首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lenses from mice lacking the antioxidant enzyme copper-zinc superoxide dismutase (SOD1) show elevated levels of superoxide radicals and are prone to developing cataract when exposed to high levels of glucose in vitro. As superoxide may react further with nitric oxide, generating cytotoxic reactive nitrogen species, we attempted to evaluate the involvement of nitric oxide in glucose-induced cataract. Lenses from SOD1-null and wild-type mice were incubated with high or normal levels of glucose (55.6 and 5.56 mM). A nitric oxide synthase inhibitor (L-NAME) or a nitric oxide donor (DETA/NO) was added to the culture medium. Cataract development was assessed using digital image analysis of lens photographs and cell damage by analyzing the leakage of lactate dehydrogenase. The levels of superoxide radicals in the lenses were also measured. L-NAME was found to reduce cataract development and cell damage in the SOD1-null lenses exposed to high glucose. On the other hand, DETA/NO accelerated cataract development, especially in the SOD1-null lenses. These lenses also showed a higher leakage of lactate dehydrogenase than wild-type controls. We conclude that a combination of high glucose and absence of SOD1 increases the formation of cataract and that nitric oxide probably contributes to this process.  相似文献   

2.
Copper/zinc-superoxide dismutase (CuZn-SOD) transgenic mice overexpress the gene for human CuZn-SOD. To assess the effects of the overexpression of CuZn-SOD on the brain scavenging systems, we have measured the activities of manganese-SOD (Mn-SOD), catalase, and glutathione peroxidase (GSH-Px) in various regions of the mouse brain. In nontransgenic mice, cytosolic CuZn-SOD activity was highest in the caudate-putamen complex; this was followed by the brainstem and the hippocampus. The lowest activity was observed in the cerebellum. In transgenic mice, there were significant increases of cytosolic CuZn-SOD activity in all of these regions, with ratios varying from a twofold increase in the brainstem to 3.42-fold in the cerebellum in comparison with nontransgenic mice. Particulate Mn-SOD was similarly distributed in all brain regions, and its levels also were significantly increased in superoxide dismutase (SOD)-transgenic mice. In the brains of nontransgenic mice, cytosolic catalase activity was similar in all brain regions except the cortex, which showed less than 50% of the activity observed in the other regions. In transgenic mice, cytosolic catalase activity was significantly increased, with the cortex showing the greatest changes (133%) in comparison with nontransgenic mice. The smallest increases were observed in the hippocampus (34%). In contrast to what was observed for SOD and catalase, there were no significant changes in cytosolic GSH-Px activity in any of the brain regions examined. The present results indicate that, in addition to displaying marked increases in the levels of brain CuZn-SOD activity, SOD-transgenic mice also exhibit increases in other enzymes that scavenge oxygen-based radicals.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Mice lacking the secreted extracellular superoxide dismutase (EC-SOD) or the cytosolic copper- and zinc-containing SOD (CuZn-SOD) show relatively mild phenotypes. To explore the possibility that the isoenzymes have partly overlapping functions, single and double knockout mice were examined. The absence of EC-SOD was found to be without effect on the lifespan of mice, and the reduced lifespan of CuZn-SOD knockouts was not further shortened by EC-SOD deficiency. The urinary excretion of isoprostanes was increased in CuZn-SOD knockout mice, and plasma thiobarbituric acid-reactive substances levels were elevated in EC-SOD knockout mice. These oxidant stress markers showed potentiated increases in the absence of both isoenzymes. Other alterations were mainly found in CuZn-SOD knockout mice, such as halved glutathione peroxidase activity in the tissues examined and increased glutathione and iron in the liver. There were no changes in tissue content of the alternative superoxide scavenger ascorbate, but there was a 25% reduction in ascorbate in blood plasma in mice lacking CuZn-SOD. No increase was found in the urinary excretion of the terminal metabolites of NO, nitrite, and nitrate in any of the genotypes. In conclusion, apart from the increases in the global urinary and plasma oxidant stress markers, our phenotype studies revealed no other evidence that the copper- and zinc-containing SOD isoenzymes have overlapping roles.  相似文献   

