首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Highly purified tryptic peptides of calmodulin have been obtained by high-performance liquid chromatography. Tryptic cleavage of calmodulin in the presence of Ca2+ results in two main fragments which have been identified by analysis of the amino acid composition as 1-77 and 78-148. In the absence of Ca2+, trypsin cleavage yields fragments 1-106, 1-90, and 107-148. Only fragments 78-148 and 1-106 are still able to stimulate the purified Ca2+-ATPase of erythrocytes, albeit much less efficiently on a molar basis, than intact calmodulin. On the other hand, the same fragments were unable to stimulate the calmodulin-dependent cyclic nucleotide phosphodiesterase, even at 1000-fold molar excess (shown also by Newton, D.L., Oldewurtel, M.D., Krinks, M.H., Shiloach, J., and Klee, C.B. (1984) J. Biol. Chem. 259, 4419-4426). This points to the importance of the carboxyl-terminal half of calmodulin and especially of Ca2+-binding region III in the interaction of calmodulin with the Ca2+-ATPase and provides clear evidence that calmodulin interacts differently with different targets. Oxidation of methionine(s) of fragment 78-148 with N-chlorosuccinimide removes the ability of this fragment to stimulate the ATPase.  相似文献   

2.
Agonist and antagonist properties of calmodulin fragments   总被引:10,自引:0,他引:10  
Limited proteolysis of calmodulin with trypsin in the presence of ethylene glycol bis(beta-aminoethyl ether)-N, N,N',N'-tetracetic acid (EGTA) or Ca2+ was performed according to a modification of the method of Drabikowski et al. (Drabikowski, W., Kuznicki, J., and Grabarek, Z. (1977) Biochim. Biophys. Acta 485, 124-133). The resulting peptides were purified by reverse-phase high performance liquid chromatography. Tryptic digests in EGTA yielded peptides 1-106, 1-90, and 107-148 with yields of 9, 47, and 61%, respectively. The digests performed with Ca2+ yielded peptides 1-77 and 78-148 in 35 and 45% yield. Analysis by high performance liquid chromatography indicated that the purified fragments contained less than 0.1% contamination by calmodulin, thus allowing a definitive study of the ability of these fragments to activate, or interact with, calmodulin-regulated enzymes and anti-calmodulin drugs. Each of the fragments, except 107-148, bound to a phenothiazine affinity column in a Ca2+-dependent manner. Thus, calmodulin contains two interaction sites for phenothiazines: one on the NH2-terminal half (fragment 1-77) and one on the COOH-terminal half (fragment 78-148). None of the fragments activates the protein phosphatase, calcineurin, or prevents its stimulation by calmodulin, nor does any of the fragments stimulate Ca2+-dependent cAMP phosphodiesterase. A single cleavage in the middle of the calmodulin molecule results in the rapid dissociation of the two resultant fragments and a loss of ability to activate cAMP phosphodiesterase. One fragment, 78-148, interacts with phosphodiesterase and prevents its activation by calmodulin (Ki: 1.5 +/- 0.4 X 10(-6) M). The same fragment, 78-148, can fully activate phosphorylase kinase but with a lower affinity than calmodulin (Kuznicki, J., Grabarek, Z., Brzeska, H., Drabikowski, W., and Cohen, P. (1981) FEBS Lett. 130, 141-145). Thus, peptide 78-148 behaves as a calmodulin agonist or antagonist or as neither, depending on the enzyme under study.  相似文献   

