首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Myotonic dystrophy (DM) is a dominant neuromuscular disorder caused by the expansion of trinucleotide CTG repeats in the 3-untranslated region (3'-UTR) of the MtPK gene. Although DM-associated mental retardation suggests that neuronal functions are disturbed by the expansion mutation, the effect of this alteration in neuronal cells has not been approached. In this study we established stable transfectans of PC12 neuronal cell line expressing the reporter gene CAT alone (empty-vector clone) or fused to the MtPK 3'-UTR with 5, 60, or 90 CTG repeats (CTG5, CTG60, and CTG90 clones, respectively). CTG90 cells exhibited a suppression of NGF-induced neuronal differentiation while empty-vector, CTG5 and CTG60 clones differentiated normally. CTG90 cells displayed normal activation of early differentiation markers, ERK1/2, but the up-regulation of the late marker MAP2 was dramatically reduced. Our neuronal cell system provides the first information of how the mutant MtPK 3'-UTR mRNA affects neuronal functions.  相似文献   

2.
We have constructed the expression plasmids harboring protein kinase C (PKC) mutant cDNAs with a series of deletions in the PKC coding region. These plasmids were transfected into COS7 cells to characterize the PKC mutants. Immunoblot analysis using the anti-PKC antibody identified proteins with the Mr values expected from the PKC mutant cDNAs in the extracts from COS7 cells. The wild-type PKC, when expressed in COS7 cells, conferred increased phorbol ester binding activity on intact cells; but the PKC mutants with the deletion around the C1 region did not show this activity. The wild-type PKC showed protein kinase activity dependent on phospholipid, Ca2+, and phorbol ester, whereas these PKC mutants exhibited protein kinase activity independent of the activators in a cell-free system. A PKC mutant cDNA with the deletion in the C2 region gave increased phorbol ester binding activity. Protein kinase activity of this mutant was much less dependent on Ca2+ compared with the wild-type PKC. A PKC mutant cDNA with the deletion in the C3 region conferred increased phorbol ester binding activity, but neither activator-dependent nor -independent protein kinase activity. These results indicate that elimination of the C1 region of PKC gives rise to constitutively active PKC independent of phospholipid, Ca2+, and phorbol ester and that the C1-C3 regions play distinct roles in the regulatory and catalytic function of PKC. In another series of experiments, transfection of some PKC mutant cDNAs with the deletions around the C1 region into Chinese hamster ovary and Jurkat cells activated the activator protein-1-binding element or the c-fos gene enhancer linked to the chloramphenicol acetyltransferase reporter gene in the absence of phorbol ester. Microinjection of these constructs into Xenopus oocytes induced initiation of germinal vesicle breakdown, indicating that they stimulated the PKC pathway in vivo. Thus, the phorbol ester-independent PKC mutant cDNAs could be a powerful tool to investigate the transmembrane signaling pathway mediated by PKC.  相似文献   

3.
Exposure of protein kinase C to low concentrations of either N-chlorosuccinimide or H2O2 resulted in rapid and parallel loss of phosphotransferase activity and phorbol ester binding. This oxidative inactivation of protein kinase C also occurred in intact cells exposed to a low concentration of H2O2. With H2O2 treatment the rate of inactivation of protein kinase C in the cytosol of MCF-7 cells was rather slower than that which occurred in the cytosol of PYS cells. However, in both cell types, the oxidative inactivation of membrane-associated protein kinase C occurred rapidly in comparison to the enzyme in the cytosol. Prior treatment of cells with phorbol ester to induce membrane association (stabilization) of protein kinase C, followed by exposure to H2O2, resulted in increased inactivation of protein kinase C, suggesting that membrane association of protein kinase C increases its susceptibility to oxidative inactivation.  相似文献   