4.
Rat lenses in organ culture were exposed to activated species of oxygen generated in the culture medium either by xanthine oxidase and hypoxanthine or by riboflavin and visible light, two systems which have been shown to produce superoxide and H2O2. In each case there was marked damage to carrier-mediated transport systems of the lens. Under standard culture conditions this damage was strongly inhibited by catalase, but not by superoxide dismutase (SOD). By the addition to the medium of chelated iron, hydroxyl radicals were produced in a Fenton reaction with a concomitant decrease in H2O2 levels. With both oxygen radical-generating systems, the addition of chelated iron strongly inhibited lens damage. This inhibitory effect could be reversed by the addition of SOD with the chelated iron. Under such conditions SOD converts superoxide anion to H2O2, thereby preventing reduction of the chelated iron and thus stopping the generation of hydroxyl radicals. Increased lens damage following addition of SOD to the iron-containing systems correlated with higher H2O2 concentrations, and was inhibited by catalase. These findings suggest that, when generated in the fluids surrounding the lens, H2O2 poses a much greater oxidative stress for the lens than do the superoxide or hydroxyl free radicals.  相似文献   

5.
Immunogold-electron microscopic analysis of spinach leaves donewith the antibody specific for "cytosolic" CuZn-superoxide dismutase(SOD) indicates that SOD is localized in the apoplast, in thenucleus and in, or near, the tonoplast. The association of CuZn-SODwith the nucleus indicates it has a role in preventing fatalmutation caused by reactive species of oxygen. The localizingsite of CuZn-SOD in the apoplastic region of spinach leaf tissuescorresponds to that of the accumulation of lignin. In spinachhypocotyl "cytosolic" CuZn-SOD is localized in vascular tissueswhere lignification and the generation of superoxide respectivelywere shown by the phloroglucin-HCl reaction and formation offormazane from nitroblue tetrazolium. Because hydrogen peroxideis required for lignification via the peroxidase-catalyzed reaction,the CuZn-SOD in the apoplast appears to function in the biosynthesisof lignin by causing rapid disproportionation of the superoxideanion radical prior to its interaction with cellular componentsand peroxidase. (Received March 25, 1996; Accepted June 17, 1996)  相似文献   

6.
The role of proteolytic enzymes in Shumiya cataract rats in alterations to lens proteins during cataract formation was studied immunohistochemically using antibodies against exopeptidases, such as lysosomal dipeptidyl peptidase II (DPP II), cytosolic dipeptidyl peptidase III, and soluble and membrane-bound alanyl aminopeptidases, and against cytosolic endopeptidases such as mu- and m-calpains, and 20S proteasome. AlphaB-crystallin was detected as a proteolytic marker in the lenses. A constant immunoreactivity against all the antibodies employed was observed in the lens epithelium independent of the strain and age of the rats. A weak immunoreactivity against exo- and endopeptidases and an intense reactivity against alphaB-crystallin were observed in the lens fibres of control rats at all ages. The immunoreactivity of these peptidases in lens fibres increased with age in cataract rats, but that of alphaB-crystallin decreased. No reactivity against exo- and endopeptidases was seen in the perinuclear region of lenses of control rats at all ages or in Shumiya cataract rats at 8 and 10 weeks of age, but an intense reactivity against these peptidases was observed in the lens perinuclear region of lenses in cataract rats at 12 and 14 weeks of age. AlphaB-crystallin immunoreactivity was observed with ordered striations in the lens perinuclear region of all control rats whereas the striations in this area of cataract rat lens were disorganized. Membrane-bound alanyl aminopeptidase was detected feebly in the lens epithelium and fibres of both types of rat at all weeks of age. These findings indicate that exo- and endopeptidases, except for membrane-bound alanyl aminopeptidase, are expressed intensively and are age-dependent. Conversely, the amount of alphaB-crystallin decreased with age in lens fibres of cataract rats. Calpains (mu- and m-), 20S proteasome, dipeptidyl peptidases II and III and soluble alanyl aminopeptidase are thought to induce lens opacification kinetically during cataract formation in Shumiya cataract rats through the intracellular turnover of lens proteins.  相似文献   

