首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The weakly electric fish Gnathonemus petersii detects, localizes, and analyzes objects during active electrolocation even in complete darkness. This enables these fish to lead a nocturnal life and find and identify their prey (small insect larvae) on the ground of their freshwater habitat. During active electrolocation, fish produce a series of brief electric signals, electric organ discharges (EOD), with an electric organ in their tail. Each EOD builds up a stable electric field around the fish, which is distorted only by nearby objects. Field distortions lead to changes of the transepidermal electric current flow at a region of the fish's electroreceptive skin surface called the 'electric image'. Within the electric image, locally perceived EODs can be either altered in amplitude or waveform by an object. Fish measure both parameters to assess object properties, such as the capacitive and resistive components of the object's complex impedance. the object's size and shape, and its distance from the fish. None of these object properties can be evaluated in isolation, but have to be inferred during parallel processing of electric image spatial and qualitative parameters. Two anterior skin regions of G. petersii appear to possess particular properties for special electrolocation tasks and we therefore refer to them as 'foveal' regions. Because of its high electroreceptor density, the electric field geometry around it, and its behavioral use, the 'nasal region' between the nares and the mouth at the head of the fish is suggested to be a fovea for long-range guidance and object detection. We propose that the 'Schnauzenorgan', a long and flexible chin appendix covered densely with electroreceptor organs, is a second electroreceptive fovea associated with a short-range (food) identification system. Together, these two electric foveae constitute an effective prey detection and identification system.  相似文献   

2.
Weakly electric fish orient at night by employing active electrolocation. South American and African species emit electric signals and perceive the consequences of these emissions with epidermal electroreceptors. Objects are detected by analyzing the electric images which they project onto the animal’s electroreceptive skin surface. Electric images depend on size, distance, shape, and material of objects and on the morphology of the electric organ and the fish’s body. It is proposed that the mormyrid Gnathonemus petersii possesses two electroreceptive “foveae” at its Schnauzenorgan and its nasal region, both of which resemble the visual fovea in the retina of many animals in design, function, and behavioral use. Behavioral experiments have shown that G. petersii can determine the resistive and capacitive components of an object’s complex impedance in order to identify prey items during foraging. In addition, fish can measure the distance and three-dimensional shape of objects. In order to determine object properties during active electrolocation, the fish have to determine at least four parameters of the local signal within an object’s electric image: peak amplitude, maximal slope, image width, and waveform distortions. A crucial parameter is the object distance, which is essential for unambiguous evaluation of object properties.  相似文献   

3.
Weakly electric fish can detect nearby objects and analyse their electric properties during active electrolocation. Four individuals of the South American gymnotiform fish Eigenmannia sp., which emits a continuous wave-type electric signal, were tested for their ability to detect capacitive properties of objects and discriminate them from resistive properties. For individual fish, capacitive values of objects had to be greater than 0.22–1.7 nF (`lower threshold') and smaller than 120–680 nF (`upper threshold') in order to be detected. The capacitive values of natural objects fall well within this detection range. All fish trained could discriminate unequivocally between capacitive and resistive object properties. Thus, fish perceive capacitive properties as a separate object quality. The effects of different types of objects on the locally occurring electric signals which stimulate electroreceptors during electrolocation were examined. Purely resistive objects altered mainly local electric organ discharge (EOD) amplitude, but capacitive objects with values between about 0.5 and 600 nF changed the timing of certain EOD parameters (phase-shift) and EOD waveform. A mechanism for capacitance detection in wave-type electric fish based on time measurements is proposed and compared with the capacitance detection mechanism in mormyrid pulse-type fish, which is based on waveform measurements. Accepted: 31 July 1997  相似文献   