3.
D L Newton  C B Klee 《Biochemistry》1989,28(9):3750-3757
In the presence of Ca2+ norchlorpromazine isothiocyanate forms a monocovalent complex with calmodulin: CAPP1-calmodulin (Newton et al, 1983). Trypsin digestion of [3H]CAPP1-calmodulin yields as the major radioactive peptide N epsilon-CAPP-Lys-Met-Lys, corresponding to residues 75-77 of calmodulin. Stoichiometric amounts of all other expected tryptic peptides are also found, indicating that norchlorpromazine isothiocyanate selectively acylates Lys 75. A second molecule of CAPP-NCS can react, albeit slowly, with calmodulin to form CAPP2-calmodulin. Fragments 38-74 and 127-148 are completely missing from the trypsin digests of CAPP2-calmodulin without deliberate exposure to UV irradiation. Possibly the lengthy preparation of CAPP2-calmodulin favors photolysis, caused by room lights, of the putative CAPP-binding domains located in these two peptides. Lys 148, the sole lysyl residue in fragment 127-148, is a probable site of attachment of the second molecule of CAPP. UV irradiation of CAPP1-calmodulin, followed by digestion with trypsin, results in the selective loss of 50% each of peptides containing residues 38-74 and 127-148, suggesting that these peptides contain the hydrophobic amino acids that form the phenothiazine-binding sites. The loss of peptides encompassing residues 38-74 and 127-148, located in the amino and carboxyl halves of calmodulin, respectively, suggests that the hydrophobic rings of CAPP can bind at either one of the two phenothiazine sites. Computer modeling of CAPP1-calmodulin with the X-ray coordinates of calmodulin (Babu et al., 1986) indicates that CAPP attached to Lys 75 cannot interact with the carboxyl-terminal phenothiazine-binding site.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
J Mackall  C B Klee 《Biochemistry》1991,30(29):7242-7247
The rate of proteolysis of trypsin-sensitive bonds was used to examine the nature of the structural changes accompanying Ca2+ and Mg2+ binding to calmodulin. In the Ca(2+)-free form, the rates of proteolysis at Arg-106 and Arg-37 are rapid (greater than 300 and 28 nmol min-1 mL-1, respectively), the bonds at Arg-74, Lys-75, and Lys-77, in the central helix, are cleaved more slowly (10 nmol min-1 mL-1), and a lag in the cleavage at the remaining bonds (Lys-13, Lys-30, Arg-86, Arg-90, and Arg-126) suggests that they are not cleaved in the native protein. High concentrations of Ca2+, but not Mg2+, almost completely abolish proteolysis at Arg-106 and drastically reduce the rate of cleavage at Arg-37. Both Ca2+ and Mg2+ exert a moderate protective effect on the proteolysis of the central helix. These results suggest that the F-helix of domains III and, to a lesser extent, the F-helix of domain I are somewhat flexible in the Ca(2+)-free form and are stabilized by Ca2+. Whereas full occupancy of the four Ca(2+)-binding sites produces little change in the susceptibility of the central helix to proteolytic attack, binding of two Ca2+ produces a 10-fold enhancement of the rate of proteolysis in this part of the molecule. We propose that at intermediate Ca2+ levels the flexibility of the central helix of calmodulin is greatly increased, resulting in the transient formation of intermediates which have not been detected by spectroscopic techniques but are trapped by the irreversible action of trypsin.  相似文献   

5.
We have mapped principal sites in the Escherichia coli RNA polymerase molecule that are exposed to attack by trypsin under limited proteolysis conditions. The 1342-amino acid-long beta subunit is alternatively cleaved at Arg903 or Lys909. The cleavage occurs adjacent to a dispensable domain (residues 940-1040) that is absent in the homologous RNA polymerase subunits from chloroplasts, eukaryotes, and archaebacteria. In E. coli, this region can be disrupted with genetic deletions and insertions without the loss of RNA polymerase function. Insertion of 127 amino acids into this region introduces a new highly labile site for trypsin proteolysis. The dispensable domain carries the epitope for monoclonal antibody PYN-6 (near residue 1000), which can be used for anchoring the catalytically active enzyme on a solid support. We also report the identification of a secondary trypsin cleavage at Arg81 of the beta' subunit within a putative zinc-binding domain that is conserved in prokaryotes and chloroplasts.  相似文献   

6.
R Machovich  R D Litwiller  W G Owen 《Biochemistry》1992,31(46):11558-11561
In physiological salt solutions, porcine plasminogen is refractory to activation by urokinase or trypsin and to proteolysis at Lys77 by plasmin or trypsin. Plasminogen becomes a substrate for urokinase (at Arg560), plasmin (at Lys77), and trypsin (at both bonds) if chloride ion is removed or if 6-aminohexanoate (2.5 mmol/L) is added. Irrespective of salts, activation of des(1-77)plasminogen is as efficient as activation of des(kringle1-4)plasminogen and is inhibited 50% by 2.5 mmol/L 6-aminohexanoate. In solutions lacking chloride or containing 6-aminohexanoate, plasminogen, des(1-77)plasminogen, and des(kringle1-4)plasminogen show no tendency to saturate urokinase in physiologically relevant concentrations (10 mumol/L). The findings are interpreted as indicating that plasminogen requires modification, either by proteolysis or by ligands, for activation.  相似文献   