7.
SPARC (Secreted Protein, Acidic and Rich in Cysteine) is a matricellular glycoprotein that modulates cell proliferation, adhesion, migration, and extracellular matrix (ECM) production. Although SPARC is generally abundant in embryonic tissues and is diminished in adults, we have found that the expression of SPARC in murine lens persists throughout embryogenesis and adulthood. Our previous studies showed that targeted ablation of the SPARC gene in mice results in cataract formation, a pathology attributed partially to an abnormal lens capsule. Here we provide evidence that SPARC is not a structural component of the lens capsule. In contrast, SPARC is abundant in lens epithelial cells, and newly differentiated fiber cells, with stable expression in wild-type mice up to 2 years of age. Pertubation of the lens capsule in animals lacking SPARC appears to be a consequence of the invasion of the lens cells situated beneath the capsule. Immunoreactivity for SPARC in the lens cells was uneven, with minimal reactivity in the epithelial cells immediately anterior to the equator. These epithelial cells appeared essentially noninvasive in SPARC-null mice, in comparison to the centrally located anterior epithelial cells, in which strong labeling by anti-SPARC IgG was observed. The posterior lens fibers exhibited cytoplasmic extensions into the posterior lens capsule, which was severely damaged in SPARC-null lenses. The expression of SPARC in wild-type lens cells, together with the abnormal lens capsule in SPARC-null mice, indicated that the structural integrity of the lens capsule is dependent on the matricellular protein SPARC. The effects of SPARC in the lens appear to involve regulation of lens epithelial and fiber cell morphology and functions rather than deposition as a structural component of the lens capsule.  相似文献   

8.
Selenite and ebselen supplementation has been shown to possess anti-cataract potential in some experimental animal models of cataract, however, the underlying mechanisms remain unclear. The present study was designed to evaluate the anti-cataract effects and the underlying mechanisms of selenite and ebselen supplementation on galactose induced cataract in rats, a common animal model of sugar cataract. Transmission electron microscopy images of lens fiber cells (LFC) and lens epithelial cells (LEC) were observed in d-galactose-induced experimental cataractous rats treated with or without selenite and ebselen, also redox homeostasis and expression of proteins such as selenoprotein R (SELR), 15kD selenoprotein (SEP15), superoxide dismutase 1 (SOD1), catalase (CAT), β-crystallin protein, aldose reductase (AR) and glucose-regulated protein 78 (GRP78) were estimated in the lenses. The results showed that d-galactose injection injured rat lens and resulted in cataract formation; however, selenite and ebselen supplementation markedly alleviated ultrastructural injury of LFC and LEC. Moreover, selenite and ebselen supplementation could mitigate the oxidative damage in rat lens and increase the protein expressions of SELR, SEP15, SOD1, CAT and β-crystallin, as well as decrease the protein expressions of AR and GRP78. Taken together, these findings for the first time reveal the anti-cataract potential of selenite and ebselen in galactosemic cataract, and provide important new insights into the anti-cataract mechanisms of selenite and ebselen in sugar cataract.  相似文献   

9.
Potential difference, resistance, cation content, and 86Rb efflux were measured in frog lenses maintained in normal or calcium-free EGTA Ringer's solution. Exposure of the lens to calcium-free solution resulted in a rapid fall in potential and resistance, together with a twofold increase in 86Rb efflux rate. These rapid changes were not due to an alteration in cation distribution between the lens and its environment. However, the alteration in 86Rb efflux rate could be explained on the basis of the fall in potential. These findings suggested that removal of calcium from the bathing medium caused a rapid increase in sodium permeability alone. This suggestion was substantiated by the results of experiments where the response of the lens to low calcium solution was determined in a medium in which 90% of the sodium had been replaced by sucrose.  相似文献   

10.
Lens antioxidative enzyme activity (catalase, superoxide dismutase, glutathione peroxidase) in cataract as well as the possibility of cataract induction by the lipid peroxidation products and their influence on the content of reduced thiols (oxy-red balance) were studied. It was shown that the rate of the H2O2 decomposition by the human cataract lenses is lowered in comparison with the normal lenses. This is not due to the lowered catalase or glutathione-peroxidase 1 activity, but depends on the deficiency of reduced glutathione in the lens. Activity of superoxide dismutase and glutathione peroxidase metabolizing organic hydroperoxides is significantly lowered in the cataract lenses. Lipid peroxidation products injected into the rabbit vitreous induce posterior subcapsular cataract, which is accompanied by depletion of reduced glutathione level in the lens. The conclusion is made that two interrelated processes: accumulation of H2O2 and of lipid peroxides induce aggregation of the soluble proteins and the fragmentation of the membrane structures in cataract lenses.  相似文献   