4.
Protein kinase D (PKD) is a protein serine kinase that is directly stimulated in vitro by phorbol esters and diacylglycerol in the presence of phospholipids, and activated by phorbol esters, neuropeptides, and platelet-derived growth factor via protein kinase C (PKC) in intact cells. Recently, oxidative stress was shown to activate transfected PKC isoforms via tyrosine phosphorylation, but PKD activation was not demonstrated. Here, we report that oxidative stress initiated by addition of H(2)O(2) (0.15-10 mm) to quiescent Swiss 3T3 fibroblasts activates PKD in a dose- and time- dependent manner, as measured by autophosphorylation and phosphorylation of an exogenous substrate, syntide-2. Oxidative stress also activated transfected PKD in COS-7 cells but not a kinase-deficient mutant PKD form or a PKD mutant with critical activating serine residues 744 and 748 mutated to alanines. Genistein, or the specific Src inhibitors PP-1 and PP-2 (1-10 micrometer) inhibited H(2)O(2)-mediated PKD activation by 45%, indicating that Src contributes to this signaling pathway. PKD activation by H(2)O(2) was also selectively potentiated by cotransfection of PKD together with an active form of Src (v-Src) in COS-7 cells, as compared with PDB-mediated activation. The specific phospholipase C inhibitor, partly blocked H(2)O(2)-mediated but not PDB-mediated PKD activation. In contrast, PKC inhibitors blocked H(2)O(2) or PDB-mediated PKD activation essentially completely, suggesting that whereas Src mediates part of its effects via phospholipase C activation, PKC acts more proximally as an upstream activator of PKD. Together, these studies reveal that oxidative stress activates PKD by initiating distinct Src-dependent and -independent pathways involving PKC.  相似文献   

5.
The Cdc25 family of dual specific phosphatases are critical components of cell cycle progression and checkpoint control. Certain stresses such as ultraviolet light stimulate the rapid and selective destruction of Cdc25A protein through a Chk1 protein kinase-dependent pathway. We demonstrate that in contrast to cellular stresses previously examined, hydrogen peroxide exposure affects Cdc25C but not Cdc25A levels. Pharmacological inhibition of Chk1 activity or a mutant of Cdc25C that lacks the Chk1 phosphorylation site still undergoes degradation in response to oxidants. We also demonstrate that in vitro hydrogen peroxide stimulates an intramolecular disulfide bond between the active site cysteine at position 377 and another invariant cysteine at position 330. The in vivo stability of Cdc25C is substantially reduced by the mutation of either of these two cysteine residues. In contrast, a double (C2) mutant of both cysteine 330 and cysteine 377 results in a protein that is more stable than wild type Cdc25C and is resistant to oxidative stress-induced degradation. In addition, the C2 mutant, which is unable to form an intramolecular disulfide bond, has reduced binding to 14-3-3 in vitro and in vivo. These results suggest that oxidative stress may induce cell cycle arrest in part through the degradation of Cdc25C.  相似文献   

6.
Caveolae and their coat proteins, caveolins, co-ordinate multiple signaling pathways. Caveolin-3 is a muscle-specific caveolin isoform that is deficient in limb girdle muscular dystrophy type 1 C (LGMD1C). Paradoxically, overexpression of this protein also causes muscle degeneration in vivo. We hypothesize that altered membrane expression of caveolin-3 in muscle cells causes a degenerative phenotype by disrupting the co-ordination of signaling pathways that are critical to the maintenance of cell survival. Here, we show for the first time that, in normal muscle cells subjected to oxidative stress, the phosphatidylinositol (3) kinase (PI(3) kinase)-associated proteins PDK1 and Akt associate with caveolae where they bind to caveolin-3, and that normal activation of this pathway promotes cell survival. Either increased or decreased expression of caveolin-3 at the membrane caused an increased susceptibility to oxidative stress, and myotube survival was markedly improved by PI(3) kinase inhibition. This occurred concomitantly with altered phosphorylation of the pro-apoptotic proteins GSK3beta and Bad, despite normal levels of Akt activation. Taken together, our results demonstrate that altered caveolin-3 expression can change the outcome of PI(3) kinase activation from cell survival to cell death. These findings indicate that normal expression and localization of caveolin-3 are required to appropriately co-ordinate PI(3) kinase/Akt-mediated cell survival signaling, and suggest that this pathway may be an effective therapeutic target for the treatment of muscular dystrophies associated with caveolin-3 mutations.  相似文献   

