首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Abstract: l -Deprenyl is a relatively selective inhibitor of monoamine oxidase (MAO)-B that delays the emergence of disability and the progression of signs and symptoms of Parkinson's disease. Experimentally, deprenyl has also been shown to prevent neuronal cell death in various models through a mechanism that is independent of MAO-B inhibition. We examined the effect of deprenyl on cultured mesencephalic dopamine neurons subjected to daily changes of feeding medium, an experimental paradigm that causes neuronal death associated with activation of the NMDA subtype of glutamate receptors. Both deprenyl (0.5–50 µ M ) and the NMDA receptor blocker MK-801 (10 µ M ) protected dopamine neurons from damage caused by medium changes. The nonselective MAO inhibitor pargyline (0.5–50 µ M ) was not protective, indicating that protection by deprenyl was not due to MAO inhibition. Deprenyl (50 µ M ) also protected dopamine neurons from delayed neurotoxicity caused by exposure to NMDA. Because deprenyl had no inhibitory effect on NMDA receptor binding, it is likely that deprenyl protects from events occurring downstream from activation of glutamate receptors. As excitotoxic injury has been implicated in neurodegeneration, it is possible that deprenyl exerts its beneficial effects in Parkinson's disease by suppressing excitotoxic damage.  相似文献   

2.
Intrastriatal administration of the succinate dehydrogenase (SDH) inhibitor malonate produces neuronal injury by a "secondary excitotoxic" mechanism involving the generation of reactive oxygen species (ROS). Recent evidence indicates dopamine may contribute to malonate-induced striatal neurodegeneration; infusion of malonate causes a pronounced increase in extracellular dopamine and dopamine deafferentation attenuates malonate toxicity. Inhibition of the catabolic enzyme monoamine oxidase (MAO) also attenuates striatal lesions induced by malonate. In addition to forming 3,4-dihydroxyphenylacetic acid, metabolism of dopamine by MAO generates H2O2, suggesting that dopamine metabolism may be a source of ROS in malonate toxicity. There are two isoforms of MAO, MAO-A and MAO-B. In this study, we have investigated the role of each isozyme in malonate-induced striatal injury using both pharmacological and genetic approaches. In rats treated with either of the specific MAO-A or -B inhibitors, clorgyline or deprenyl, respectively, malonate lesion volumes were reduced by 30% compared to controls. In knock-out mice lacking the MAO-A isoform, malonate-induced lesions were reduced by 50% and protein carbonyls, an index ROS formation, were reduced by 11%, compared to wild-type animals. In contrast, mice deficient in MAO-B showed highly variable susceptibility to malonate toxicity precluding us from determining the precise role of MAO-B in this form of brain damage. These findings indicate that normal levels of MAO-A participate in expression of malonate toxicity by a mechanism involving oxidative stress.  相似文献   

3.
Abstract: Exposure of mesencephalic dopamine neurons to an irreversible inhibitor of succinate dehydrogenase (SDH), 3-nitropropionic acid (3-NPA), for 24 h on day 12 in vitro, produced a dose-dependent loss of high-affinity dopamine uptake when measured 48 h following 3-NPA removal. ATP concentrations in the cultures were reduced by 57% after 3 h of treatment with the highest concentration of 3-NPA tested (500 µ M ). To determine whether glutamate receptors mediated the dopamine toxicity by 3-NPA, cultures were examined for their sensitivity to excitatory amino acid-induced toxicity. Mesencephalic cultures exposed to either 100 µ M NMDA or kainate, on day 12 for 24 h, showed complete loss of dopamine uptake following 48 h of recovery. The NMDA and non-NMDA antagonists, MK-801 (1 µ M ) or 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX; 15 µ M ), completely prevented the effects of NMDA or kainate, respectively, when present at the time of toxin exposure. In cultures treated with 3-NPA, MK-801, but not CNQX, significantly attenuated the loss of dopamine uptake. Direct measurement of the effect of 3-NPA on SDH activity showed that 3-NPA dose-dependently inhibited SDH in vitro in a manner commensurate with the loss of dopamine uptake by 3-NPA. MK-801 had no effect on basal SDH activity or on 3-NPA inhibition of SDH. These data are consistent with the interpretation that metabolic inhibition in dopamine neurons can trigger a secondary excitotoxicity that is mediated by NMDA receptors.  相似文献   