11.
The biochemical and immunochemical characterization of a superoxide dismutase (SOD, EC 1.15.1.1) from peroxisomal origin has been carried out. The enzyme is a Cu,Zn-containing SOD (CuZn-SOD) located in the matrix of peroxisomes from watermelon (Citrullus vulgaris Schrad.) cotyledons (L.M. Sandalio and L.A. del Río [1988] Plant Physiol 88: 1215-1218). The amino acid composition of the enzyme was determined. Analysis by reversed-phase high-performance liquid chromatography of the peroxisomal CuZn-SOD incubated with 6 M guanidine-HCl indicated that this enzyme contained a noncovalently bound chromophore group that was responsible for the absorbance peak of the native enzyme at 260 nm. The amino acid sequence of the peroxisomal CuZn-SOD was determined by Edman degradation. Comparison of its sequence with those reported for other plant SODs revealed homologies of about 70% with cytosolic CuZn-SODs and of 90% with chloroplastic CuZn-SODs. The peroxisomal SOD has a high thermal stability and resistance to inactivation by hydrogen peroxide. A polyclonal antibody was raised against peroxisomal CuZn-SOD, and by western blotting the antibody cross-reacted with plant CuZn-SODs but did not recognize either plant Mn-SOD or bacterial Fe-SOD. The antiSOD-immunoglobulin G showed a weak cross-reaction with bovine erythrocytes and liver CuZn-SODs, and also with cell-free extracts from trout liver. The possible function of this CuZn-SOD in the oxidative metabolism of peroxisomes is discussed.  相似文献   

12.
Alpha-crystallin, a molecular chaperone and lens structural protein protects soluble enzymes against heat-induced aggregation and inactivation by a variety of molecules. In this study we investigated the chaperone function of alpha-crystallin in a more physiological system in which alpha-crystallin was incorporated into red cell 'ghosts'. Its ability to protect the intrinsic membrane protein Na/K-ATPase from external stresses was studied. Red cell ghosts were created by lysing the red cells and removing cytoplasmic contents by size-exclusion chromatography. The resulting ghost cells retain Na/K-ATPase activity. alpha-Crystallin was incorporated in the cells on resealing and the activity of Na/K-ATPase assessed by ouabain-sensitive 86Rb uptake. Incubation with fructose, hydrogen peroxide and methylglyoxal (compounds that have been implicated in diabetes and cataract formation) were used to test inactivation of the Na/K pump. Intracellular alpha-crystallin protected against the decrease in ouabain sensitive 86Rb uptake, and therefore against inactivation induced by all external modifiers, in a dose-dependent manner.  相似文献   

13.
The aim of the present study was to evaluate the copper (Cu), zinc (Zn), malondialdehyde (MDA), glutathione (GSH), and advanced oxidation protein products (AOPP) levels and superoxide dismutase (SOD) activities in diabetic senile cataract. Ten patients with diabetic senile cataract and ten patients with nondiabetic senile cataract (control group) were included in this study. AOPP, MDA, and GSH levels and SOD activity were measured by a spectrophotometric method. Serum, lens Cu, and Zn levels were measured by an atomic absorption spectrophotometric method. Both the lens and serum Zn and Cu levels between the two groups were not significantly different (p > 0.05). GSH, AOPP, and MDA levels and the SOD activities in the diabetic senile cataract group were significantly increased as compared to the control group (p < 0.05). Oxidative stress is one of the major factors which may lead to the early cataract formation. Oxidative events are of great importance in diabetic complications and, particularly in the lens, may have a role in the pathogenesis of cataract associated with diabetes mellitus as exhibited in this study.  相似文献   