7.
Expansion of CAG/CTG repeats causes certain neurological and neurodegenerative disorders, and the formation and subsequent persistence of stable DNA hairpins within these repeats are believed to contribute to CAG/CTG repeat instability. Human cells possess a DNA hairpin repair (HPR) pathway, which removes various (CAG)(n) and (CTG)(n) hairpins in a nick-directed and strand-specific manner. Interestingly, this HPR system processes a (CTG)(n) hairpin on the template DNA strand much less efficiently than a (CAG)(n) hairpin on the same strand (Hou, C., Chan, N. L., Gu, L., and Li, G. M. (2009) Incision-dependent and error-free repair of (CAG)(n)/(CTG)(n) hairpins in human cell extracts. Nat. Struct. Mol. Biol. 16, 869-875), suggesting the involvement of an additional component for (CTG)(n) HPR. To identify this activity, a functional in vitro HPR assay was used to screen partially purified HeLa nuclear fractions for their ability to stimulate (CTG)(n) HPR. We demonstrate here that the stimulating activity is the Werner syndrome protein (WRN). Although WRN contains both a 3'→5' helicase activity and a 3'→5' exonuclease activity, the stimulating activity was found to be the helicase activity, as a WRN helicase mutant failed to enhance (CTG)(n) HPR. Consistently, WRN efficiently unwound large (CTG)(n) hairpins and promoted DNA polymerase δ-catalyzed DNA synthesis using a (CTG)(n) hairpin as a template. We, therefore, conclude that WRN stimulates (CTG)(n) HPR on the template DNA strand by resolving the hairpin so that it can be efficiently used as a template for repair or replicative synthesis.  相似文献   

8.
9.
10.
11.
12.
13.
Although the mutation for myotonic dystrophy has been identified as a (CTG)n repeat expansion located in the 3'-untranslated region of a gene located on chromosome 19, the mechanism of disease pathogenesis is not understood. The objective of this study was to assess the effect of (CTG)n repeats on the differentiation of myoblasts in cell culture. We report here that C2C12 myoblast cell lines permanently transfected with plasmid expressing 500 bases long CTG repeat sequences, exhibited a drastic reduction in their ability to fuse and differentiate into myotubes. The percentage of cells fused into myotubes in C2 C12 cells (53.4+/-4.4%) was strikingly different from those in the two CTG repeat carrying clones (1.8+/-0.4% and 3.3+/-0. 7%). Control C2C12 cells permanently transfected with vector alone did not show such an effect. This finding may have important implications in understanding the pathogenesis of congenital myotonic dystrophy.  相似文献   

14.
Myotonic dystrophy (DM) is caused by the amplification of CTG repeats in the 3′ untranslated region of a gene encoding a protein homologous to serine/threonine protein kinases. In DM patients the CTG repeats are extremely unstable, varying in length from patient to patient and generally increasing in length in successive generations. There is a strong correlation between the size of the repeats and the age of onset and severity of the disease. The molecular basis of the effect of the CTG expansion on the development of the DM phenotype continues to be investigated. The first working hypothesis of the molecular mechanism of DM was a reduction in steady-state myotonin-protein kinase (Mt-PK) mRNA and protein levels. However, although the consensus finding is that the Mt PK mRNA and protein levels are decreased in DM patients, it is still not clear if this reduction leads directly to the DM phenotype. In this short review we discuss the molecular aspects of CTG instability and the expression of the myotonin-protein kinase gene in normal and DM populations.  相似文献   

15.
A protein phosphatase 2C (PP2C)-homologous cDNA was isolated from Nicotiana tabacum (NtPP2C1). The deduced protein sequence of 416 amino acids showed the highest degree of similarity to the PP2C of Arabidopsis thaliana (AtPP2CA) implicated in abscisic acid signalling. The expression of NtPP2C1 was strongly induced by drought, but repressed by oxidative stress and heat shock. It is suggested that NtPP2C1 operates at the junction of drought, heat shock and oxidative stress.  相似文献   