7.
Activation of factor VIII by factor Xa is followed by proteolytic inactivation resulting from cleavage within the A1 subunit (residues 1-372) of factor VIIIa. Factor Xa attacks two sites in A1, Arg(336), which precedes the highly acidic C-terminal region, and a recently identified site at Lys(36). By using isolated A1 subunit as substrate for proteolysis, production of the terminal fragment, A1(37-336), was shown to proceed via two pathways identified by the intermediates A1(1-336) and A1(37-372) and generated by initial cleavage at Arg(336) and Lys(36), respectively. Appearance of the terminal product by the former pathway was 7-8-fold slower than the product obtained by the latter pathway. The isolated A1 subunit was cleaved slowly, independent of the presence of phospholipid. The A1/A3-C1-C2 dimer demonstrated an approximately 3-fold increased cleavage rate constant, and inclusion of phospholipid further enhanced this value by approximately 2-fold. Although association of A1 or A1(37-372) with A3-C1-C2 enhanced the rate of cleavage at Arg(336), inclusion of A3-C1-C2 did not affect the cleavage at Lys(36) in A1(1-336). A synthetic peptide 337-372 blocked the cleavage at Lys(36) (IC(50) = 230 microm) while showing little if any effect on cleavage at Arg(336). Proteolysis at Lys(36), and to a lesser extent Arg(336), was inhibited in a dose-dependent manner by heparin. These results suggest that inactivating cleavages catalyzed by factor Xa at Lys(36) and Arg(336) are regulated in part by the A3-C1-C2 subunit. Furthermore, cleavage at Lys(36) appears to be selectively modulated by the C-terminal acidic region of A1, a region that may interact with factor Xa via its heparin-binding exosite.  相似文献   

8.
Under conditions where nM level of calmodulin was able to show full activation of myosin light chain kinase and cyclic-nucleotide phosphodiesterase, the fragments of calmodulin at concentrations as high as 20 microM failed to activate these enzymes in the presence of Ca2+. The fragments tested were Ala1-Lys75 (F12), Ala1-Arg74 (F12'), Lys75-Lys148 (F34'), Met76-Lys148 (F34'), Asp78-Lys148 (F34), Ala1-Arg106 (F123), and His107-Lys148 (F4). Purification of the proteolytic fragments through HPLC was necessary to remove contaminant calmodulin. Among the fragments, that corresponding to the C-terminal half domain inhibited myosin light chain kinase activity with the inhibition constant of 13 microM. The integrated structure of calmodulin consisting of N-terminal half domain, C-terminal half domain, and the linker peptide was indispensable for the enzyme activation. We discuss the functions of the two structural domains (N-domain and C-domain) in the activation of various enzymes.  相似文献   

9.
Fourteen tryptic peptides and nine intermediates were identified as products of trypsin digestion of reduced and S-3-(trimethylated amino) propylated lysozyme. Kinetics of the appearance and disappearance of these products were observed by monitoring the peak areas on the chromatogram. In spite of the complicated reaction pathways, kinetics of the digestion of proteins and several intermediate products show simple decay curves with a single rate constant. In this paper, the trypsin susceptibility of the individual cleavage site is defined as a hydrolytic rate constant of the susceptible peptide bond in the presence of 10 nM trypsin. The cleavage sites of unfolded lysozyme are classified into two groups in terms of the trypsin susceptibility: one has a high susceptibility (10–20 h?1) and the other a low susceptibility (1.0–2.0 h?1). In the unfolded state of lysozyme, in conclusion, the region from residues 15 to 61 has a strong resistance to trypsin digestion; on the other hand, the C-terminal half of the polypeptide chain is flexible enough to fit into the active site of trypsin. In addition, six kinds of pentapeptides were synthesized as analogues of lysozyme fragments including Arg 14, Arg 21, Lys 33, Arg 45, Arg 61, and Arg 73. Kinetics of typtic digestion of them were observed. Both kcat and KM were determined for these synthetic pentapeptides. The susceptibility of each cleavage site in pentapeptides is determined and compared with that corresponding in proteins. The susceptibility is usually higher when the susceptible peptide chain is flexible. However, susceptibilities of a few sites in proteins are lower than those in pentapeptides. This means that the peptapeptides, this means that the peptide chains tend to fold locally to prevent trypsin from binding to the sites. It was found that the sites of Arg 21 and Arg 45 are indeed resistant to trypsin, but the site of Lys 33 is not so much, although the hydrolytic rate at Lys 33 itself is extremely slow. © 1994 John Wiley & Sons, Inc.  相似文献   