14.
Diminished proteolytic functionality in the lens may cause cataracts. We have reported that O-GlcNAc is an endogenous inhibitor of the proteasome. We hypothesize that in the lens there is a cause-and-effect relationship between proteasome inhibition by O-GlcNAc, and cataract formation. To demonstrate this, we established novel transgenic mouse models to over-express a dominant-negative form of O-GlcNAcase, GK-NCOAT, in the lens. Expression of GK-NCOAT suppresses removal of O-GlcNAc from proteins, resulting in increased levels of O-GlcNAc in the lenses of our transgenic mice, along with decreased proteasome function. We observed that transgenic mice developed markedly larger cataracts than controls and lens fiber cell denucleation was inhibited. Our study suggests that increased O-GlcNAc in the lens could lead to cataract formation and attenuation of lens fiber cell denucleation by inhibition of proteasome function. These findings may explain why cataract formation is a common complication of diabetes since O-GlcNAc is derived from glucose.  相似文献   

15.
Andley UP  Hamilton PD  Ravi N 《Biochemistry》2008,47(36):9697-9706
AlphaA-crystallin is a small heat shock protein that functions as a molecular chaperone and a lens structural protein. The R49C single-point mutation in alphaA-crystallin causes hereditary human cataracts. We have previously investigated the in vivo properties of this mutant in a gene knock-in mouse model. Remarkably, homozygous mice carrying the alphaA-R49C mutant exhibit nearly complete lens opacity concurrent with small lenses and small eyes. Here we have investigated the 90 degrees light scattering, viscosity, refractive index, and bis-ANS fluorescence of lens proteins isolated from the alphaA-R49C mouse lenses and found that the concentration of total water-soluble proteins showed a pronounced decrease in alphaA-R49C homozygous lenses. Light scattering measurements on proteins separated by gel permeation chromatography showed a small amount of high-molecular mass aggregated material in the void volume which still remains soluble in alphaA-R49C homozygous lens homogenates. An increased level of binding of beta- and gamma-crystallin to the alpha-crystallin fraction was observed in alphaA-R49C heterozygous and homozygous lenses but not in wild-type lenses. Quantitative analysis with the hydrophobic fluorescence probe bis-ANS showed a pronounced increase in fluorescence yield upon binding to alpha-crystallin from mutant as compared with the wild-type lenses. These results suggest that the decrease in the solubility of the alphaA-R49C mutant protein was due to an increase in its hydrophobicity and supra-aggregation of alphaA-crystallin that leads to cataract formation. Our study further shows that analysis of mutant proteins from the mouse model is an effective way to understand the mechanism of protein insolubilization in hereditary cataracts.  相似文献   

16.
用抗氧化剂及自由基清除剂小檗胺(中药提纯单体化合物)对STZ诱发的大鼠糖尿病性白内障进行腹腔注射的预防实验结果显示:1)在白内障出现早期小檗胺给药组晶状体空泡出现时间比未给药的糖尿病组推迟2周.2)小檗胺有对抗诱发动物模型晚期晶状体混浊出现的功能,以3.48mg/kg体重剂量的效果最好.3)SOD,CAT,GSH-Px酶活性的动态变化,未给药的糖尿病组第2周即开始出现,两个剂量小檗胺给药组均比糖尿病组延迟2周出现.这与裂隙灯观察结果相吻合,但形态学变化晚于酶活性变化.这证明早期使用抗氧化剂及自由基清除剂小檗胺对动物实验性糖尿病性白内障的发生、发展有明显的预防作用.  相似文献   

17.
The Na-K-ATPase is vital for maintenance of lens transparency. Past studies using intact lens suggested the involvement of tyrosine kinases in short-term regulation of Na-K-ATPase. Furthermore, in vitro phosphorylation of a lens epithelial membrane preparation by Src family kinases (SFKs), a family of nonreceptor tyrosine kinases, resulted in modification of Na-K-ATPase activity. Here, the effect of purinergic agonists, ATP and UTP, on Na-K-ATPase function and SFK activation was examined in the rabbit lens. Na-K-ATPase function was examined using two different approaches, measurement of ouabain-sensitive potassium (86Rb) uptake by the intact lens, and Na-K-ATPase activity in lens epithelial homogenates. ATP and UTP caused a significant increase in ouabain-sensitive potassium (86Rb) uptake. Na-K-ATPase activity was increased in the epithelium of lenses pretreated with ATP. Lenses treated with ATP or UTP displayed activation of SFKs as evidenced by increased Western blot band density of active SFK (phosphorylated at the active loop Y416) and decreased band density of inactive SFKs (phosphorylated at the COOH terminal). A single PY416-Src immunoreactive band at 60 kDa was observed, suggesting not all Src family members are activated. Immunoprecipitation studies showed that band density of active Src, and to a lesser extent active Fyn, was significantly increased, while active Yes did not change. Preincubation of the lenses with SFK inhibitor PP2 abolished the ATP-induced increase in ouabain-sensitive potassium (86Rb) uptake. The results suggest selective activation of Src and/or Fyn is part of a signaling mechanism initiated by purinergic agonists that increases Na-K-ATPase-mediated transport in the organ-cultured lens. Src kinase; receptors  相似文献   