4.
Weakly electric fish orient at night in complete darkness by employing their active electrolocation system. They emit short electric signals and perceive the consequences of these emissions with epidermal electroreceptors. Objects are detected by analyzing the electric images which they project onto the animal's electroreceptive skin surface. This process corresponds to similar processes during vision, where visual images are cast onto the retinas of eyes. Behavioral experiments have shown that electric fish can measure the distance of objects during active electrolocation, thus possessing three-dimensional depth perception of their surroundings. The fundamental mechanism for distance determination differs from stereopsis used during vision by two-eyed animals, but resembles some supplementary mechanisms for distance deduction in humans. Weakly electric fish can also perceive the three-dimensional shape of objects. The fish can learn to identify certain objects and discriminate them from all other objects. In addition, they spontaneously categorize objects according to their shapes and not according to object size or material properties. There is good evidence that some fundamental types of perceptional invariances during visual object recognition in humans are also found in electric fish during active electrolocation. These include size invariance (maybe including size constancy), rotational invariance, and translational invariance. The mechanisms of shape detection during electrolocation are still unknown, and their discoveries require additional experiments.  相似文献   

5.
Instead of vision, many nocturnal animals use alternative senses for navigation and object detection in their dark environment. For this purpose, weakly electric mormyrid fish employ active electrolocation, during which they discharge a specialized electric organ in their tail which discharges electrical pulses. Each discharge builds up an electrical field around the fish, which is sensed by cutaneous electroreceptor organs that are distributed over most of the body surface of the fish. Nearby objects distort this electrical field and cause a local alteration in current flow in those electroreceptors that are closest to the object. By constantly monitoring responses of its electroreceptor organs, a fish can detect, localize, and identify environmental objects.Inspired by the remarkable capabilities of weakly electric fish in detecting and recognizing objects, we designed technical sensor systems that can solve similar problems of remote object sensing. We applied the principles of active electrolocation to technical systems by building devices that produce electrical current pulses in a conducting medium (water or ionized gases) and simultaneously sense local current density. Depending on the specific task a sensor was designed for devices could (i) detect an object, (ii) localize it in space, (iii) determine its distance, and (iv) measure properties such as material properties, thickness, or material faults. Our systems proved to be relatively insensitive to environmental disturbances such as heat, pressure, or turbidity. They have a wide range of applications including material identification, quality control, non-contact distance measurements, medical applications and many more. Despite their astonishing capacities, our sensors still lag far behind what electric fish are able to achieve during active electrolocation. The understanding of the neural principles governing electric fish sensory physiology and the corresponding optimization of our sensors to solve certain technical tasks therefore remain ongoing goals of our research.  相似文献   

6.
Instead of vision, many nocturnal animals use alternative senses for navigation and object detection in their dark environment. For this purpose, weakly electric mormyrid fish employ active electrolocation, during which they discharge a specialized electric organ in their tail which discharges electrical pulses. Each discharge builds up an electrical field around the fish, which is sensed by cutaneous electroreceptor organs that are distributed over most of the body surface of the fish. Nearby objects distort this electrical field and cause a local alteration in current flow in those electroreceptors that are closest to the object. By constantly monitoring responses of its electroreceptor organs, a fish can detect, localize, and identify environmental objects.Inspired by the remarkable capabilities of weakly electric fish in detecting and recognizing objects, we designed technical sensor systems that can solve similar problems of remote object sensing. We applied the principles of active electrolocation to technical systems by building devices that produce electrical current pulses in a conducting medium (water or ionized gases) and simultaneously sense local current density. Depending on the specific task a sensor was designed for devices could (i) detect an object, (ii) localize it in space, (iii) determine its distance, and (iv) measure properties such as material properties, thickness, or material faults. Our systems proved to be relatively insensitive to environmental disturbances such as heat, pressure, or turbidity. They have a wide range of applications including material identification, quality control, non-contact distance measurements, medical applications and many more. Despite their astonishing capacities, our sensors still lag far behind what electric fish are able to achieve during active electrolocation. The understanding of the neural principles governing electric fish sensory physiology and the corresponding optimization of our sensors to solve certain technical tasks therefore remain ongoing goals of our research.  相似文献   