10.
Plasmin not only functions as a key enzyme in the fibrinolytic system but also directly inactivates factor VIII and other clotting factors such as factor V. However, the mechanisms of plasmin-catalyzed factor VIII inactivation are poorly understood. In this study, levels of factor VIII activity increased approximately 2-fold within 3 min in the presence of plasmin, and subsequently decreased to undetectable levels within 45 min. This time-dependent reaction was not affected by von Willebrand factor and phospholipid. The rate constant of plasmin-catalyzed factor VIIIa inactivation was approximately 12- and approximately 3.7-fold greater than those mediated by factor Xa and activated protein C, respectively. SDS-PAGE analysis showed that plasmin cleaved the heavy chain of factor VIII into two terminal products, A1(37-336) and A2 subunits, by limited proteolysis at Lys(36), Arg(336), Arg(372), and Arg(740). The 80-kDa light chain was converted into a 67-kDa subunit by cleavage at Arg(1689) and Arg(1721), identical to the pattern induced by factor Xa. Plasmin-catalyzed cleavage at Arg(336) proceeded faster than that at Arg(372), in contrast to proteolysis by factor Xa. Furthermore, breakdown was faster than that in the presence of activated protein C, consistent with rapid inactivation of factor VIII. The cleavages at Arg(336) and Lys(36) occurred rapidly in the presence of A2 and A3-C1-C2 subunits, respectively. These results strongly indicated that cleavage at Arg(336) was a central mechanism of plasmin-catalyzed factor VIII inactivation. Furthermore, the cleavages at Arg(336) and Lys(36) appeared to be selectively regulated by the A2 and A3-C1-C2 domains, respectively, interacting with plasmin.  相似文献   

11.
The Ca2+-dependent association of beta-endorphin and trifluoperazine with porcine testis calmodulin, as well as the effects of removing Ca2+ by ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) treatment, were investigated by the procedure of differential kinetic labeling. This technique permitted determination of the relative rates of acylation of each of the epsilon-amino groups of the seven lysyl residues on calmodulin by [3H]acetic anhydride under the different conditions. In all cases, less than 0.52 mol of lysyl residue/mol of calmodulin was modified, thus ensuring that the labeling pattern reflects the microenvironments of these groups in the native protein. Lysines 75 and 94 were found to be the most reactive amino groups in Ca2+-saturated calmodulin. In the presence of Ca2+ and under conditions where beta-endorphin and calmodulin were present at a molar ratio of 2.5:1, the amino groups of lysines 75 and 148 were significantly reduced in reactivity compared to calmodulin alone. At equimolar concentrations of peptide and protein, essentially the same result was obtained except that the magnitudes of the perturbation of these two lysines were less pronounced. With trifluoperazine, at a molar ratio to calmodulin of 2.5:1, significant perturbations of lysines 75 and 148, as well as Lys 77, were also found. These results further substantiate previous observations of a commonality between phenothiazine and peptide binding sites on calmodulin. Lastly, an intriguing difference in Ca2+-mediated reactivities between lysines 75 and 77 of calmodulin is demonstrated. In the Ca2+-saturated form of the protein, both lysines are part of the long connecting helix between the two homologous halves of the protein (Babu, Y. S., Sack, J. S., Greenhough, T. G., Bugg, C. E., Means, A. R., and Cook, W. J. (1985) Nature 315, 37-40). Yet, Lys 75 increases in reactivity some 25-fold, compared to only a 2-fold change for Lys 77, in going from EGTA-treated to Ca2+-saturated calmodulin. Thus, the microenvironment of Lys 75 is markedly altered upon Ca2+ binding, and this linker region between the two globular lobes of the protein appears to be quite important in the interaction of calmodulin with inhibitory molecules and perhaps activatable enzymes.  相似文献   