18.
The role of the plasma membrane in the regulation of lens fiber cell cytosolic Ca2+ concentration has been examined using a vesicular preparation derived from calf lenses. Calcium accumulation by these vesicles was ATP dependent, and was releasable by the ionophore A23187, indicating that calcium was transported into a vesicular space. Calcium accumulation was stimulated by Ca2+ (K1/2 = 0.08 microM Ca2+) potassium (maximally at 50 mM K+), and cAMP-dependent protein kinase; it was inhibited by both vanadate (IC50 = 5 microM) and the calmodulin inhibitor R24571 (IC50 = 5 microM), indicating that this pump was plasma-membrane derived and likely calmodulin dependent. Valinomycin, in the presence of K+, stimulated calcium uptake, suggesting that the calcium pump either countertransports K+, or is regulated in an electrogenic fashion. Inhibition of calcium uptake by selenite and p-chloromercuribenzoate demonstrates the presence of an essential -SH group(s) in this enzyme. Calcium release from calcium-filled lens vesicles was enhanced by Na+, demonstrating that these vesicles also contain a Na:Ca exchange carrier. p-Chloromercuribenzoate and p-chloromercuribenzoate sulfonic acid also promoted calcium release from calcium-filled vesicles, suggesting that this release, like calcium uptake, is in part mediated by a cysteine-containing protein. We conclude that lens fiber cell cytosolic Ca2+ concentration could be regulated by a number of plasma membrane processes. The sensitivity of both calcium uptake and release to -SH reagents has implications in lens cataract formation, where oxidation of lens proteins has been proposed to account for the elevated cytosolic Ca2+ in this condition.  相似文献   

19.
在建立TNT大鼠白内障的基础上,用HPLC分析了晶状体内TNT及其代谢产物,并用ESR及NBT方法检测了TNT在晶状体内的代谢过程所产生的自由基。结果表明,慢性染毒24个月的大鼠白内障晶状体内含有TNT原形和4氨基2,6二硝基甲苯代谢产物,以及在体外与正常晶状体微粒体孵育可产生TNT硝基阴离子自由基和超氧阴离子自由基。上述结果提示,TNT可进入晶状体内,在其还原代谢过程中产生硝基阴离子自由基中间产物,在有氧条件下进而产生超氧阴离子自由基,这可能是TNT导致白内障的启动因素。  相似文献   

20.
A Scots pine (Pinus sylvestris L.) cDNA library was screened with two heterologous cDNA probes (P31 and T10) encoding cytosolic and chloroplastic superoxide dismutases (SOD) from tomato. Several positive clones for cytosolic and chloroplastic superoxide dismutases were isolated, subcloned, mapped and sequenced. One of the cDNA clones (PS3) had a full-length open reading frame of 465 bp corresponding to 154 amino acid residues and showed approximately 85% homology with the amino acid sequences of angiosperm cytosolic SOD counterparts. Another cDNA clone (PST13) was incomplete, but encoded a putative protein with 93% homology to pea and tomato chloroplastic superoxide dismutase. The derived amino acid sequence from both cDNA clones matched the corresponding N-terminal amino acid sequence of the purified mature SOD isozymes. Northern blot hybridizations showed that, cytosolic and chloroplastic CuZn-SOD are expressed at different levels in Scots pine organs. Sequence data and Southern blot hybridization confirm that CuZn-SODs in Scots pine belong to a multigene family. The results are discussed in relation to earlier observations of CuZn-SODs in plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号