to identify the quantitative trait loci (QTL) that influence back fat thickness and carcass pH in an F(2) intercross between Landrace and Korean native pigs. Eight phenotypes related with back fat thickness and carcass pH were measured in more than 960 F(2) progeny. All experimental animals were subjected to genotypic analysis using 173 microsatellite markers located throughout the pig genome. The GridQTL program, based on the least squares regression model, was used to perform the QTL analysis. We identified 22 genome-wide significant QTL in 9 chromosomal regions (SSC1, 2, 5, 6, 7, 8, 12, 15, and 16) and 29 suggestive QTL in 16 chromosomal regions (SSC2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 14, 15, 16, 17, 18, and X). On SSC5, we detected a QTL affecting back fat thickness that accounted for 4.8 % of the phenotypic variance, which was the highest test statistic (F-ratio = 50.3 under the additive model, nominal P value = 2.5 × 10(-12)) observed in this study. Additionally, we showed that there were significant QTL on SSC16 affecting carcass pH traits. In conclusion, the QTL identified in this study together with associated positional candidate genes could play an important role in determining the genetic structure underlying the variation of back fat thickness and carcass pH in pigs.  相似文献   

14.
Spawning time in salmonids is a sex-limited quantitative trait that can be modified by selection. In rainbow trout (Oncorhynchus mykiss), various quantitative trait loci (QTL) that affect the expression of this trait have been discovered. In this study, we describe four microsatellite loci associated with two possible spawning time QTL regions in coho salmon (Oncorhynchus kisutch). The four loci were identified in females from two populations (early and late spawners) produced by divergent selection from the same base population. Three of the loci (OmyFGT34TUF, One2ASC and One19ASC) that were strongly associated with spawning time in coho salmon (p < 0.0002) were previously associated with QTL for the same trait in rainbow trout; a fourth loci (Oki10) with a suggestive association (p = 0.00035) mapped 10 cM from locus OmyFGT34TUF in rainbow trout. The changes in allelic frequency observed after three generations of selection were greater than expected because of genetic drift. This work shows that comparing information from closely-related species is a valid strategy for identifying QTLs for marker-assisted selection in species whose genomes are poorly characterized or lack a saturated genetic map.  相似文献   

15.
Infections caused by the fungus Aspergillus are a major cause of morbidity and mortality in immunocompromised populations. To identify genes required for virulence that could be used as targets for novel treatments, we mapped quantitative trait loci (QTL) affecting virulence in the progeny of a cross between two strains of A. nidulans (FGSC strains A4 and A91). We genotyped 61 progeny at 739 single nucleotide polymorphisms (SNP) spread throughout the genome, and constructed a linkage map that was largely consistent with the genomic sequence, with the exception of one potential inversion of ~527 kb on Chromosome V. The estimated genome size was 3705 cM and the average intermarker spacing was 5.0 cM. The average ratio of physical distance to genetic distance was 8.1 kb/cM, which is similar to previous estimates, and variation in recombination rate was significantly positively correlated with GC content, a pattern seen in other taxa. To map QTL affecting virulence, we measured the ability of each progeny strain to kill model hosts, larvae of the wax moth Galleria mellonella. We detected three QTL affecting in vivo virulence that were distinct from QTL affecting in vitro growth, and mapped the virulence QTL to regions containing 7-24 genes, excluding genes with no sequence variation between the parental strains and genes with only synonymous SNPs. None of the genes in our QTL target regions have been previously associated with virulence in Aspergillus, and almost half of these genes are currently annotated as "hypothetical". This study is the first to map QTL affecting the virulence of a fungal pathogen in an animal host, and our results illustrate the power of this approach to identify a short list of unknown genes for further investigation.  相似文献   