7.
Weakly electric fish use active electrolocation for orientation at night. They emit electric signals (electric organ discharges) which generate an electrical field around their body. By sensing field distortions, fish can detect objects and analyze their properties. It is unclear, however, how accurately they can determine the distance of unknown objects. Four Gnathonemus petersii were trained in two-alternative forced-choice procedures to discriminate between two objects differing in their distances to a gate. The fish learned to pass through the gate behind which the corresponding object was farther away. Distance discrimination thresholds for different types of objects were determined. Locomotor and electromotor activity during distance measurement were monitored. Our results revealed that all individuals quickly learned to measure object distance irrespective of size, shape or electrical conductivity of the object material. However, the distances of hollow, water-filled cubes and spheres were consistently misjudged in comparison with solid or more angular objects, being perceived as farther away than they really were. As training continued, fish learned to compensate for these 'electrosensory illusions' and erroneous choices disappeared with time. Distance discrimination thresholds depended on object size and overall object distance. During distance measurement, the fish produced a fast regular rhythm of EOD discharges. A mechanisms for distance determination during active electrolocation is proposed.  相似文献   

8.
Electroreception, the capacity to detect external underwater electric fields with specialised receptors, is a phylogenetically widespread sensory modality in fishes and amphibians. In passive electroreception, a capacity possessed by c. 16% of fish species, an animal uses low-frequency-tuned ampullary electroreceptors to detect microvolt-range bioelectric fields from prey, without the need to generate its own electric field. In active electroreception (electrolocation), which occurs only in the teleost lineages Mormyroidea and Gymnotiformes, an animal senses its surroundings by generating a weak (< 1 V) electric-organ discharge (EOD) and detecting distortions in the EOD-associated field using high-frequency-tuned tuberous electroreceptors. Tuberous electroreceptors also detect the EODs of neighbouring fishes, facilitating electrocommunication. Several other groups of elasmobranchs and teleosts generate weak (< 10 V) or strong (> 50 V) EODs that facilitate communication or predation, but not electrolocation. Approximately 1.5% of fish species possess electric organs. This review has two aims. First, to synthesise our knowledge of the functional biology and phylogenetic distribution of electroreception and electrogenesis in fishes, with a focus on freshwater taxa and with emphasis on the proximate (morphological, physiological and genetic) bases of EOD and electroreceptor diversity. Second, to describe the diversity, biogeography, ecology and electric signal diversity of the mormyroids and gymnotiforms and to explore the ultimate (evolutionary) bases of signal and receptor diversity in their convergent electrogenic–electrosensory systems. Four sets of potential drivers or moderators of signal diversity are discussed. First, selective forces of an abiotic (environmental) nature for optimal electrolocation and communication performance of the EOD. Second, selective forces of a biotic nature targeting the communication function of the EOD, including sexual selection, reproductive interference from syntopic heterospecifics and selection from eavesdropping predators. Third, non-adaptive drift and, finally, phylogenetic inertia, which may arise from stabilising selection for optimal signal-receptor matching.  相似文献   

9.
Weakly electric fish use active electrolocation for orientation at night. They emit electric signals (electric organ discharges) which generate an electrical field around their body. By sensing field distortions, fish can detect objects and analyze their properties. It is unclear, however, how accurately they can determine the distance of unknown objects. Four Gnathonemus petersii were trained in two-alternative forced-choice procedures to discriminate between two objects differing in their distances to a gate. The fish learned to pass through the gate behind which the corresponding object was farther away. Distance discrimination thresholds for different types of objects were determined. Locomotor and electromotor activity during distance measurement were monitored. Our results revealed that all individuals quickly learned to measure object distance irrespective of size, shape or electrical conductivity of the object material. However, the distances of hollow, water-filled cubes and spheres were consistently misjudged in comparison with solid or more angular objects, being perceived as farther away than they really were. As training continued, fish learned to compensate for these 'electrosensory illusions' and erroneous choices disappeared with time. Distance discrimination thresholds depended on object size and overall object distance. During distance measurement, the fish produced a fast regular rhythm of EOD discharges. A mechanisms for distance determination during active electrolocation is proposed.  相似文献   

