首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Cyclic AMP phosphodiesterase activity was measured in vivo after microinjection of [3H]cAMP into intact Xenopus oocytes. This activity was inhibited by extracellular application of methylxanthines, and the dose-dependent inhibition of phosphodiesterase activity correlated with the abilities of isobutylmethylxanthine and theophylline to inhibit oocyte maturation induced by progesterone, with IC50 values of approximately 0.3 and 1.5 mM, respectively. Insulin stimulated in vivo phosphodiesterase activity measured after microinjection of 200 microM [3H]cAMP in a time- and dose-dependent fashion without affecting phosphodiesterase activity measured after microinjection of 2 microM [3H]cAMP. Although progesterone alone had no effect on in vivo phosphodiesterase activity, low concentrations of progesterone (0.01 microM) accelerated the time course of insulin stimulation of both phosphodiesterase activity and oocyte maturation. The EC50 for stimulation of in vivo phosphodiesterase activity by insulin correlated with the IC50 for inhibition of oocyte membrane adenylate cyclase activity measured in vitro (2 and 4 nM, respectively). Twenty-fold higher concentrations of insulin were required to stimulate oocyte maturation. In contrast, insulin-like growth factor 1 stimulated in vivo phosphodiesterase, inhibited in vitro adenylate cyclase, and induced oocyte maturation at concentrations of 0.3-1.0 nM. These results demonstrate a dual regulation of oocyte phosphodiesterase and adenylate cyclase by insulin and insulin-like growth factor 1.  相似文献   

3.
The effect of insulin on the state of phosphorylation of hormone-sensitive lipase, cellular cAMP-dependent protein kinase activity and lipolysis was investigated in isolated adipocytes. Increased phosphorylation of hormone-sensitive lipase in response to isoproterenol stimulation was closely paralleled by increased lipolysis. Maximal phosphorylation and lipolysis was obtained when the cAMP-dependent protein kinase activity ratio was greater than or equal to 0.1, and this corresponded to a 50% increase in the state of phosphorylation of hormone-sensitive lipase. Insulin (1 nM) reduced cAMP-dependent protein kinase activity and also reduced lipolysis with both cAMP-dependent and cAMP-independent antilipolytic effects up to an activity ratio of approximately 0.4, above which the antilipolytic effect was lost. Insulin caused a decrease in the state of phosphorylation of hormone-sensitive lipase at all levels of cAMP-dependent protein kinase activity. Under basal conditions, with cAMP-dependent protein kinase activity at a minimum, this reflected a dephosphorylation of the basal phosphorylation site of hormone-sensitive lipase in a manner not mediated by cAMP. When the cAMP-dependent protein kinase was stimulated to phosphorylate the regulatory phosphorylation site of hormone-sensitive lipase, the insulin-induced dephosphorylation occurred both at the basal and regulatory sites. At low levels of cAMP-dependent protein kinase activity ratios (0.05-0.1), dephosphorylation of the regulatory site correlated with reduced cAMP-dependent protein kinase activity, but not at higher activity ratios (greater than 0.1). Stimulation of cells with isoproterenol produced a transient (1-5 min) peak of cAMP-dependent protein kinase activity and of phosphorylation of hormone-sensitive lipase. The state of phosphorylation also showed a transient peak when the protein kinase was maximally and constantly activated. In the presence of raised levels of cellular cAMP, insulin (1 nM) caused a rapid (t1/2 approximately 1 min) dephosphorylation of hormone-sensitive lipase. In unstimulated cells the reduction in phosphorylation caused by insulin was distinctly slower (t1/2 approximately 5 min). These findings are interpreted to suggest that insulin affects the state of phosphorylation of hormone-sensitive lipase and lipolysis through a cAMP-dependent pathway, involving reduction of cAMP, and through a cAMP-independent pathway, involving activation of a protein phosphatase activity that dephosphorylates both the regulatory and basal phosphorylation sites of hormone-sensitive lipase.  相似文献   

4.
Cyclic adenosine monophosphate (cAMP)-mediated signal transduction was evaluated in synaptosomes prepared from rat brain cortex. Adenylate cyclase was responsive to known adenylate cyclase stimulators including peptides (CRH and VIP), catecholamines (norepinephrine and isoproterenol) and ligands that directly stimulate adenylate cyclase (forskolin). Cyclic AMP accumulation also increased approximately 2 to 3-fold, but none of the agonists was able significantly to activate cyclic AMP-dependent protein kinase (A-kinase) in cortical synaptosomes. However, in parallel studies with slices prepared from rat brain cortex, adenylate cyclase activity, cAMP accumulation and A-kinase activity were all stimulated by CRH, VIP, norepinephrine, isoproterenol and forskolin. These data suggest that, in intact synaptosomes, either the cellular machinery which facilitates binding of cAMP to the regulatory subunit of A-kinase is missing or the cAMP produced by adenylate cyclase is not accessible to A-kinase.  相似文献   