16.
In rainbow trout (Oncorhynchus mykiss) and other fishes, embryonic development rate is an ecologically and evolutionarily important trait that is closely associated with survival and physiological performance later in life. To identify genes differentially regulated in fast and slow-developing embryos of rainbow trout, we examined gene expression across developmental time points in rainbow trout embryos possessing alleles linked to a major quantitative trait loci (QTL) for fast versus slow embryonic development rate. Whole genome expression microarray analyses were conducted using embryos from a fourth generation backcross family, whereby each backcross generation involved the introgression of the fast-developing alleles for a major development rate QTL into a slow-developing clonal line of rainbow trout. Embryos were collected at 15, 19, and 28 days post-fertilization; sex and QTL genotype were determined using molecular markers, and cDNA from 48 embryos were used for microarray analysis. A total of 183 features were identified with significant differences between embryonic development rate genotypes. Genes associated with cell cycle growth, muscle contraction and protein synthesis were expressed significantly higher in embryos with the fast-developing allele (Clearwater) than those with the slow-developing allele (Oregon State University), which may associate with fast growth and early body mass construction in embryo development. Across time points, individuals with the fast-developing QTL allele appeared to have earlier onset of these developmental processes when compared to individuals with the slow development alleles, even as early as 15 days post-fertilization. Differentially expressed candidate genes chosen for linkage mapping were localized primarily to regions outside of the major embryonic development rate QTL, with the exception of a single gene (very low-density lipoprotein receptor precursor).  相似文献   

17.
18.
Myostatin, or GDF8, is an inhibitor of skeletal muscle growth. A non-functional myostatin mutation leads to a double muscling phenotype in some species, for example, mice, cattle and humans. Previous studies have indicated that there are loci in the genome that interact with myostatin to control backfat depth and other complex traits. We now report a quantitative trait loci (QTL) mapping study designed to identify loci that interact with myostatin to impact growth traits in mice. Body weight and average daily gain traits were collected on F2 progeny derived from a myostatin-null C57BL/6 strain by M16i cross. In all, 44 main effect QTL were detected above a 5% genome-wide significance threshold when an interval mapping method was used. An additional 37 QTL were identified to significantly interact with myostatin, sex or reciprocal cross. A total of 12 of these QTL interacted with myostatin genotype. These results provide a foundation for the further fine mapping of genome regions that harbor loci that interact with myostatin.  相似文献   

19.
Little is known about the genetics controlling the rate of embryonic development in salmonids, despite the fact that this trait plays an important role in the life history of wild and cultured stocks. We investigated the genetics of embryonic development rate by performing an analysis of quantitative trait loci (QTL) on two families of androgenetically derived doubled haploid rainbow trout produced from a hybrid of two clonal lines with divergent embryonic development rates. A total of 170 doubled haploid individuals were genotyped at 222 marker loci [219 amplified fragment length polymorphism (AFLP) markers, 2 microsatellites, and p53]. A genetic linkage analysis resulted in a map consisting of 27 linkage groups with 21 of the markers remaining unlinked at a minimum LOD of 3.0 and maximum theta of 0.40. Eight of these linkage groups were matched to published rainbow trout linkage groups. Composite interval mapping (CIM) revealed evidence for two QTL influencing time to hatch, and suggestive evidence for a third. These QTL accounted for a total of 24.6% of the variation in time to hatch. One of these QTL had a large effect on development rate, especially in one family of doubled haploids, in which it explained 25.6% of the variance in time to hatch. QTL influencing embryonic length and weight at the commencement of exogenous feeding were also identified. The QTL with the strongest effect on embryonic length (lenR13) mapped to the same position as the QTL with the strongest effect on time to hatch (tthR13), suggesting a single QTL may have a pleiotropic effect on both these traits. These results suggest that the use of clonal lines with a doubled haploid crossing design is an effective way of analyzing the genetic basis of complex traits in salmonids.  相似文献   

20.
The increased numbers of genetic markers produced by genomic techniques have the potential to both identify hybrid individuals and localize chromosomal regions responding to selection and contributing to introgression. We used restriction-site-associated DNA sequencing to identify a dense set of candidate SNP loci with fixed allelic differences between introduced rainbow trout (Oncorhynchus mykiss) and native westslope cutthroat trout (Oncorhynchus clarkii lewisi). We distinguished candidate SNPs from homeologs (paralogs resulting from whole-genome duplication) by detecting excessively high observed heterozygosity and deviations from Hardy-Weinberg proportions. We identified 2923 candidate species-specific SNPs from a single Illumina sequencing lane containing 24 barcode-labelled individuals. Published sequence data and ongoing genome sequencing of rainbow trout will allow physical mapping of SNP loci for genome-wide scans and will also provide flanking sequence for design of qPCR-based TaqMan(?) assays for high-throughput, low-cost hybrid identification using a subset of 50-100 loci. This study demonstrates that it is now feasible to identify thousands of informative SNPs in nonmodel species quickly and at reasonable cost, even if no prior genomic information is available.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号