首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
This review describes aspects of negative staining of isolated integral membrane proteins. Detergents play a central role in the isolation of membrane proteins and also in their solubility in aqueous solutions. Specimens of mixed micelles of membrane proteins and nonionic detergents can be easily prepared as long as the detergent concentration remains above the critical micellar concentration. Membrane proteins involved in the process of photosynthesis have been taken as examples to illustrate their interaction with different detergents. Upon negative staining, mixed micelles of membrane proteins and detergents show characteristic top and side view projections. On their sides, mixed micelles can easily aggregate into strings.  相似文献   

3.
Immunoblotting of hydrophobic integral membrane proteins   总被引:4,自引:0,他引:4  
For diagnosis and research purposes it is frequently desirable to measure by immunoblotting small amounts of proteins in complex mixtures such as tissue biopsy homogenates. Standard immunoblot procedures that give excellent results for soluble proteins unexpectedly gave low and irreproducible signals with some hydrophobic membrane proteins. We found that this was due to inefficient electrophoretic transfer to nitrocellulose, which could be corrected by modification of the transblot buffer. Hydrophobic integral membrane proteins of peroxisomes as well as other rat and human liver proteins were subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis and transferred to nitrocellulose filters. The nitrocellulose-bound proteins were detected both by staining and by immunoblotting with an antiserum against the 22-kDa integral membrane protein of peroxisomes plus 125I-labeled protein A. A modified transblot buffer with 0.7 M glycine and 25 mM Tris (pH 7.7) but no methanol allowed use of a much shorter transfer time and strikingly improved the electrophoretic transfer of membrane proteins such that a peroxisomal integral membrane protein could be easily detected in human liver biopsy homogenates.  相似文献   

4.
Integral membrane proteins (IMPs) are essential components of the plasma and organellar membranes of the eukaryotic cell. Non-native IMPs, which can arise as a result of mutations, errors during biosynthesis or cellular stress, can disrupt these membranes and potentially lead to cell death. To protect against this outcome, the cell possesses quality control (QC) systems that detect and dispose of non-native IMPs from cellular membranes. Recent studies suggest that recognition of non-native IMPs by the QC machinery is correlated with the thermodynamic stability of these proteins. Consistent with this, small molecules known as chemical and pharmacological chaperones have been identified that stabilize non-native IMPs and enable them to evade QC. These findings have far-reaching implications for treating human diseases caused by defective IMPs.  相似文献   

5.
A W Scotto  D Zakim 《Biochemistry》1985,24(15):4066-4075
We have developed a simple method for reconstituting pure, integral membrane proteins into phospholipid-protein vesicles. The method does not depend on use of detergents or sonication. It has been used successfully with three different types of integral membrane proteins: UDPglucuronosyltransferase (EC 2.4.1.17) from pig liver microsomes, cytochrome oxidase (EC 1.9.3.1) from pig heart, and bacteriorhodopsin from Halobacterium halobium. The method depends on preparing unilamellar vesicles of dimyristoylphosphatidylcholine (DMPC) that contain a small amount of myristate as fusogen. Under conditions that the vesicles of DMPC have the property of fusing, all of the above proteins incorporated into bilayers. Two events appear to be involved in forming the phospholipid-protein complexes. The first is a rapid insertion of all proteins into a small percentage of total vesicles. The second is slower but continued fusion of the remaining phospholipid-protein vesicles, or proteoliposomes, with small unilamellar vesicles of DMPC. This latter process was inhibited by conditions under which vesicles of DMPC themselves would not fuse. On the basis of proton pumping by bacteriorhodopsin and negative staining, the vesicles were unilamellar and large. The data suggest that insertion of the above integral membrane proteins into vesicles occurred independently of fusion between vesicles.  相似文献   

6.
Topogenic signals in integral membrane proteins   总被引:65,自引:0,他引:65  
Integral membrane proteins are characterized by long apolar segments that cross the lipid bilayer. Polar domains flanking these apolar segments have a more balanced amino acid composition, typical for soluble proteins. We show that the apolar segments from three different kinds of membrane-assembly signals do not differ significantly in amino acid content, but that the inside/outside location of the polar domains correlates strongly with their content of arginyl and lysyl residues, not only for bacterial inner-membrane proteins, but also for eukaryotic.proteins from the endoplasmic reticulum, the plasma membrane, the inner mitochondrial membrane, and the chloroplast thylakoid membrane. A positive-inside rule thus seems to apply universally to all integral membrane proteins, with apolar regions targeting for membrane integration and charged residues providing the topological information.  相似文献   

