首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In certain maize genotypes, called "null," beta-glucosidase does not enter gels and therefore cannot be detected on zymograms after electrophoresis. Such genotypes were originally thought to be homozygous for a null allele at the glu1 gene and thus devoid of enzyme. We have shown that a beta-glucosidase-aggregating factor (BGAF) is responsible for the "null" phenotype. BGAF is a chimeric protein consisting of two distinct domains: the disease response or "dirigent" domain and the jacalin-related lectin (JRL) domain. First, it was not known whether the lectin domain in BGAF is functional. Second, it was not known which of the two BGAF domains is involved in beta-glucosidase binding and aggregation. To this end, we purified BGAF to homogeneity from a maize null inbred line called H95. The purified protein gave a single band on SDS-PAGE, and the native protein was a homodimer of 32-kDa monomers. Native and recombinant BGAF (produced in Escherichia coli) agglutinated rabbit erythrocytes, and various carbohydrates and glycoproteins inhibited their hemagglutination activity. Sugars did not have any effect on the binding of BGAF to the beta-glucosidase isozyme 1 (Glu1), and the BGAF-Glu1 complex could still bind lactosyl-agarose, indicating that the sugar-binding site of BGAF is distinct from the beta-glucosidase-binding site. Neither the dirigent nor the JRL domains alone (produced separately in E. coli) produced aggregates of Glu1 based on results from pull-down assays. However, gel shift and competitive binding assays indicated that the JRL domain binds beta-glucosidase without causing it to aggregate. These results with those from deletion mutagenesis and replacement of the JRL domain of a BGAF homolog from sorghum, which does not bind Glu1, with that from maize allowed us to conclude that the JRL domain of BGAF is responsible for its lectin and beta-glucosidase binding and aggregating activities.  相似文献   

2.
β-Glucosidases (Glu1 and Glu2) in maize specifically interact with a lectin called β-glucosidase aggregating factor (BGAF). We have shown that the N-terminal (Glu50–Val145) and the C-terminal (Phe466–Ala512) regions of maize Glu1 are involved in binding to BGAF. Sequence comparison between sorghum β-glucosidases (dhurrinases, which do not bind to BGAF) and maize β-glucosidases, and the 3D-structure of Glu1 suggested that the BGAF-binding site on Glu1 is much smaller than predicted previously. To define more precisely the BGAF-binding site, we constructed additional chimeric β-glucosidases. The results showed that a region spanning 11 amino acids (Ile72–Thr82) on Glu1 is essential and sufficient for BGAF binding, whereas the extreme N-terminal region Ser1–Thr29, together with C-terminal region Phe466–Ala512, affects the size of Glu1–BGAF complexes. The dissociation constants (Kd) of chimeric β-glucosidase–BGAF interactions also demonstrated that the extreme N-terminal and C-terminal regions are important but not essential for binding. To confirm the importance of Ile72–Thr82 on Glu1 for BGAF binding, we constructed a chimeric sorghum β-glucosidase, Dhr2 (C-11, Dhr2 whose Val72–Glu82 region was replaced with the Ile72–Thr82 region of Glu1). C-11 binds to BGAF, indicating that the Ile72–Thr82 region is indeed a major interaction site on Glu1 involved in BGAF binding.  相似文献   

3.
Maize (Zea mays L.) beta-glucosidase was extracted from shoots of a wild-type (K55) and a "null" (H95) maize genotype. Enzyme activity assays and electrophoretic data showed that extracts from the null genotype had about 10% of the activity present in the normal genotype. Zymograms of the null genotype were devoid of any activity bands in the resolving gel, but had a smeared zone of activity in the stacking gel after native polyacrylamide gel electrophoresis. When extracts were made with buffers containing 0.5% to 2% sodium dodecyl sulfate, the smeared activity zone entered the resolving gel as a distinct band. These data indicated that the null genotypes have beta-glucosidase activity, but the enzyme occurs as insoluble or poorly soluble large quaternary complexes mediated by a beta-glucosidase-aggregating factor (BGAF). BGAF is a 35-kD protein and binds specifically to beta-glucosidase and renders it insoluble during extraction. BGAF also precipitates beta-glucosidase that is added exogenously to supernatant fluids of the null tissue extracts. The specific beta-glucosidase-aggregating activity of BGAF is unequivocally demonstrated. These data clearly show that the monogenic inheritance reported for the null alleles at the beta-glucosidase gene is actually for the BGAF protein, and BGAF is solely responsible for beta-glucosidase aggregation and insolubility and, thus, the apparent null phenotype.  相似文献   