12.
We investigated the effect of divalent metal ions on the proteolytic cleavage and activation of platelet Factor XIII by thrombin and trypsin. In the absence of metal ions (5 mM EDTA), trypsin and thrombin rapidly degraded platelet Factor XIII (80 kDa) to low-molecular-mass peptides (50-19 kDa) with simultaneous loss of transglutaminase activity. Divalent metal ions protected Factor XIII from proteolytic inactivation with an order of efficacy of Ca2+ greater than Zn2+ greater than Mg2+ greater than Mn2+. Calcium (2 mM) increased by 10- to 1000-fold the trypsin and thrombin concentrations required to degrade Factor XIII to a 19-kDa peptide. Factor XIIIa formed by thrombin in the presence of 5 mM EDTA had one-half the specific activity of Factor XIIIa formed in the presence of calcium. Factor XIII was cleaved by trypsin in the presence of 5 mM Ca2+ to a 51 +/- 3-kDa fragment that had 60% of the original Factor XIIIa activity. A similar tryptic peptide formed in the presence of 5 mM EDTA did not have transglutaminase activity. In the presence of 5 mM Mg2+, thrombin cleaved Factor XIII to a major 51 +/- 3-kDa fragment that had 60% of the Factor XIIIa activity. Mn2+ (0.1-5 mM) limited trypsin and thrombin proteolysis. The resulting digest containing a population of Factor XIII fragments (50-14 kDa) expressed 50-60% transglutaminase activity of Factor XIIIa. Factor XIII was fully activated by both trypsin and thrombin in the presence of 5 mM Zn2+, resulting in two fragments of 76 and 72 kDa. We conclude that the binding of divalent metal ions to platelet Factor XIII induces conformational changes in the protein that alter its susceptibility to proteolysis and influence the expression of transglutaminase activity.  相似文献   

13.
将1%猪胰蛋白酶溶于0.05M,pH9.0硼酸缓冲液中,在25℃自溶6小时后,上大豆胰蛋白酶抑制剂亲和层析柱STI-Sepharose4B,用pH5.0—3.0的磷酸钾缓冲液梯度洗脱,可以有效地分开各种自溶活性产物。从得到的三个活性峰S_1、S_2和S_3中,用DNS-Cl Edman法和有色Edman法测定酶分子肽键断裂后N末端的部分氨基酸顺序,从而鉴定出三种不同形式的自溶活性产物:δ~-、γ~-和σ~-胰蛋白酶。S_3主要含有完整的单链β-胰蛋白酶;S_2主要含有Arg_(105)—Val_(156)断裂的双链δ-胰蛋白酶;S_1含有Arg_(105)—Val_(106),Lys_(145)—Arg_(146)和Arg_(105)—Val_(106),Lys_(131)—Ser_(132)断裂的三链γ-和σ-胰蛋白酶。活性产物的几个N端氨基酸顺序与已知猪胰蛋白酶氨基酸顺序完全相符。 与β-胰蛋白酶相比,δ~-、γ~-和σ~-胰蛋白酶的等电点稍有降低,约为10.5左右。 对分离出的自溶活性产物的结晶条件进行了摸索,用悬滴法已经得到δ~-、γ~-和σ~-胰蛋白酶与苯甲脒复合物的结晶。这是关于分离出胰蛋白酶自溶活性产物结晶体的首次报道。  相似文献   