10.
Weakly electric fishes are nocturnal and orientate in the absence of vision by using their electrical sense. This enables them not only to navigate but also to perceive and recognize objects in complete darkness. They create an electric field around their bodies by producing electric signals with specialized electric organs. Objects within this field alter the electric current at electroreceptor organs, which are distributed over almost the entire body surface. During active electrolocation, fishes detect, localize and analyse objects by monitoring their self-produced electric signals. We investigated the ability of the mormyrid Gnathonemus petersii to perceive objects three-dimensionally in space. Within a range of about 12 cm, G. petersii can perceive the distance of objects. Depth perception is independent of object size, shape and material. The mechanism for distance determination through electrolocation involves calculating the ratio between two parameters (maximal slope and maximal amplitude) of the electrical image which each object projects onto the fish's skin. During active electrolocation, electric fishes cannot only locate objects in space but in addition can determine the three-dimensional shape of an object. Up to certain limits, objects are spontaneously categorized according to their shapes, but not according to their sizes or the materials of which they are made.  相似文献   

11.
Mormryid electric fish (Gnathonemus petersii) respond to novel stimuli with an increase in the rate of the electric organ discharge (EOD). These novelty responses were used to measure the fish's ability to detect small changes in the amplitude and latency of an electrosensory stimulus. Responses were evoked in curarized fish in which the EOD was blocked but in which the EOD motor command continued to be emitted. An artificial EOD was provided to the fish at latencies of 2.4 to 14.4 ms following the EOD motor command.Novelty responses were evoked in response to transient changes in artificial EOD amplitude as small as 1% of baseline amplitude, and in latency as small as 0.1 ms. Changes in latency were effective only at baseline delays of less than 12.4 ms.The sensitivity to small changes in latency supports the hypothesis that latency is used as a code for stimulus intensity in the active electrolocation system of mormyrid fish. The results also indicate that a corollary discharge signal associated with the EOD motor command is used to measure latency.Abbreviations EOD electric organ discharge - ELL electrosensory lateral line lobe - epsp excitatory post synaptic potential  相似文献   

12.
Weakly electric fish generate an electric field around their body by electric organ discharge (EOD). By measuring the modulation of the electric field produced by an object in the field these fish are able to accurately locate an object. Theoretical and experimental studies have focused on the amplitude modulations of EODs produced by resistive objects. However, little is known about the phase modulations produced by objects with complex impedance. The fish must be able to detect changes in object impedance to discriminate between food and nonfood objects. To investigate the features of electric images produced by objects with complex impedance, we developed a model that can be used to map the electric field around the fish body. The present model allows us to calculate the spatial distribution of the amplitude and phase shift in an electric image. This is the first study to investigate the changes in amplitude and phase shift of electric images induced by objects with complex impedance in wave-type fish. Using the model, we show that the amplitude of the electric image exhibits a sigmoidal change as the capacitance and resistance of an object are increased. Similarly, the phase shift exhibits a significant change within the object capacitance range of 0.1–100 nF. We also show that the spatial distribution of the amplitude and phase shifts of the electric image resembles a “Mexican hat” in shape for varying object distances and sizes. The spatial distribution of the phase shift and the amplitude was dependent on the object distance and size. Changes in the skin capacitance were associated with a tradeoff relationship between the magnitude of the amplitude and phase shift of the electric image. The specific range of skin capacitance (1–100 nF) allows the receptor afferents to extract object features that are relevant to electrolocation. These results provide a useful basis for the study of the neural mechanisms by which weakly electric fish recognize object features such as distance, size, and impedance.  相似文献   