4.
Plant beta-glucosidases play a crucial role in defense against pests. They cleave, with variable specificity, beta-glucosides to release toxic aglycone moieties. The Sorghum bicolor beta-glucosidase isoenzyme Dhr1 has a strict specificity for its natural substrate dhurrin (p-hydroxy-(S)-mandelonitrile-beta-D-glucoside), whereas its close homolog, the maize beta-glucosidase isoenzyme Glu1, which shares 72% sequence identity, hydrolyzes a broad spectrum of substrates in addition to its natural substrate 2-O-beta-D-glucopyranosyl-4-hydroxy-7-methoxy-1,4-benzoxaxin-3-one. Structural data from enzyme.substrate complexes of Dhr1 show that the mode of aglycone binding differs from that previously observed in the homologous maize enzyme. Specifically, the data suggest that Asn(259), Phe(261), and Ser(462), located in the aglycone-binding site of S. bicolor Dhr1, are crucial for aglycone recognition and binding. The tight binding of the aglycone moiety of dhurrin promotes the stabilization of the reaction intermediate in which the glycone moiety is in a deformed (1)S(3) conformation within the glycone-binding site, ready for nucleophilic attack to occur. Compared with the broad specificity maize beta-glucosidase, this different binding mode explains the narrow specificity of sorghum dhurrinase-1.  相似文献   

5.
6.
Corn coleoptile lectin is present with beta-glucosidase (EC. 3.2.1.2.1) in a single tightly bound molecular association complex (88.7 kDa). SDS-PAGE of the molecular complex dissociates into two main components. Of these, at a concentration of 75%, the corn coleoptile beta-glucosidase (60 kDa) is identified by enzymatic activity, with two 16-amino acid tryptic peptides displaying close homology with the primary structure of the enzyme. In separate experiments, we isolated homogenous monomeric enzyme of corn coleoptile. This allowed us to conclude that lectin properties like erythrocyte agglutination, found in the (88.7 kDa) molecular complex, is not due to the beta-glucosidase bound in it. Another protein (30 kDa) dissociated from the same SDS-PAGE gels rendered several tryptic peptides, including a 20-amino acid sequence V(L)GP(Q)W(A)GGSGGSPVDITAEPQR closely homologous to the putative beta-glucosidase aggregating factor (BGAF) precursor described recently. Tryptic peptide SAFTE(A)WN(V)ELK(V) was also present in the BGAF precursor. KFHEQR peptide was not present in BGAF precursor or any other protein sequence examined. Tryptic peptide TYGPFGA showed good homology with the BGAF precursor protein, FEGLYLFHTPLGSGAN peptide displayed identity with the BGAF precursor sequence. Thus, the 30 kDa protein does not appear to be identical to BGAF, but is rather a similar molecule which could be endowed with the lectin properties of the 88.7 kDa molecular complex.  相似文献   

7.
The maize beta-glucosidase isozyme Glu1 hydrolyzes a broad spectrum of substrates in addition to its natural substrate DIMBOAGlc (2-O-beta-d-glucopyranosyl-4-hydroxy-7-methoxy-1,4-benzoxazin-3-on e), whereas the sorghum beta-glucosidase isozyme Dhr1 hydrolyzes exclusively its natural substrate dhurrin (p-hydroxy-(S)-mandelonitrile-beta-d-glucose). To study the mechanism of substrate specificity further, eight chimeric beta-glucosidases were constructed by replacing peptide sequences within the C-terminal region of Glu1 with the homologous peptide sequences of Dhr1 or vice versa, where the two enzymes differ by 4 to 22 amino acid substitutions, depending on the length of the swapped regions. Five Glu1/Dhr1 chimeras hydrolyzed substrates that are hydrolyzed by both parental enzymes, including dhurrin, which is not hydrolyzed by Glu1. In contrast, three Dhr1/Glu1 chimeras hydrolyzed only dhurrin but with lower catalytic efficiency than Dhr1. Additional domain-swapping within the C-terminal domain of Glu1 showed that replacing the peptide (466)FAGFTERY(473) of Glu1 with the homologous peptide (462)SSGYTERF(469) of Dhr1 or replacing the peptide (481)NNNCTRYMKE(490) in Glu1 with the homologous peptide (477)ENGCERTMKR(486) of Dhr1 was sufficient to confer to Glu1 the ability to hydrolyze dhurrin. Data from various reciprocal chimeras, sequence comparisons, and homology modeling suggest that the Dhr1-specific Ser-462-Ser-463 and Phe-469 play a key role in dhurrin hydrolysis. Similar data suggest that DIMBOAGlc hydrolysis determinants are not located within the extreme 47-amino acid-long C-terminal domain of Glu1.  相似文献   