14.
Calmodulin tryptic fragments 78-148, 107-148, and 1-77 coupled to Sepharose 4B were used to test the ability of different calmodulin-regulated enzymes to recognize different domains of calmodulin. Fragment 107-148, which contains a single Ca2+-binding domain, does not interact with any of the calmodulin binding proteins. Fragments 1-77 and 78-148, each of which contains two Ca2+-binding domains, have preserved their ability to interact with several calmodulin-dependent enzymes. Most of the calmodulin-regulated enzymes in brain extracts, such as cAMP phosphodiesterase, cAMP-dependent protein kinase, and the calmodulin-stimulated protein phosphatase (calcineurin) interact with fragment 78-148 in a Ca2+-dependent fashion. An ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid-sensitive, calmodulin-independent, p-nitrophenyl phosphatase does not bind to the affinity column and is resolved from calcineurin at this step. Although calmodulin-stimulated protein kinase(s) can interact with fragment 78-148, their interaction is prevented by increased ionic strength even in the presence of Ca2+. Fragment 1-77 exhibits a higher degree of selectivity than fragment 78-148. Only cAMP-dependent protein kinase and cAMP phosphodiesterase bind to fragment 1-77. These results confirm the multiple modes of interaction of calmodulin with its target proteins and provide the basis for a selective purification of calmodulin-regulated enzymes by affinity chromatography on specific calmodulin fragments coupled to Sepharose.  相似文献   

15.
Tryptic bovine brain calmodulin fragments 1-77 or 1-106 reactivated La-inactivated ciliary guanylate cyclase from Paramecium dose-dependently up to 60%. They were 20-fold less potent compared to bovine brain calmodulin. Fragment 78-148 was even less active. Concomitant addition of fragments 1-77 and 78-148 had no additive effect. Genetically engineered calmodulin lacking a blocked amino terminus and trimethyllysine at position 115 reactivated La-treated guanylate cyclase as good as bovine brain calmodulin. After detergent solubilization of La-inactivated guanylate cyclase intact bovine brain calmodulin and calmodulin fragments 1-77 and 78-148 were equipotent. 80% Reactivation was obtained with 40 microM of either fragment.  相似文献   

16.
Bacterial L-ASNases (L-asparaginases) catalyse the conversion of L-asparagine into L-aspartate and ammonia, and are widely used for the treatment of ALL (acute lymphoblastic leukaemia). In the present paper, we describe an efficient approach, based on protein chemistry and protein engineering studies, for the construction of trypsin-resistant PEGylated L-ASNase from Erwinia carotovora (EcaL-ASNase). Limited proteolysis of EcaL-ASNase with trypsin was found to be associated with a first cleavage of the peptide bond between Lys53 and Gly54, and then a second cleavage at Arg206-Ser207 of the C-terminal fragment, peptide 54-327, showing that the initial recognition sites for trypsin are Lys53 and Arg206. Site-directed mutagenesis of Arg206 to histidine followed by covalent coupling of mPEG-SNHS [methoxypoly(ethylene glycol) succinate N-hydroxysuccinimide ester] to the mutant enzyme resulted in an improved modified form of EcaL-ASNase that retains 82% of the original catalytic activity, exhibits enhanced resistance to trypsin degradation, and has higher thermal stability compared with the wild-type enzyme.  相似文献   

17.
Mutations Arg(117) --> His and Asn(21) --> Ile in human trypsinogen-I have been recently associated with hereditary pancreatitis (HP). The Arg(117) --> His substitution is believed to cause pancreatitis by stabilizing trypsin against autolytic degradation, while the mechanism of action of Asn(21) --> Ile has been unknown. In an effort to understand the effect(s) of this mutation, Thr(21) in the highly homologous rat trypsinogen-II was replaced with Asn or Ile, and the recombinant zymogens and their active trypsin forms were studied. Kinetic parameters of all three trypsins were comparable, and the active enzymes suffered autolysis at similar rates, indicating that neither catalytic properties nor proteolytic stability of trypsin are influenced by mutations at position 21. When incubated at pH 8.0, 37 degrees C, pure zymogens underwent autoactivation with concomitant trypsinolytic degradation in a Ca(2+)-dependent fashion. Thus, in the presence of 5 mM Ca(2+), autoactivation and digestion of the zymogens after Arg(117) and Lys(188) were observed, while in the presence of 1 mM EDTA autoactivation and cleavage at Lys(188) were reduced, and zymogenolysis at the Arg(117) site was enhanced. Overall rates of zymogen degradation in [Asn(21)]- and [Ile(21)]trypsinogens were higher in Ca(2+) than in EDTA, while [Thr(21)]trypsinogen demonstrated inverse characteristics. Remarkably, both in the presence and absence of Ca(2+), [Ile(21)]trypsinogen exhibited significantly higher stability against autoactivation and proteolysis than zymogens with Asn(21) or Thr(21). The observations suggest that autocatalytic trypsinogen degradation may be an important defense mechanism against excessive trypsin generation in the pancreas, and trypsinogen stabilization by the Asn(21) --> Ile mutation plays a role in the pathogenesis of HP.  相似文献   