4.
Abstract: Chronic inhibition of succinate dehydrogenase (SDH) by systemic injection of the selective inhibitor 3-nitropropionic acid (3NP) has been used as an animal model for Huntington's disease (HD). However, the mechanisms by which 3NP produces lesions in the striatum are not fully characterized. A quantitative histochemical method was developed to study the level of regional SDH inhibition resulting from intraperitoneal injection of 3NP or chronic intoxication using osmotic pumps. The results showed that (a) 3NP was an irreversible SDH inhibitor in vivo, (b) the level of SDH inhibition in the striatum (the brain region most vulnerable to 3NP) was similar to that observed in other brain regions not affected by the toxin, such as the cerebral cortex, and (c) the neurotoxic threshold of SDH inhibition in the brain was 50–60% of control levels. The present study demonstrates that the selective degeneration in the striatum observed after chronic 3NP administration cannot be ascribed to a preferential inhibition of SDH in this particular brain region. This work also suggests that the partial decrease in the activity of the respiratory chain complex II–III reported in HD patients may be sufficient to induce the selective striatal degeneration observed in this disorder.  相似文献   

5.
Abstract: L-DOPA is a large neutral amino acid subject to transport out of, as well as into, brain tissue. Competition between dopamine synthesis and L-DOPA egress from striatum must favor L-DOPA egress if decarboxylation declines relatively more than transport in Parkinson's disease. To test this hypothesis, we injected patients with Parkinson's disease with a radidabeled analogue of L-DOPA and recorded regional brain radioactivity as a function of time by means of positron emission tomography. We simultaneously estimated the activity of the decarboxylating enzyme and the amino acid transport. In the striatum of patients, we found the L-DOPA decarboxylase activity to be reduced in the head of the caudate nucleus and the putamen. However, the rate of egress of the DOPA analogue was unaffected by the disease and thus inhibited dopamine synthesis more than predicted in the absence of L-DOPA egress.  相似文献   

6.
Anatoxin-a is an important neurotoxin that acts a potent nicotinic acetylcholine receptor agonist. This characteristic makes anatoxin-a an important tool for the study of nicotinic receptors. Anatoxin-a has been used extensively in vitro experiments, however anatoxin-a has never been studied by in vivo microdialysis studies. This study test the effect of anatoxin-a on striatal in vivo dopamine release by microdialysis.The results of this work show that anatoxin-a evoked dopamine release in a concentration-dependent way. Atropine had not any effect on dopamine release evoked by 3.5 mM anatoxin-a. However, perfusion of nicotinic antagonists mecamylamine and α-bungarotoxin induced a total inhibition of the striatal dopamine release. Perfusion of α7*-receptors antagonists, metillycaconitine or α-bungarotoxin, partially inhibits the release of dopamine stimulated by anatoxin-a. These results show that anatoxin-a can be used as an important nicotinic agonist in the study of nicotinic receptor by in vivo microdialysis technique and also support further in vivo evidences that α7*nicotinic AChRs are implicated in the regulation of striatal dopamine release.  相似文献   

7.
Abstract: Basal levels of endogenous 3,4-dihydroxyphenylalanine (DOPA) were detected by HPLC coupled with coulometric detection in dialysates from freely moving rats implanted 48–72 h earlier with transversal dialysis fibers in the dorsal caudate. Because decarboxylase inhibitor is absent in the Ringer's solution, this method allows monitoring of basal output of dopamine (DA) and 3,4-dihydroxyphenylacetic acid, as well as DOPA. Extracellular DOPA concentrations were reduced by the tyrosine hydroxylase inhibitor α-methylparatyrosine (200 mg/kg, i.p.) and by the dopaminergic agonist apomorphine (0.25 mg/kg, s.c.). The dopaminergic antagonist haloperidol (0.2 mg/kg, s.c.) stimulated DOPA output by about 60% over basal values. γ-Butyrolactone, at doses of 700 mg/kg, i.p., which are known to block dopaminergic neuronal firing and which reduce DA release, stimulated DOPA output maximally by 130% over basal values. Tetrodotoxin, which blocks DA release by blocking voltage-dependent Na+ channels, increased DOPA output maximally by 100% over basal values. The results indicate that basal DOPA can be detected and monitored in the extracellular fluid of the caudate of freely moving rats by transcerebral dialysis and can be taken as a dynamic index of DA synthesis in pharmacological conditions.  相似文献   

