共查询到20条相似文献,搜索用时 0 毫秒
1.
《Cell cycle (Georgetown, Tex.)》2013,12(23):4098-4109
Artemis, a member of the SNM1 gene family, is a multifunctional phospho-protein that has been shown to have important roles in V(D)J recombination, DNA double strand break repair, and stress-induced cell-cycle checkpoint regulation. We show here that Artemis interacts with the Cul4A-DDB1 E3 ubiquitin ligase via a direct interaction with the substrate-specificity receptor DDB2. Furthermore, Artemis also interacts with the CDK inhibitor and tumor suppressor p27, a substrate of the Cul4A-DDB1 ligase, and both DDB2 and Artemis are required for the degradation of p27 mediated by this complex. We also show that the regulation of p27 by Artemis and DDB2 is important for cell cycle progression in normally proliferating cells and in response to serum deprivation. These findings thus define a function for Artemis as an effector of Cullin-based E3 ligase-mediated ubiquitylation, demonstrate a novel pathway for the regulation of p27, and show that Cul4A-DDB1DDB2-Artemis regulates G1 phase cell cycle progression in mammalian cells. 相似文献
2.
Regulator of Calcineurin 1 (RCAN1/DSCR1/Adapt78) gene is located in the Down syndrome (DS) region of chromosome 21, and critical for the phenotype of DS and Alzheimer disease (AD). In this report, we found that expression of Nedd4-2 E3 ubiquitin ligase decreased the protein level of RCAN1. Decrease of RCAN1 protein expression by Nedd4-2 was blocked by proteasome inhibitor MG132, indicating that this decrease was mediated by the ubiquitin-proteasome pathway. Furthermore, we found that the ability of Nedd4-2 to degrade RCAN1 depended on the direct binding with RCAN1. Consistently, Nedd4-2 enhanced the ubiquitination of RCAN1 protein. Our data provide the first evidence that Nedd4-2 acts as an important regulatory component in the control of RCAN1 protein stability. 相似文献
3.
The mechanism by which the FERM domain protein Merlin, encoded by the tumor suppressor NF2, restrains cell proliferation is poorly understood. Prior studies have suggested that Merlin exerts its antimitogenic effect by interacting with multiple signaling proteins located at or near the plasma membrane. We have recently observed that Merlin translocates into the nucleus and binds to and inhibits the E3 ubiquitin ligase CRL4DCAF1. Genetic evidence indicates that inactivation of Merlin induces oncogenic gene expression, hyperproliferation, and tumorigenicity by unleashing the activity of CRL4DCAF1. In addition to providing a potential explanation for the diverse effects that loss of Merlin exerts in multiple cell types, these findings suggest that compounds inhibiting CRL4DCAF1 may display therapeutic efficacy in Neurofibromatosis type 2 and other cancers driven by Merlin inactivation.Key words: Merlin, NF2, E3 ubiquitin ligase, CRL4, DCAF1, FERM domain protein 相似文献
4.
《Cell cycle (Georgetown, Tex.)》2013,12(2):182-188
How the HIV1 Vpr protein initiates the host cell response leading to cell cycle arrest in G2 has remained unknown. Here, we show that recruitment of DCAF1/VprBP by Vpr is essential for its cytostatic activity, which can be abolished either by single mutations of Vpr that impair DCAF1 binding, or by siRNA?mediated silencing of DCAF1. Furthermore, DCAF1 bridges Vpr to DDB1, a core subunit of Cul4 ubiquitin ligases. Altogether these results point to a mechanism where Vpr triggers G2 arrest by hijacking the Cul4/DDB1DCAF1 ubiquitin ligase. We further show that, Vpx, a non-cytostatic Vpr-related protein acquired by HIV2 and SIV, also binds DCAF1 through a conserved motif. Thus, Vpr from HIV1 and Vpx from SIV recruit DCAF1 with different physiological outcomes for the host cell. This in turn suggests that both proteins have evolved to preserve interaction with the same Cul4 ubiquitin ligase while diverging in the recognition of host substrates targeted for proteasomal degradation. 相似文献
5.
6.