8.
Plants have a variety of glycosidic conjugates of hormones, defense compounds, and other molecules that are hydrolyzed by beta-glucosidases (beta-D-glucoside glucohydrolases, E.C. 3.2.1.21). Workers have reported several beta-glucosidases from maize (Zea mays L.; Poaceae), but have localized them mostly by indirect means. We have purified and partly characterized a 58-Ku beta-glucosidase from maize, which we conclude from a partial sequence analysis, from kinetic data, and from its localization is not identical to any of those already reported. A monoclonal antibody, mWP 19, binds this enzyme, and localizes it in the cell walls of maize coleoptiles. An earlier report showed that mWP19 inhibits peroxidase activity in crude cell wall extracts and can immunoprecipitate peroxidase activity from these extracts, yet purified preparations of the 58 Ku protein had little or no peroxidase activity. The level of sequence similarity between beta-glucosidases and peroxidases makes it unlikely that these enzymes share epitopes in common. Contrary to a previous conclusion, these results suggest that the enzyme recognized by mWP19 is not a peroxidase, but there is a wall peroxidase closely associated with the 58 Ku beta-glucosidase in crude preparations. Other workers also have co-purified distinct proteins with beta-glucosidases. We found no significant charge in the level of immunodetectable beta-glucosidase in mesocotyls or coleoptiles that precedes the red light-induced changes in the growth rate of these tissues.  相似文献   

9.
Maize β-glucosidase aggregating factor (BGAF) and its homolog Sorghum Lectin (SL) are modular proteins consisting of an N-terminal dirigent domain and a C-terminal jacalin-related lectin (JRL) domain. BGAF is a polyspecific lectin with a monosaccharide preference for galactose, whereas SL displays preference for GalNAc. Here, we report that deletion of the N-terminal dirigent domain in the above lectins dramatically changes their sugar-specificities. Deletions in the N-terminal region of the dirigent domain of BGAF abolished binding to galactose/lactose, but binding to mannose was unaffected. Glucose, which was a poor inhibitor of hemagglutinating activity of BGAF, displayed higher inhibitory effect on the hemagglutinating activity of deletion mutants. Deletion of the dirigent domain in SL abolished binding to GalNAc, but binding to mannose was not affected. Surprisingly, fructose, an extremely poor inhibitor (minimum inhibitory concentration (MIC) = 125 mM) of SL hemagglutinating activity, was found to be a very potent inhibitor (MIC = 1 mM) of hemagglutinating activity of its JRL domain. These results indicate that the dirigent domain in this class of modular lectins, at least in the case of maize BGAF and SL, influences sugar specificity.  相似文献   

10.
We cloned the genomic DNA and cDNA of bglA, which encodes beta-glucosidase in Aspergillus kawachii, based on a partial amino acid sequence of purified cell wall-bound beta-glucosidase CB-1. The nucleotide sequence of the cloned bglA gene revealed a 2,933-bp open reading frame with six introns that encodes an 860-amino-acid protein. Based on the deduced amino acid sequence, we concluded that the bglA gene encodes cell wall-bound beta-glucosidase CB-1. The amino acid sequence exhibited high levels of homology with the amino acid sequences of fungal beta-glucosidases classified in subfamily B. We expressed the bglA cDNA in Saccharomyces cerevisiae and detected the recombinant beta-glucosidase in the periplasm fraction of the recombinant yeast. A. kawachii can produce two extracellular beta-glucosidases (EX-1 and EX-2) in addition to the cell wall-bound beta-glucosidase. A. kawachii in which the bglA gene was disrupted produced none of the three beta-glucosidases, as determined by enzyme assays and a Western blot analysis. Thus, we concluded that the bglA gene encodes both extracellular and cell wall-bound beta-glucosidases in A. kawachii.  相似文献   