8.
Abstract: The effect of various doses of the serotonin (5-HT) release-inducing agent d -fenfluramine ( d -fenf) on extracellular dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC), and 5-hydroxyindoleacetic acid (5-HIAA) was studied in vivo in the striatum of halothane-anesthetized rats, following systemic and local administration. At 5 and 10 but not 2.5 mg/kg, d -fenf administered intraperitoneally significantly increased DA extracellular concentration and reduced DOPAC outflow. A concentration-dependent enhancement of DA dialysate content was also found following intrastriatal application (5, 10, 25, and 50 µ M ). The bilateral administration of 5,7-dihydroxytryptamine into the dorsal raphe nucleus, which markedly depleted 5-HT in the striatum, did not modify the effect on extracellular DA concentration of 25 µ M d -fenf locally applied into the striatum. The enhancement of extracellular DA level induced by 25 µ M d -fenf was slightly but significantly reduced by the local application of 25 µ M citalopgram. The blockade of DA uptake sites by nomifensine (0.1, 0.3, and 1 µ M ) did not modify significantly the effect of d -fenf. The rise of DA outflow induced by 25 µ M d -fenf was strongly reduced in the presence of 1 µ M tetrodotoxin (TTX) or by the removal of Ca2+ from the perfusion medium. The results obtained show that d -fenf increases the striatal extracellular DA concentration by a Ca2+-dependent and TTX-sensitive mechanism that is independent of striatal 5-HT itself or DA uptake sites.  相似文献   

9.
Abstract: Protein tyrosine kinases that are known to have major roles in the control of cell growth and transformation are abundant and have numerous phosphoprotein substrates in the adult CNS. Although less well characterized than serine/threonine kinases, tyrosine kinases are also concentrated in the synapse. The effect of genistein, a selective inhibitor of tyrosine kinase activity, was examined on the in vitro release of endogenous dopamine (DA) from superfused mouse striatal slices. Fractional release of DA was significantly increased over basal release levels by genistein (100 and 200 µ M ). The effect was concentration dependent and rapidly reversible on washout of the kinase inhibitor. No significant change from basal release levels was observed with two structural analogues of genistein that do not inhibit tyrosine kinase activity at the same concentration. We have previously described alterations in basal and evoked DA release from the striatum of the weaver ( wv/wv ) mutant mouse, and genotypic differences in fractional release were also observed with genistein stimulation. The total evoked release was 25–50% greater from the wv/wv striatum. These results suggest a modulatory role for tyrosine kinase activity in neurotransmitter release and perhaps an alteration of kinase-regulated mechanisms in the DA-deficient wv/wv striatum.  相似文献   

10.
Abstract: The somatodendritic release of dopamine in substantia nigra previously has been suggested to be nonvesicular in nature and thus to differ from the classical, exocytotic release of dopamine described for the dopaminergic nerve terminal in striatum. We have compared the effects of reserpine, a compound that disrupts vesicular sequestration of monoamines, on the storage and release of dopamine in substantia nigra and striatum of rats. Reserpine administration (5 mg/kg, i.p.) significantly decreased the tissue level of dopamine in substantia nigra pars reticulata, substantia nigra pars compacta, and striatum. In these brain areas, reserpine-induced reductions in tissue dopamine level occurred within 2 h and persisted at 24 h postdrug. In vivo measurements using microdialysis revealed that reserpine administration rapidly decreased the extracellular dopamine concentration to nondetectable levels in substantia nigra as well as in striatum. In both structures, it was observed that reserpine treatment significantly attenuated the release of dopamine evoked by a high dose of amphetamine (10 mg/kg, i.p.) given 2 h later. In contrast, dopamine efflux in response to a low dose of amphetamine (2 mg/kg, i.p.) was not altered by reserpine pretreatment either in substantia nigra or in striatum. The present data suggest the existence, both at the somatodendritic and at the nerve terminal level, of a vesicular pool of dopamine that is the primary site of transmitter storage and that can be displaced by high but not low doses of amphetamine. The physiological release of dopamine in substantia nigra and in striatum is dependent on the integrity of this vesicular store.  相似文献   