18.
The skeletal muscle calcium release channel, ryanodine receptor, is activated by calcium-free calmodulin and inhibited by calcium-bound calmodulin. Previous biochemical studies from our laboratory have shown that calcium-free calmodulin and calcium bound calmodulin protect sites at amino acids 3630 and 3637 from trypsin cleavage (Moore, C. P., Rodney, G., Zhang, J. Z., Santacruz-Toloza, L., Strasburg, G., and Hamilton, S. L. (1999) Biochemistry 38, 8532-8537). We now demonstrate that both calcium-free calmodulin and calcium-bound calmodulin bind with nanomolar affinity to a synthetic peptide matching amino acids 3614-3643 of the ryanodine receptor. Deletion of the last nine amino acids (3635-3643) destroys the ability of the peptide to bind calcium-free calmodulin, but not calcium-bound calmodulin. We propose a novel mechanism for calmodulin's interaction with a target protein. Our data suggest that the binding sites for calcium-free calmodulin and calcium-bound calmodulin are overlapping and, when calcium binds to calmodulin, the calmodulin molecule shifts to a more N-terminal location on the ryanodine receptor converting it from an activator to an inhibitor of the channel. This region of the ryanodine receptor has previously been identified as a site of intersubunit contact, suggesting the possibility that calmodulin regulates ryanodine receptor activity by regulating subunit-subunit interactions.  相似文献   

19.
Calmodulin from Saccharomyces cerevisiae was expressed in Escherichia coli and purified. The purified protein was structurally characterized using limited proteolysis followed by ESI mass spectrometry to identify the fragments. In the presence of Ca2+, yeast calmodulin is sequentially cleaved at arginine 126, then lysine 115, and finally at lysine 77. The rapid cleavage at Arg-126 suggests that the fourth Ca(2+)-binding loop does not bind Ca2+. In the presence of EGTA, yeast calmodulin is more susceptible to proteolysis and is preferentially cleaved at Lys-106. In addition, mutant proteins carrying I100N, E104V or both mutations, which together confer temperature sensitivity to yeast, were characterized. The mutant proteins are more susceptible than wild-type calmodulin to proteolysis, suggesting that each mutation disrupts the structure of calmodulin. Furthermore, whereas wild-type calmodulin is cut at Lys-106 only in the presence of EGTA, this cleavage site is accessible in the mutants in the presence of Ca2+ as well. In these ways, the structural consequence of each mutation mimics the loss of a calcium ion in the third loop. In addition, although wild-type calmodulin binds to four proteins in a yeast crude extract in the presence of Ca2+, the mutants bind only to a subset of these. Thus, the inability to adopt the stable Ca(2+)-bound conformation in the third Ca(2+)-binding loop alters the ability of calmodulin to interact with yeast proteins in a Ca(2+)-dependent manner.  相似文献   

20.
Electrospray ionization mass spectrometry (ESI-LC/MS) of tryptic digests of human alphaB-crystallin in the presence and absence of ATP identified four residues located within the core "alpha-crystallin" domain, Lys(82), Lys(103), Arg(116), and Arg(123), that were shielded from the action of trypsin in the presence of ATP. In control experiments, chymotrypsin was used in place of trypsin. The chymotryptic fragments of human alphaB-crystallin produced in the presence and absence of ATP were analyzed using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Seven chymotryptic cleavage sites, Trp(60), Phe(61), Phe(75), Phe(84), Phe(113), Phe(118), and Tyr(122), located near or within the core alpha-crystallin domain, were shielded from the action of chymotrypsin in the presence of ATP. Chemically similar analogs of ATP were less protective than ATP against proteolysis by trypsin or chymotrypsin. ATP had no effect on the enzymatic activity of trypsin and the K(m) for trypsin was 0.031 mM in the presence of ATP and 0.029 mM in the absence of ATP. The results demonstrated an ATP-dependent structural modification in the core alpha-crystallin domain conserved in nearly all identified small heat-shock proteins that act as molecular chaperones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号