13.
14.
The great variety of species-typical electric signals (electric organ discharges, EOD) emitted by weakly electric mormyrid fish might be the result of evolutionary pressures stemming from the two main functions of the electro-sensory-motor system: electrocommunication and electrolocation. Employing a conditioned discrimination task we tested four species of mormyrids, emitting EODs differing in waveform, for their ability to detect capacitive properties of objects during electrolocation. Each fish could discriminate capacitive objects within a certain range of capacitive values, which was species specific. The upper and lower limits (upper and lower thresholds) of this detectable range were determined for each fish. In fish species emitting long duration EODs composed of mainly low spectral frequencies both the lower and the upper thresholds were shifted to larger capacitive values compared to fish species emitting shorter EODs. The upper limit of the detectable range was much more variable between species than the lower limit, which was relatively low in all fish. We interpret this as an adaptation of mormyrids to detect small capacitive objects, for example food items. All mormyrids could discriminate between a resistive object and a capacitive object even if the complex impedances of the two objects were identical. This implies that the fish are highly sensitive to small waveform distortions of their self produced EODs.  相似文献   

15.
The range of electrolocation in the weakly electric fish, Gnathonemus petersii, was determined for plastic and aluminium cubes. A characteristic change in the fish's EOD activity, and abrupt change to more uniform EOD intervals (regularization), was used as the criterion for object detection. The average response distances extending laterally from the fish's longitudinal axis were significantly different (p less than 0.05) for the aluminium cube (5.4 cm) and the plastic cube (7.0 cm).  相似文献   

16.
Underwater robot is a new research field which is emerging quickly in recent years.Previous researches in this field focuson Remotely Operated Vehicles(ROVs),Autonomous Underwater Vehicles(AUVs),underwater manipulators,etc.Fish robot,which is a new type of underwater biomimetic robot,has attracted great attention because of its silence in moving and energyefficiency compared to conventional propeller-oriented propulsive mechanism.However,most of researches on fish robots have been carried out via empirical or experimental approaches,not based ondynamic optimality.In this paper,we proposed an analytical optimization approach which can guarantee the maximum propulsivevelocity of fish robot in the given parametric conditions.First,a dynamic model of 3-joint(4 links)carangiform fishrobot is derived,using which the influences of parameters of input torque functions,such as amplitude,frequency and phasedifference,on its velocity are investigated by simulation.Second,the maximum velocity of the fish robot is optimized bycombining Genetic Algorithm(GA)and Hill Climbing Algorithm(HCA).GA is used to generate the initial optimal parametersof the input functions of the system.Then,the parameters are optimized again by HCA to ensure that the final set of parametersis the"near"global optimization.Finally,both simulations and primitive experiments are carried out to prove the feasibility ofthe proposed method.  相似文献   

17.
We investigated the electrolocation performance of the weakly electric fish, Gnathonemus petersii, in novel and familiar environments. By selectively interfering with the fish's sensory input, we determined the sensory channels necessary for navigation and orientation. The fish's task was to locate a circular aperture (diameter: 64 mm) in a wall dividing a 200–1 aquarium into two equal compartments. To assess the fish's performance, we measured (1) the time it took the fish to locate the aperture, (2) the height at which it contacted the divider, (3) its electric organ discharge rate, and (4) the frequency of divider crossings. In the first experiment (novel environment), 50 naive G. petersii assigned to five groups of 10 fish each (intact, blind, electrically “silent,” blind and “silent,” and shamoperated animals) were tested with the aperture presented randomly in one of three positions (aperture center: 7.6, 17.7, 27.8 cm from the bottom). In a novel environment, G. petersii depend on active electrolocation. Despite the changing aperture position, over the 15 trials, fish with a functioning electric organ found the aperture, whereas those without one did not. The electric organ discharge rate was inversely correlated with the amount of time spent searching for the aperture. In a second experiment (familiar environment) 20 intact fish learned the position of a fixed aperture. When we subsequently denervated the electric organ in 10 of these animals, their performance did not differ significantly from that of their conspecifics. Thus, once the fish were familiar with the aperture's position, they no longer depended on active electrolocation. We interpret and discuss this behavior as evidence for a “central expectation” and discuss its possible role in electronavigation.  相似文献   