11.
The weaver mutant mouse has a genetically determined defect in the nigrostriatal dopaminergic system. The present study was undertaken to test the hypothesis that in the weaver mutant mouse, striatal nerve terminals undergo compensatory changes in response to this deficiency. To test this hypothesis, we studied the basal and stimulated release of dopamine from striatal slices of weaver mutant mice and matched controls. By using a superfusion system and concentrating the superfusate by passage over alumina, resting dopamine release could be determined in the weaver mutant despite the fact that striatal tissue content of dopamine in these mice is reduced by greater than 75% compared with control mice. Fractional resting release of dopamine in weaver striatal slices was significantly elevated compared with that in controls, suggesting that the release mechanisms in the weaver may be adapting to overcome the dopamine deficit. Potassium-evoked release (24 and 48 mM potassium) was not significantly different between the two genotypes. In contrast, amphetamine-evoked release (1 microM) was significantly greater in the weaver mice than in controls. In both genotypes, release evoked by amphetamine was completely inhibited by cocaine, implicating the dopamine uptake carrier in this release process. These findings suggest that fundamental differences in dopamine release mechanisms exist between weaver and control mice and support the hypothesis that compensatory mechanisms may develop in neurons in response to dopamine deficits.  相似文献   

12.
Rats were infused intraventricularly with [3H]tyrosine over a 20-min period during various times while circling. 3,4-Dihydroxyphenylethylamine (dopamine) and dihydroxyphenylacetic acid (DOPAC) levels were measured using HPLC with electrochemical detection and fractions were collected for tritium monitoring. During the first 20 min of circling, the specific activity of dopamine was increased by 290% in striatum contralateral to the circling direction whereas DOPAC specific activity was increased 50% on the same side. This differential change in relative specific activity suggests that unlabeled storage pool dopamine was mobilized to DOPAC during circling. Synthesis of dopamine and DOPAC in contralateral striatum returned to baseline levels as turning slowed (50-70 min). When turning ceased, there was an increase in ipsilateral striatal dopamine synthesis during the 20-min period following circling. We hypothesize that this ipsilateral increase represents either a "stop" signal following circling or a release of inhibition of ipsilateral nigral neurons.  相似文献   

13.
Using the technique of trans-striatal dialysis in halothane-anesthetized rats, we have studied the effects of intrastriatally infused N-methyl-D-aspartate (NMDA), kainate, and quisqualate on the liberation of endogenous striatal dopamine. The striatal infusion of NMDA (10(-3)-10(-2) M) or kainate (10(-4)-10(-2) M) but not of quisqualate (up to 10(-2) M) for one 20-min fraction provoked a dramatic increase in striatal dopamine efflux up to a maximum of 1,200 and 3,400% of basal levels for NMDA and kainate, respectively. NMDA (10(-3) M) evoked liberation of striatal dopamine was totally blocked by coinfusion of 2-amino-5-phosphonovalerate (2-APV; 5 X 10(-4) M) and by the systemic injection of phencyclidine (3 mg/kg i.p.). The effects of NMDA (10(-3) M) were also totally antagonized in a dose-dependent manner by the striatal coinfusion of atropine (10(-7)-10(-4) M), and abolished in rats that had received bilateral striatal ibotenate lesions (10 micrograms/1 microliter) 1 week prior to implantation of the dialysis fiber. The striatal infusion of tetrodotoxin (10(-6) M) reduced basal dopamine efflux by 60-70% and abolished the NMDA (10(-3) M)-evoked liberation of striatal dopamine. The effects of kainate (10(-3) M) on striatal dopamine efflux were only partially reduced by doses of 2-APV or atropine that totally blocked the NMDA response, and were also partially resistant to tetrodotoxin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Abstract: Several amphetamine analogues are reported to increase striatal glutamate efflux in vivo, whereas other data indicate that glutamate is capable of stimulating the efflux of dopamine (DA) in the striatum via a glutamate receptor-dependent mechanism. Based on these findings, it has been proposed that the ability of glutamate receptor-blocking drugs to antagonize the effects of amphetamine may be explained by their capacity to inhibit DA release induced by glutamate. To examine this possibility further, we investigated in vivo the ability of glutamate antagonists to inhibit DA release induced by either methamphetamine (METH) or 3,4-methylenedioxymethamphetamine (MDMA). Both METH and MDMA increased DA efflux in the rat striatum and, in animals killed 1 week later, induced persistent depletions of DA and serotonin in tissue. Pretreatment with MK-801 or CGS 19755 blocked the neurotoxic effects of METH and MDMA but, did not significantly alter striatal DA efflux induced by either stimulant. Infusion of 6-cyano-7-nitroquinoxaline-2,3-dione into the striatum likewise did not alter METH-induced DA overflow, and none of the glutamatergic antagonists affected the basal release of DA when given alone. The findings suggest that the neuroprotective effects of NMDA antagonists do not involve an inhibition of DA release, nor do the data support the proposal that glutamate tonically stimulates striatal DA efflux in vivo. Whether phasic increases in glutamate content might stimulate DA release, however, remains to be determined.  相似文献   