11.
Plant beta-glucosidases display varying substrate specificities. The maize beta-glucosidase isozyme Glu1 (ZmGlu1) hydrolyzes a broad spectrum of substrates in addition to its natural substrate DIMBOA-Glc (2-O-beta-d-glucopyranosyl-4-hydroxy-7-methoxy-1,4-benzoxaxin-3-one), whereas the sorghum beta-glucosidase isozyme Dhr1 (SbDhr1) hydrolyzes exclusively its natural substrate dhurrin (p-hydroxy-(S)-mandelonitrile-beta-d-glucoside). Structural data from cocrystals of enzyme-substrate and enzyme-aglycone complexes have shown that five amino acid residues (Phe198, Phe205, Trp378, Phe466, and Ala467) are located in the aglycone-binding site of ZmGlu1 and form the basis of aglycone recognition and binding, hence substrate specificity. To study the mechanism of substrate specificity further, mutant beta-glucosidases were generated by replacing Phe198, Phe205, Asp261, Met263, Phe377, Phe466, Ala467, and Phe473 of Glu1 by Dhr1 counterparts. The effects of mutations on enzyme activity and substrate specificity were studied using both natural and artificial substrates. The simple mutant replacing Phe198 by a valine had the most drastic effect on activity, because the capacity of this enzyme to hydrolyze beta-glucosides was almost completely abolished. The analysis of this mutation was completed by a structural study of the double mutant ZmGlu1-E191D,F198V in complex with the natural substrate. The structure reveals that the single mutation F198V causes a cascade of conformational changes, which are unpredictable by standard molecular modeling techniques. Some other mutations led to drastic effects: replacing Asp261 by an asparagine decreases the catalytic efficiency of this simple mutant by 75% although replacing Tyr473 by a phenylalanine increase its efficiency by 300% and also provides a new substrate specificity by hydrolyzing dhurrin.  相似文献   

12.
In continuation of our investigation on structure and function relationship of beta-glucosidases from mesophilic and thermophilic bacteria, we constructed a chimeric gene by shuffling 17% length in C terminal region of beta-glucosidase of Agrobacterium tumefaciens with the corresponding homologous region of Cellvibrio gilvus beta-glucosidase. The chimeric gene was overexpressed in E. coli BL21 (DE3) using pET vector. However, nearly all of the beta-glucosidase produced was trapped into inclusion bodies in catalytically non-functional state. Attempts were made to solubilize the overexpressed protein by co-expression with molecular chaperone, GroEL/ES, in vivo. The molecular chaperone assisted protein folding that had earlier yielded encouraging results, did not improve the solubilization in the present case with a chimeric beta-glucosidase. Further, we explored protein renaturation under in vitro conditions using various dialysis strategies. Dialysis, rapid dilution and a newly devised method of folding immobilized proteins yielded active enzyme. The usefulness of the in vitro folding methods to obtain functional enzymes from overproduced but non-functional proteins has been discussed.  相似文献   

13.
Coniferin, the glucoside of the monolignol coniferyl alcohol, accumulates to high levels in gymnosperms during spring-cambial reactivation. A cinnamyl alcohol glucoside/beta-glucosidase system is thought to play a key role in lignification by releasing the monolignol aglycones. Investigation of such an enzyme system in the xylem of Pinus contorta var latifolia Engelm. revealed two major beta-glucosidases. One efficiently hydrolyzed the native substrate, coniferin, and the other was more active against synthetic glucosides. The coniferin beta-glucosidase was purified to apparent homogeneity using anion exchange, hydrophobic interaction, and size-exclusion chromatography. The apparent native molecular weight was estimated to be 60,000. A dominant 28-kD protein and a minor 24-kD protein were detected in the purified preparation following sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Immunological evidence from polyclonal antibodies directed against the synthetic N-terminal peptide of the 24-kD protein suggested that the native protein is a dimer of 28-kD subunit size. The N-terminal sequence showed that coniferin beta-glucosidase has high homology to known plant beta-glucosidases. Coniferin, syringin, and a synthetic coniferin analog were preferred substrates for the coniferin beta-glucosidase. In situ localization using the chromogenic coniferin analog showed the exclusive presence of beta-glucosidase activity in the differentiating xylem, similar to peroxidase activity.  相似文献   

14.
A putative bgl operon of Pectobacterium carotovorum subsp. carotovorum LY34 (Pcc LY34) was isolated. Sequence analysis of the 5,557 bp cloned DNA fragment (accession no. AY542524) showed three open reading frames (bglT, bglP, and bglB) predicted to encode 287, 633, and 468 amino acid proteins respectively. BglT and BglP ORFs show high similarity to that of the Pectobacterium chrysanthemi ArbG antiterminator and ArbF permease respectively. Also, the latter contains most residues important for phosphotransferase activity. The amino acid sequence of BglB showed high similarity to various beta-glucosidases and is a member of glycosyl hydrolase family 1. The purified BglB enzyme hydrolyzed salicin, arbutin, pNPG, and MUG. The molecular weight of the enzyme was estimated to be 53,000 Da by SDS-PAGE. The purified beta-glucosidase exhibited maximal activity at pH 7.0 and 40 degrees C, and its activity was enhanced in the presence of Mg(2+). Two glutamate residues (Glu(173) and Glu(362)) were found to be essential for enzyme activity.  相似文献   