18.
To investigate a role of burst firings of neurons in encoding of spatiotemporally-varying stimulus, we focus on electrosensory system of a weakly electric fish. Weakly electric fish generates electric field around its body using electric organ discharge and can accurately detect the location of an object using the modulation of electric field induced by the object. We developed a model of fish body by which we numerically describe the spatiotemporal patterns of electric field around the fish body. We also made neural models of electroreceptor distributed on the fish body and of electrosensory lateral-line lobe (ELL) to investigate what kinds of information of electric field distorted by an object they detect. Here we show that the spatiotemporal features of electric field around the fish body are encoded by the timing of burst firings of ELL neurons. The information of object distance is extracted by the area of synchronous firings of neurons in a higher nucleus, torus semicircularis.  相似文献   

19.
How might electric fish determine, from patterns of transdermal voltage changes, the size, shape, location, and impedance of a nearby object? I have investigated this question by measuring and simulating electric images of spheres and ellipsoids near an Apteronotus leptorhynchus. Previous studies have shown that this fish's electric field magnitude, and perturbations of the field due to objects, are complicated nonliner functions of distance from the fish. These functions become much simpler when distance is measured from the axes of symmetry of the fish and the object, instead of their respective edges. My analysis suggests the following characteristics of high frequency electric sense and electric images. 1. The shape of electric images on the fish's body is relatively independent of a spherical object's radius, conductivity, and rostrocaudal location. 2. An image's relative width increases linearly with lateral distance, and might therefore unambiguously encode object distance. 3. Only objects with very large dielectric constants cause appreciable phase shifts, and the degree of shift depends strongly on water conductivity. 4. Several parameters, such as the range of electric sense, may depend on the rostrocaudal location of an object. Large objects may be detectable further from the head than the tail, and conversely, small objects may be detectable further from the tail than head. 5. Asymmetrical objects produce different electric images, correlated with their cross-sections, for different orientations and phases of the electric field. 6. The steep attenuation with distance of the field magnitude causes spatial distortions in electric images, somewhat analogous to the perspective distortion inherent in wide angle optical lenses.  相似文献   

20.
Responses of ampullary and tuberous electroreceptor afferents were studied using moving electrolocation targets and electrical modulations of the animal's electric organ discharge as stimuli. The ability of the electroreceptors to encode these stimuli was measured with and without various forms of electrical jamming signals. The goal of this study was to measure the deterioration in electroreceptor responses due to the jamming signals, and to compare these results with the behavioral measures of electrolocation under the same conditions of jamming as described in the preceding report (Bastian 1987). 1. Three types of jamming stimuli were used to interfere with the tuberous electroreceptor afferents' ability to respond to the test stimuli mentioned above: Broad-band noise, high frequency stimuli consisting of a sinusoidal waveform having a frequency maintained at a chosen difference frequency (DF) from the EOD frequency of the fish being studied, and 5 or 50 Hz sinusoidal stimuli. 2. The tuberous receptor afferents' spontaneous frequency was sensitive to continuous presentation of all but the 5 Hz jamming signals. The 4 Hz DF signal caused the largest increase in spontaneous activity, the 50 Hz stimulus was intermediate in effectiveness, and the noise stimulus caused the smallest increase. Estimates of the variability of the ongoing receptor activity were also made, and both the 4 Hz DF and the 50 Hz stimuli reduced the coefficient of variation of the receptor activity, but noise had no significant effect on this parameter. Noise, 4 Hz DF, and 50 Hz jamming signals also reduced the tuberous receptors' responses to a 100 ms EOD amplitude modulation, and the 5 Hz stimulus was again ineffective. 3. Noise and 4 Hz DF jamming were also effective in reducing tuberous receptor afferents' responses to a moving metal electrolocation target. The 4 Hz DF stimulus was most effective in reducing the receptor's ability to encode information about the target. Receptor responses showed about a three-fold larger decrease per 10 dB increase in DF jamming amplitude as compared to similar sized increases in noise amplitude. Threshold target distances were also determined with and without noise and DF jamming, and again, the noise stimulus was less effective in reducing the distance at which electrolocation targets were just detectable. 4. Recordings from ampullary receptor afferents confirmed that the galvanic potentials produced by metal electrolocation targets stimulate these receptors while EOD distortions caused by such objects probably do not.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号