16.
Wang Y  Liu TB  Patel S  Jiang L  Xue C 《Eukaryotic cell》2011,10(11):1455-1464
Casein kinases regulate a wide range of cellular functions in eukaryotes, including phosphorylation of proteins that are substrates for degradation via the ubiquitin-proteasome system (UPS). Our previous study demonstrated that Fbp1, a component of the SCF(FBP1) E3 ligase complex, was essential for Cryptococcus virulence. Because the Saccharomyces cerevisiae homolog of Fbp1, Grr1, requires casein kinase I (Yck1 and Yck2) to phosphorylate its substrates, we investigated the function of casein kinase I in Cryptococcus neoformans. In this report, we identified a C. neoformans casein kinase I protein homolog, Cck1. Similar to Fbp1, the expression of Cck1 is negatively regulated by glucose and during mating. cck1 null mutants showed significant virulence attenuation in a murine systemic infection model, but Cck1 was dispensable for the development of classical virulence factors (capsule, melanin, and growth at 37°C). cck1 mutants were hypersensitive to SDS treatment, indicating that Cck1 is required for cell integrity. The functional overlap between Cck1 and Fbp1 suggests that Cck1 may be required for the phosphorylation of Fbp1 substrates. Interestingly, the cck1 mutant also showed increased sensitivity to osmotic stress and oxidative stress, suggesting that Cck1 regulates both cell integrity and the cellular stress response. Our results show that Cck1 regulates the phosphorylation of both Mpk1 and Hog1 mitogen-activated protein kinases (MAPKs), demonstrating that Cck1 regulates cell integrity via the Mpk1 pathway and regulates cell adaptation to stresses via the Hog1 pathway. Overall, our study revealed that Cck1 plays important roles in regulating multiple signaling pathways and is required for fungal pathogenicity.  相似文献   

17.
The molecular basis of the myotonic dystrophy type 1 is the expansion of a CTG repeat at the DMPK locus. The expanded disease-associated repeats are unstable in both somatic and germ lines, with a high tendency towards expansion. The rate of expansion is directly related to the size of the pathogenic allele, increasing the size heterogeneity with age. It has also been suggested that additional factors, including as yet unidentified environmental factors, might affect the instability of the expanded CTG repeats to account for the observed CTG size dynamics over time. To investigate the effect of environmental factors in the CTG repeat instability, three lymphoblastoid cell lines were established from two myotonic dystrophy patients and one healthy individual, and parallel cultures were concurrently expanded in the presence or absence of the mutagenic chemical mitomycin C for a total of 12 population doublings. The new alleles arising along the passages were analysed by radioactive small pool PCR and sequencing gels. An expansion bias of the stepwise mutation was observed in a (CTG)124 allele of a cell line harbouring two modal alleles of 28 and 124 CTG repeats. Interestingly, this expansion bias was clearly enhanced in the presence of mitomycin C. The effect of mitomycin C was also evident in the normal size alleles in two cell lines with alleles of 13/13 and 12/69 repeats, where treated cultures showed new longer alleles. In conclusion, our results indicate that mitomycin C modulates the dynamics of myotonic dystrophy-associated CTG repeats in LBCLs, enhancing the expansion bias of long-pathogenic repeats and promoting the expansion of normal length repeats.  相似文献   