The cellular level of the tumor suppressor p53 is tightly regulated through induced degradation via the ubiquitin/proteasome system. The ubiquitin ligase Mdm2 plays a pivotal role in stimulating p53 turnover. However, recently additional ubiquitin ligases have been identified that participate in the degradation of the tumor suppressor. Apparently, multiple degradation pathways are employed to ensure proper destruction of p53. Here we show that the chaperone-associated ubiquitin ligase CHIP is able to induce the proteasomal degradation of p53. CHIP-induced degradation was observed for mutant p53, which was previously shown to associate with the chaperones Hsc70 and Hsp90, and for the wild-type form of the tumor suppressor. Our data reveal that mutant and wild-type p53 transiently associate with molecular chaperones and can be diverted onto a degradation pathway through this association. 相似文献
7.
The Cullin-RING E3 ubiquitin ligase CRL4-DCAF1 complex dimerizes via a short helical region in DCAF1
Ahn J Novince Z Concel J Byeon CH Makhov AM Byeon IJ Zhang P Gronenborn AM 《Biochemistry》2011,50(8):1359-1367
The cullin4A-RING E3 ubiquitin ligase (CRL4) is a multisubunit protein complex, comprising cullin4A (CUL4), RING H2 finger protein (RBX1), and DNA damage-binding protein 1 (DDB1). Proteins that recruit specific targets to CRL4 for ubiquitination (ubiquitylation) bind the DDB1 adaptor protein via WD40 domains. Such CRL4 substrate recognition modules are DDB1- and CUL4-associated factors (DCAFs). Here we show that, for DCAF1, oligomerization of the protein and the CRL4 complex occurs via a short helical region (residues 845-873) N-terminal to DACF1's own WD40 domain. This sequence was previously designated as a LIS1 homology (LisH) motif. The oligomerization helix contains a stretch of four Leu residues, which appear to be essential for α-helical structure and oligomerization. In vitro reconstituted CRL4-DCAF1 complexes (CRL4(DCAF1)) form symmetric dimers as visualized by electron microscopy (EM), and dimeric CRL4(DCAF1) is a better E3 ligase for in vitro ubiquitination of the UNG2 substrate compared to a monomeric complex. 相似文献
8.
《Cell cycle (Georgetown, Tex.)》2013,12(22):4433-4436
The mechanism by which the FERM domain protein Merlin, encoded by the tumor suppressor NF2, restrains cell proliferation is poorly understood. Prior studies have suggested that Merlin exerts its antimitogenic effect by interacting with multiple signaling proteins located at or close to the plasma membrane. We have recently observed that Merlin translocates into the nucleus and binds to and inhibits the E3 ubiquitin ligase CRL4DCAF1. Genetic evidence indicates that inactivation of Merlin induces oncogenic gene expression, hyperproliferation, and tumorigenicity by unleashing the activity of CRL4DCAF1. In addition to providing a potential explanation for the diverse effects that loss of Merlin exerts in multiple cell types, these findings suggest that compounds inhibiting CRL4DCAF1 may display therapeutic efficacy in Neurofibromatosis type 2 and other cancers driven by Merlin inactivation. 相似文献
9.
The DNA replication licensing factor Cdt1 is degraded by the ubiquitin-proteasome pathway during S phase of the cell cycle, to ensure one round of DNA replication during each cell division and in response to DNA damage to halt DNA replication. Constitutive expression of Cdt1 causes DNA re-replication and is associated with the development of a subset of human non-small cell-lung carcinomas. In mammalian cells, DNA damage-induced Cdt1 degradation is catalyzed by the Cul4-Ddb1-Roc1 E3 ubiquitin ligase. We report here that overexpression of the proliferating cell nuclear antigen (PCNA) inhibitory domain from the CDK inhibitors p21 and p57, but not the CDK-cyclin inhibitory domain, blocked Cdt1 degradation in cultured mammalian cells after UV irradiation. In vivo soluble Cdt1 and PCNA co-elute by gel filtration and associate with each other physically. Silencing PCNA in cultured mammalian cells or repression of pcn1 expression in fission yeast blocked Cdt1 degradation in response to DNA damage. Unexpectedly, deletion of Ddb1 in fission yeast cells also accumulated Cdt1 in the absence of DNA damage. We suggest that the Cul4-Ddb1 ligase evolved to ubiquitinate Cdt1 during normal cell growth as well as in response to DNA damage and a separate E3 ligase, possibly SCF(Skp2), evolved to either share or take over the function of Cdt1 ubiquitination during normal cell growth and that PCNA is involved in mediating Cdt1 degradation by the Cul4-Ddb1 ligase in response to DNA damage. 相似文献
10.