15.
16.
Complementary DNAs encoding mature beta-glucosidase proteins Glu1 and Glu2 of maize were amplified by the polymerase chain reaction (PCR) and cloned into the expression vector pET21a. Both Glu1 and Glu2 isozymes were expressed in high yield ( approximately 3.8% of the total soluble protein and 32% of the total expressed protein) in E. coli. Recombinant enzymes were active on a variety of artificial and natural substrates at levels similar to those of their native counterparts isolated from maize seedlings. Western blot analysis confirmed that both recombinant isozymes were immunoreactive with maize anti-beta-glucosidase sera and their molecular sizes were identical to those of the native maize Glu1 and Glu2 isozymes. Zymogram assays in native gels revealed that recombinant enzymes had the same electrophoretic mobility and substrate specificity as their native counterparts.  相似文献   

17.
During vertebrate evolution, the N-terminal region of transthyretin (TTR) subunit has undergone a change in both length and hydropathy. This was previously shown to change the binding affinity for thyroid hormones (THs). However, it was not known whether this change affects other functions of TTR. In the present study, the effect of these changes on the binding of TTR to retinol-binding protein (RBP) was determined. Two wild-type TTRs from human and Crocodylus porosus, and three chimeric TTRs, including a human chimeric TTR in which its N-terminal sequence was changed to that of C. porosus TTR (croc/huTTR) and two C. porosus chimeric TTRs (hu/crocTTR in which its N-terminal sequence was changed to that of human TTR and xeno/crocTTR in which its N-terminal sequence was changed to that of Xenopus laevis TTR), were analyzed for their binding to human RBP by native-PAGE followed by immunoblotting and a chemilluminescence assay. The K(d) of human TTR was 30.41 ± 2.03 μm, and was similar to that reported for the second binding site, whereas that of crocodile TTR was 2.19 ± 0.24 μm. The binding affinities increased in croc/huTTR (K(d) = 23.57 ± 3.54 μm) and xeno/crocTTR (K(d) = 0.61 ± 0.16 μm) in which their N-termini were longer and more hydrophobic, but decreased in hu/crocTTR (K(d) = 5.03 ± 0.68 μm) in which its N-terminal region was shorter and less hydrophobic. These results suggest an influence of the N-terminal primary structure of TTR on its function as a co-carrier for retinol with RBP.  相似文献   

18.
19.
A chimeric actin gene was constructed from Tetrahymena actin sequence corresponding to residues 1-83 and Dictyostelium actin sequence corresponding to residues 84-375, and the gene was expressed in Dictyostelium cells. Using DNase I-affinity column, we revealed that the product of the chimeric actin gene was not retained in the column whereas intrinsic actin was retained. In conjunction with our previous data that Tetrahymena actin does not interact with DNase I [Hirono, M., Kumagai, Y., Numata, O., & Watanabe Y. (1989) Proc. Natl. Acad. Sci. U.S. 86, 75-79], we suggest that the binding site of DNase I in an ubiquitous actin is located in N-terminal region (residues 1-83).  相似文献   

20.
The cloning, expression and nucleotide sequence of a 3.74 kb DNA segment on pLS215 containing a beta-glucosidase gene (bglA) from Butyrivibrio fibrisolvens H17c was investigated. The B. fibrisolvens bglA open reading frame (ORF) of 2490 bp encoded a beta-glucosidase of 830 amino acid residues with a calculated Mr of 91,800. In Escherichia coli C600(pLS215) cells the beta-glucosidase was localized in the cytoplasm and these cells produced an additional protein with an apparent Mr of approximately 94,000. The bglA gene was expressed from its own regulatory region in E. coli and a single mRNA initiation point was identified upstream of the bglA ORF and adjacent to a promoter consensus sequence. The primary structure of the beta-glucosidase showed greater than 40% similarity with a domain of 237 amino acids present in the beta-glucosidases of Kluyveromyces fragilis and Clostridium thermocellum. The B. fibrisolvens beta-glucosidase hydrolysed cellobiose to a limited extent, cellotriose to cellobiose and glucose, and cellotetraose and cellopentaose to predominantly glucose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号