15.
Abstract: The weaver mutant mouse (wv/wv) has an ~70% loss of nigrostriatal dopamine (DA) neurons, but the fractional DA release evoked by amphetamine (but not a high potassium level) has been shown to be greater from striatal slices of the weaver compared with +/+ mice. In the present work we tested the hypothesis that fractional DA release from weaver striatum would be greater when release was mediated by the DA transporter. Serotonin (5-HT)-stimulated fractional DA release was greater from weaver than from +/+ striatum. The release evoked by 5-HT in the presence of 10 µM nomifensine (an antagonist of the DA transporter) was less than in its absence, but the difference between weaver and +/+ striatum remained. In the presence of nomifensine, 1-(m-chlorophenyl)biguanide, classified as a 5-HT3 agonist, also induced a greater fractional release from weaver compared with +/+ striatum. When veratridine was used at a low concentration (1 µM), the fractional evoked release of DA was higher from the weaver in the presence and absence of nomifensine. These findings suggest that the reason for the difference in the responsiveness of the two genotypes to these release-inducing agents is not related to DA transporter function.  相似文献   

16.
Abstract: We have used in vivo microdialysis in anaesthetised rats to investigate whether somatostatin (SRIF) can play a neuromodulatory role in the striatum. When 100 n M SRIF was retrodialysed for 15 min, it increased concentrations of dopamine (DA) by 28-fold, γ-aminobutyric acid (GABA) by eightfold, and glutamate (Glu) by sixfold as well as those of aspartate (Asp) and taurine (Tau). These effects were both calcium- and tetrodotoxin-sensitive. Lower (10 or 50 n M ) and higher (1 µ M ) SRIF concentrations were less effective. Rapid sampling showed that whereas Asp and Glu concentrations were raised for 3 min at the start of 15-min SRIF infusions, those of DA were increased for 12 min. A second 15-min application of 100 n M SRIF given 135 min after the first application failed to increase transmitter release. An NMDA receptor antagonist, 2-amino-5-phosphonopentanoic acid (200 µ M ), blocked SRIF (100 n M )-evoked Asp, Glu, Tau, and GABA release and reduced that of DA. An α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA)/kainate antagonist, 6,7-dinitroquinoxaline-2,3-dione (100 µ M ), blocked SRIF-induced DA and Tau release and reduced that of Asp, Glu, and GABA. These results show that SRIF increases DA, Glu, Asp, GABA, and Tau release in the rat striatum and suggest that its actions on DA and GABA release are mainly mediated through increased excitatory amino acid release.  相似文献   

17.
Abstract : Lesch-Nyhan disease is a neurogenetic disorder caused by deficiency of the purine salvage enzyme hypoxanthine-guanine phosphoribosyltransferase (HPRT). Affected individuals exhibit a characteristic pattern of neurological and behavioral features attributable in part to dysfunction of basal ganglia dopamine systems. In the current studies, striatal dopamine loss was investigated in five different HPRT-deficient strains of mice carrying one of two different HPRT gene mutations. Caudoputamen dopamine concentrations were significantly reduced in all five of the strains, with deficits ranging from 50.7 to 61.1%. Mesolimbic dopamine was significantly reduced in only three of the five strains, with a range of 31.6-38.6%. The reduction of caudoputamen dopamine was age dependent, emerging between 4 and 12 weeks of age. Tyrosine hydroxylase and aromatic amino acid decarboxylase, two enzymes responsible for the synthesis of dopamine, were reduced by 22.4-37.3 and 22.2-43.1%, respectively. These results demonstrate that HPRT deficiency is strongly associated with a loss of basal ganglia dopamine. The magnitude of dopamine loss measurable is dependent on the genetic background of the mouse strain used, the basal ganglia sub-region examined, and the age of the animals at assessment.  相似文献   