11.
12.
HIV-1 integrase (IN) is a key viral enzymatic protein acting in several viral replication steps, including integration. IN has been shown to be an unstable protein degraded by the N-end rule pathway through the host ubiquitin-proteasome machinery. However, it is still not fully understood how this viral protein is protected from the host ubiquitin-proteasome system within cells during HIV replication. In the present study, we provide evidence that the host protein Ku70 interacts with HIV-1 IN and protects it from the Lys(48)-linked polyubiquitination proteasomal pathway. Moreover, Ku70 is able to down-regulate the overall protein polyubiquitination level within the host cells and to specifically deubiquitinate IN through their interaction. Mutagenic studies revealed that the C terminus of IN (residues 230-288) is required for IN binding to the N-terminal part of Ku70 (Ku70(1-430)), and their interaction is independent of Ku70/80 heterodimerization. Finally, knockdown of Ku70 expression in both virus-producing and target CD4(+) T cells significantly disrupted HIV-1 replication and rendered two-long terminal repeat circles and integration undetectable, indicating that Ku70 is required for both the early and the late stages of the HIV-1 life cycle. Interestingly, Ku70 was incorporated into the progeny virus in an IN-dependent way. We proposed that Ku70 may interact with IN during viral assembly and accompany HIV-1 IN upon entry into the new target cells, acting to 1) protect IN from the host defense system and 2) assist IN integration activity. Overall, this report provides another example of how HIV-1 hijacks host cellular machinery to protect the virus itself and to facilitate its replication. 相似文献
13.
Accurate transmission of chromosomes from parent to progeny cell requires assembly of a bipolar spindle. Centrosomes (spindle pole body in yeast) are critical for the biogenesis of this complex mitotic apparatus since they confer bipolarity on the spindle and serve as the site of microtubule polymerization. In each division cycle, the centrosome is duplicated and the sister-centrosomes move away from each other, forming the two poles of the spindle. While the structure and the duplication of centrosomes have been investigated extensively, the understanding of the control of their segregation remains scant. Recent findings are beginning to yield insights into the regulation of centrosome segregation in yeast and its link to the mitotic kinase. 相似文献
14.
Human immunodeficiency virus type 1 (HIV-1) viral protein R (Vpr) has been shown to cause G2 cell cycle arrest in human cells by inducing ATR-mediated inactivation of p34cdc2, but factors directly engaged in this process remain unknown. We used tandem affinity purification to isolate native Vpr complexes. We found that damaged DNA binding protein 1 (DDB1), viral protein R binding protein (VPRBP), and cullin 4A (CUL4A)--components of a CUL4A E3 ubiquitin ligase complex, DDB1-CUL4A(VPRBP)--were able to associate with Vpr. Depletion of VPRBP by small interfering RNA impaired Vpr-mediated induction of G2 arrest. Importantly, VPRBP knockdown alone did not affect normal cell cycle progression or activation of ATR checkpoints, suggesting that the involvement of VPRBP in G2 arrest was specific to Vpr. Moreover, leucine/isoleucine-rich domain Vpr mutants impaired in their ability to interact with VPRBP and DDB1 also produced strongly attenuated G2 arrest. In contrast, G2 arrest-defective C-terminal Vpr mutants were found to maintain their ability to associate with these proteins, suggesting that the interaction of Vpr with the DDB1-VPRBP complex is necessary but not sufficient to block cell cycle progression. Overall, these results point toward a model in which Vpr could act as a connector between the DDB1-CUL4A(VPRBP) E3 ubiquitin ligase complex and an unknown cellular factor whose proteolysis or modulation of activity through ubiquitination would activate ATR-mediated checkpoint signaling and induce G2 arrest. 相似文献
15.