18.
Oxidative stress induced by cell treatments with H(2)O(2) activates protein kinase D (PKD) via a protein kinase C (PKC)-dependent signal transduction pathway (Waldron, R. T., and Rozengurt, E. (2000) J. Biol. Chem. 275, 17114-17121). Here we show that oxidative stress induces PKC-dependent activation loop Ser(744) and Ser(748) phosphorylation to mediate dose- and time-dependent activation of PKD, both endogenously expressed in Swiss 3T3 cells and stably overexpressed in Swiss 3T3-GFP.PKD cells. Although oxidative stress induced PKD activation loop phosphorylation and activation with identical kinetics, both were dose-dependently blocked by preincubation of cells with selective inhibitors of PKC (GF109203X and G?6983) or c-Src (PP2). Inhibition of Src tyrosine kinase activity eliminated oxidative stress-induced direct PKD tyrosine phosphorylation, but only partially attenuated activation loop phosphorylation and activation. Mutation of a putative tyrosine phosphorylation site on PKD, Tyr(469) to phenylalanine, had no effect on its activation by oxidative stress in transfected COS-7 cells. Similarly, a mutant with Tyr(469) replaced by aspartic acid had increased basal activity but was also further activated by oxidative stress. Thus, PKD tyrosine phosphorylation at this site neither produced full activation by itself nor was required for oxidative stress-induced activation mediated by activation loop phosphorylation. In addition to PKD activation, activation loop phosphorylation in response to oxidative stress also redistributed activated PKD to cell nuclei, as revealed by PKD indirect immunofluorescence, imaging of a PKD-green fluorescent protein fusion construct (GFP-PKD), and analysis of nuclear pellets. Cell preincubation with G?6983 strongly diminished H(2)O(2)-induced nuclear relocalization of GFP-PKD. Taken together, these results indicate that PKC-mediated PKD Ser(744) and Ser(748) phosphorylation induced by oxidative stress integrates PKD activation with redistribution to the nucleus.  相似文献   

19.
The cellular prion protein (PrP(C)) is critical for the development of prion diseases. However, the physiological role of PrP(C) is less clear, although a role in the cellular resistance to oxidative stress has been proposed. PrP(C) is cleaved at the end of the copper-binding octapeptide repeats through the action of reactive oxygen species (ROS), a process termed beta-cleavage. Here we show that ROS-mediated beta-cleavage of cell surface PrP(C) occurs within minutes and was inhibited by the hydroxyl radical quencher dimethyl sulfoxide and by an antibody against the octapeptide repeats. A construct of PrP lacking the octapeptide repeats, PrPDeltaoct, failed to undergo ROS-mediated beta-cleavage, as did two mutant forms of PrP, PG14 and A116V, associated with human prion diseases. As compared with cells expressing wild type PrP, when challenged with H2O2 and Cu2+, cells expressing PrPdeltaoct, PG14, or A116V had reduced viability and glutathione peroxidase activity and increased intracellular free radicals. Thus, lack of ROS-mediated beta-cleavage of PrP correlated with the sensitivity of the cells to oxidative stress. These data indicate that the beta-cleavage of PrP(C) is an early and critical event in the mechanism by which PrP protects cells against oxidative stress.  相似文献   

20.
Hepatitis C virus nonstructural protein 5A (NS5A) has been implicated in the HCV antiviral resistance, replication, and transactivation of cellular gene expression. We have recently shown that HCV NS5A activates NF-kappaB via oxidative stress (22). In this study, we investigate the molecular mechanism(s) of NF-kappaB activation in response to oxidative stress induced by NS5A protein. In contrast to the classic Ser32,36 phosphorylation of IkappaBalpha, we report here that tyrosine phosphorylation of IkappaBalpha at Tyr42 and Tyr305 residues is induced by the HCV NS5A and the subgenomic replicons in the NF-kappaB activation process. Use of IkappaBalpha-Tyr42,305 double mutant provided the evidence for their key role in the activation of NF-kappaB. Activation of NF-kappaB was blocked by a series of tyrosine kinase inhibitors but not by IkappaB kinase inhibitor BAY 11-7085. More specifically, a ZAP-70 knock-out cell line expressing NS5A and other nonstructural proteins respectively prevented the NF-kappaB activation, indicating the involvement of ZAP-70 as a probable tyrosine kinase in the activation process. Evidence is also presented for the possible role of calpain proteases in the NS5A-induced IkappaBalpha degradation. These studies collectively define an alternate pathway of NF-kappaB activation by NS5A alone or in the context of the HCV subgenomic replicon. Constitutive activation of NF-kappaB by HCV has implications in the chronic liver disease including hepatocellular carcinoma associated with HCV infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号