18.
Destruction of nigrostriatal dopamine (DA) neurons with 6-hydroxydopamine (6-OHDA) early in development results in hyperinnervation of striatum by the serotonergic afferents deriving from the dorsal raphe nucleus. We have used in vivo microdialysis to investigate the degree to which serotonergic neurotransmission in striatum is altered by this increase in the density of serotonin (5-HT) terminals. The effects of several manipulations known to influence 5-HT function on extracellular 5-HT and 5-hydroxyindoleacetic acid in striatum were compared in adult rats treated neonatally with 6-OHDA and in intact adult rats. Basal levels of 5-HT in extracellular fluid (ECF) of striatum were similar in neonatally DA-depleted rats and in intact rats. Perfusion with the 5-HT reuptake blocker, fluoxetine (100 microM), increased 5-HT in striatal ECF of neonatally DA-depleted rats to levels that were threefold greater than those achieved in intact rats. Likewise, K(+)-depolarization of the 5-HT terminals (100 mM in perfusate) or systemic administration of the 5-HT releaser, (+/-)-fenfluramine (10 mg/kg i.p.), increased the concentration of 5-HT in striatal ECF of neonatally DA-depleted rats to levels approximately threefold greater than those observed in striatum of intact rats. These findings indicate that the 5-HT hyperinnervation of striatum that takes place in rats depleted of DA at infancy is associated with an increased capacity for neurotransmitter release in this system. Concomitant increased in high-affinity 5-HT uptake may prevent the occurrence of any measurable changes in the resting concentration of 5-HT in striatal ECF.  相似文献   

19.
We have previously described a marked attenuation of postischemic striatal neuronal death by prior substantia nigra (SN) lesioning. The present study was carried out to evaluate whether the protective effect of the lesion involves changes in the degree of local cerebral blood flow (ICBF) reduction, energy metabolite depletion, or alterations in the extracellular release of striatal dopamine (DA), glutamate (Glu), or gamma-aminobutyric acid (GABA). Control and SN-lesioned rats were subjected to 20 min of forebrain ischemia by four-vessel occlusion combined with systemic hypotension. Levels of ICBF, as measured by the autoradiographic method, and energy metabolites were uniformly reduced in both the ipsi- and contralateral striata at the end of the ischemic period, a finding implying that the lesion did not affect the severity of the ischemic insult itself. Extracellular neurotransmitter levels were measured by microdialysis; the perfusate was collected before, during, and after ischemia. An approximately 500-fold increase in DA content, a 7-fold increase in Glu content, and a 5-fold increase in GABA content were observed during ischemia in nonlesioned animals. These levels gradually returned to baseline by 30 min of reperfusion. In SN-lesioned rats, the release of DA was completely prevented, the release of GABA was not affected, and the release of Glu was partially attenuated. However, excessive extracellular Glu concentrations were still attained, which are potentially toxic. This, taken together with the previous neuropathological findings, suggests that excessive release of DA is important for the development of ischemic cell damage in the striatum.  相似文献   

20.
Abstract: The release of dopamine in the striatum, nucleus accumbens, and olfactory tubercle of anesthetized rats was evoked by electrical stimulation of the mesolimbic dopaminergic pathway (four pulses at 15 Hz or four pulses at 200 Hz). Carbon fiber electrodes were implanted in these regions to monitor evoked dopamine overflow by continuous amperometry. The kinetics of dopamine elimination were estimated by measuring the time to 50% decay of the dopamine oxidation current after stimulation ceased. This time ranged from 64 ms in the striatum to 113 ms in the nucleus accumbens. Inhibition of dopamine uptake by nomifensine (2–20 mg/kg), GBR 12909 (20 mg/kg), cocaine (20 mg/kg), mazindol (10 mg/kg), or bupropion (25 mg/kg) enhanced this decay time by up to +602%. Uptake inhibition also produced an increase in the maximal amplitude of dopamine overflow evoked by four pulses at 15 Hz. This latter effect was larger in the striatum (+420%) than in mesolimbic areas (+140%). These results show in vivo that these uptake inhibitors actually slow the clearance of dopamine released by action potentials and suggest that dopaminergic transmission is both prolonged and potentiated strongly by these drugs, in particular in the striatum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号