16.
17.
Li X Lu D He F Zhou H Liu Q Wang Y Shao C Gong Y 《The Journal of biological chemistry》2011,286(37):32344-32354
Cullin 4B (CUL4B) is a scaffold protein that assembles cullin-RING ubiquitin ligase (E3) complexes. Recent studies have revealed that germ-line mutations in CUL4B can cause mental retardation, short stature, and many other abnormalities in humans. Identifying specific CUL4B substrates will help to better understand the physiological functions of CUL4B. Here, we report the identification of peroxiredoxin III (PrxIII) as a novel substrate of the CUL4B ubiquitin ligase complex. Two-dimensional gel electrophoresis coupled with mass spectrometry showed that PrxIII was among the proteins up-regulated in cells after RNAi-mediated CUL4B depletion. The impaired degradation of PrxIII observed in CUL4B knockdown cells was confirmed by Western blot. We further demonstrated that DDB1 and ROC1 in the DDB1-CUL4B-ROC1 complex are also indispensable for the proteolysis of PrxIII. In addition, the degradation of PrxIII is independent of CUL4A, a cullin family member closely related to CUL4B. In vitro and in vivo ubiquitination assays revealed that CUL4B promoted the polyubiquitination of PrxIII. Furthermore, we observed a significant decrease in cellular reactive oxygen species (ROS) production in CUL4B-silenced cells, which was associated with increased resistance to hypoxia and H(2)O(2)-induced apoptosis. These findings are discussed with regard to the known function of PrxIII as a ROS scavenger and the high endogenous ROS levels required for neural stem cell proliferation. Together, our study has identified a specific target substrate of CUL4B ubiquitin ligase that may have significant implications for the pathogenesis observed in patients with mutations in CUL4B. 相似文献
18.
Cullin-RING ubiquitin ligases promote the polyubiquitination and degradation of many important cellular proteins, which previous
studies indicated can be targeted for degradation via interaction with BTB domain-containing subunits of this E3 ligase complex.
PEST domains are known to promote the degradation of proteins that contain them. However, the molecular mechanism by which
PEST sequences promote degradation of these proteins is not understood. Here we show that the PEST sequences of a short-lived
protein called HSF2 interact with Cullin3, a subunit of a Cullin-RING E3 ubiquitin ligase, and that this interaction mediates
the Cul3-dependent ubiquitination and degradation of HSF2. These results indicate how, at the molecular level, PEST sequences
can promote the proteolysis of proteins that contain them. They also expand understanding of the mechanisms by which substrates
can be recruited to Cullin-RING E3 ubiquitin ligases to include interactions between PEST sequences and Cul3. 相似文献
19.
20.
HER2 overexpression in cancers causes hyperactivation of the PI 3-kinase pathway and elevated levels of the chemokine receptor CXCR4, which is strongly associated with increased metastatic potential. Here, we provide evidence that the cytokine-independent survival kinase CISK is activated downstream of the PI 3-kinase-dependent kinase PDK1 on endosomes and negatively regulates the lysosomal degradation of CXCR4. We demonstrate that CISK prevents CXCR4 degradation by inhibiting sorting of the receptor from early endosomes to lysosomes. In contrast, CISK does not interfere with ligand-induced degradation of epidermal growth factor receptors. CISK strongly interacts and colocalizes with the E3 ubiquitin ligase AIP4, which is important for the ubiquitin-dependent lysosomal degradation of CXCR4. Moreover, the observed inhibition is both dependent on the interaction between CISK and AIP4 and on the activation status of CISK. Consistent with this, an activated form of CISK but not of the related kinase SGK1 phosphorylates specific sites of AIP4 in vitro. Taken together, these results reveal a critical function of CISK in specifically attenuating ubiquitin-dependent degradation of CXCR4, and provide a mechanistic link between the PI 3-kinase pathway and CXCR4 stability. 相似文献