7.
8.
The spontaneous reconstitution of lipid-protein complexes was examined by mixing bacteriorhodopsin or UDP-glucuronosyltransferase with preformed, unilamellar bilayers of pure dimyristoylphosphatidylcholine. Spontaneous insertion of these proteins into vesicles of dimyristoylphosphatidylcholine was facilitated by resonicating the vesicles at 4 degrees C. The property of resonicated vesicles that led to spontaneous reconstitution could be annealed by melting the bilayers, which slowed down reconstitution. The overall process of reconstitution consisted, however, of two steps. There was an initial insertion of proteins into a small portion of vesicles followed by subsequent fusion between protein-free vesicles and vesicles containing lipid-protein complexes. The first step appeared to proceed rapidly in all vesicles in a gel phase, whether or not they were resonicated or whether or not resonicated vesicles were annealed. The rate of the second step was sensitive to these treatments. The membrane proteins also inserted into preformed vesicles in a liquid crystalline phase, but this step was slower than for vesicles in a gel phase. Fusion between protein-free and protein-containing vesicles in a liquid crystalline phase was extremely slow. The data show that the spontaneous insertion of pure membrane proteins into preformed vesicles can be a facile event and that the overall reconstitution of membrane proteins into preformed unilamellar vesicles may be simpler to achieve than has been appreciated.  相似文献   

9.
Membrane proteins represent up to 30% of the proteins in all organisms, they are involved in many biological processes and are the molecular targets for around 50% of validated drugs. Despite this, membrane proteins represent less than 1% of all high-resolution protein structures due to various challenges associated with applying the main biophysical techniques used for protein structure determination. Recent years have seen an explosion in the number of high-resolution structures of membrane proteins determined by NMR spectroscopy, especially for those with multiple transmembrane-spanning segments. This is a review of the structures of polytopic integral membrane proteins determined by NMR spectroscopy up to the end of the year 2010, which includes both β-barrel and α-helical proteins from a number of different organisms and with a range in types of function. It also considers the challenges associated with performing structural studies by NMR spectroscopy on membrane proteins and how some of these have been overcome, along with its exciting potential for contributing new knowledge about the molecular mechanisms of membrane proteins, their roles in human disease, and for assisting drug design.  相似文献   

10.
11.
Abstract

Membrane proteins represent up to 30% of the proteins in all organisms, they are involved in many biological processes and are the molecular targets for around 50% of validated drugs. Despite this, membrane proteins represent less than 1% of all high-resolution protein structures due to various challenges associated with applying the main biophysical techniques used for protein structure determination. Recent years have seen an explosion in the number of high-resolution structures of membrane proteins determined by NMR spectroscopy, especially for those with multiple transmembrane-spanning segments. This is a review of the structures of polytopic integral membrane proteins determined by NMR spectroscopy up to the end of the year 2010, which includes both β-barrel and α-helical proteins from a number of different organisms and with a range in types of function. It also considers the challenges associated with performing structural studies by NMR spectroscopy on membrane proteins and how some of these have been overcome, along with its exciting potential for contributing new knowledge about the molecular mechanisms of membrane proteins, their roles in human disease, and for assisting drug design.  相似文献   

12.
Signals between a cell and its environment are often transmitted through membrane proteins; therefore, many membrane proteins, including G protein-coupled receptors (GPCRs) and ion channels, are important drug targets. Structural information about membrane proteins remains limited owing to challenges in protein expression, purification and the selection of membrane-mimicking systems that will retain protein structure and function. This review describes recent advances in solution NMR applied to the structural study of integral membrane proteins. The examples herein demonstrate that solution NMR spectroscopy will play a unique role not only in structural analysis, but also drug discovery of membrane proteins.  相似文献   

13.
《Molecular membrane biology》2013,30(5-8):156-178
Abstract

Solid-state NMR is unique for its ability to obtain three-dimensional structures and to measure atomic-resolution structural and dynamic information for membrane proteins in native lipid bilayers. An increasing number and complexity of integral membrane protein structures have been determined by solid-state NMR using two main methods. Oriented sample solid-state NMR uses macroscopically aligned lipid bilayers to obtain orientational restraints that define secondary structure and global fold of embedded peptides and proteins and their orientation and topology in lipid bilayers. Magic angle spinning (MAS) solid-state NMR uses unoriented rapidly spinning samples to obtain distance and torsion angle restraints that define tertiary structure and helix packing arrangements. Details of all current protein structures are described, highlighting developments in experimental strategy and other technological advancements. Some structures originate from combining solid- and solution-state NMR information and some have used solid-state NMR to refine X-ray crystal structures. Solid-state NMR has also validated the structures of proteins determined in different membrane mimetics by solution-state NMR and X-ray crystallography and is therefore complementary to other structural biology techniques. By continuing efforts in identifying membrane protein targets and developing expression, isotope labelling and sample preparation strategies, probe technology, NMR experiments, calculation and modelling methods and combination with other techniques, it should be feasible to determine the structures of many more membrane proteins of biological and biomedical importance using solid-state NMR. This will provide three-dimensional structures and atomic-resolution structural information for characterising ligand and drug interactions, dynamics and molecular mechanisms of membrane proteins under physiological lipid bilayer conditions.  相似文献   

14.
15.
16.
17.
18.
19.
20.
SUMMARY: A collection of transmembrane proteins with annotated transmembrane regions, for which good experimental evidence exist, was created as a test or training set for algorithms to predict transmembrane regions in proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号