5.
Izawa T  Nomura S  Kizaki T  Oh-ishi S  Ookawara T  Ohno H 《Life sciences》2000,66(25):PL359-PL364
Papaverine, despite being a potent phosphodiesterase inhibitor, actually blocks adipocyte lipolysis. The present study was designed to clarify the mechanism of the inhibitory effect of papaverine on lipolysis. Lipolysis, stimulated by either 10 microM isoproterenol or 5 mM dibutyryl cAMP, was significantly inhibited by papaverine (100 microM and above). Papaverine, however, did not affect the isoproterenol-induced increase in the protein kinase A (A-kinase) activity ratio. In cell-free extract from non-stimulated adipocytes, cAMP-stimulated A-kinase activities were almost completely blocked by H-89, a potent inhibitor of A-kinase, but not by papaverine. Thus, the inhibitory effect of papaverine on lipolysis could be responsible for a deficit in step(s) distal to A-kinase activity. Hormone-sensitive lipase activities in the infranatant fraction of centrifuged homogenates of cells, which were maximally stimulated with isoproterenol were significantly reduced. This result indicates that hormone-sensitive lipase redistributes from cytosol to its substrate in lipolytically stimulated cells. Papaverine completely blocked the isoproterenol-induced decrease in lipase activity in the infranatant fraction. These results suggest that papaverine blocks lipolysis through its inhibitory effect on the redistribution of hormone-sensitive lipase.  相似文献   

6.
With the use of -cAMP/+cAMP activity ratios of cAMP-dependent protein kinase (A-kinase) in fat cell extracts as an index of cellular cAMP concentrations, it is apparent from both the current literature and from data presented in this paper that classical cell isolation procedures yield cells whose behavior is unpredictable from day to day. Herein, procedures are described for isolating adipocytes, preparing cytosolic extracts, and assaying A-kinase that result in kinase activity ratios in isolated cells equal to those in the fat pad from which cells are derived, approximately 0.05. An important modification in the procedure is the inclusion of 200 nM exogenous Ado in all cell manipulation media, and the data indicate that variable removal of contaminating endogenous Ado accounts for unpredictable results with standard cell isolation techniques. A further benefit of Ado inclusion is greatly reduced cell lysis. Acute removal of Ado with adenosine deaminase results in rapid elevation of A-kinase activity ratios and lipolysis which, in fasted animals, equals that achieved with lipolytic hormones. Cells from fed animals exhibit poor predictability in behavior. Moreover, A-kinase activity ratios exhibit seasonal tendencies in response to Ado removal, with cells isolated in spring being more activated than cells isolated later in the year. The information and procedures in this paper form the basis for succeeding papers on the regulation of adipocyte metabolism by hormones.  相似文献   

7.
This paper examines the modulation of insulin-stimulated glucose transport activity in rat adipose cells by ligands for receptors (R) that mediate stimulation (Rs; lipolytic) or inhibition (Ri; antilipolytic) of adenylate cyclase. The changes in glucose transport activity and cAMP, as assessed by 3-O-methylglucose uptake and (-/+) cAMP-dependent protein kinase (A-kinase) activity ratios, respectively, were monitored under conditions that maintain steady-state A-kinase activity ratios (Honnor, R. C., Dhillon, G. S., and Londos, C. (1985) J. Biol. Chem. 260, 15122-15129). Removal of endogenous adenosine with adenosine deaminase decreased insulin-stimulated glucose transport activity by approximately 30%, which was prevented or restored with Ri agonists such as phenylisopropyladenosine, nicotinic acid, and prostaglandin E1. These changes in transport activity were not accompanied by changes in A-kinase activity ratios, indicating that Ri-mediated effects on transport are independent of cAMP changes. Addition of an Rs ligand, isoproterenol, in the presence of adenosine increased kinase activity but did not change glucose transport activity. Conversely, upon removal of adenosine, addition of Rs ligands such as isoproterenol, adrenocorticotropic hormone, or glucagon strongly inhibited transport (approximately 50%) and stimulated kinase activity. However, subsequent addition of phenylisopropyladenosine nearly restored transport activity without alteration of A-kinase activity. These data and additional kinetic experiments suggest that Rs-mediated glucose transport modulations are also independent of cAMP. The interchangeability of ligands for both Rs and Ri receptors in modulating transport activity suggests that these cAMP-independent effects are mediated by the stimulatory (Ns) and inhibitory (Ni) guanyl nucleotide-binding regulatory proteins of adenylate cyclase. All Rs-and Ri-induced changes in transport activity occurred without a change in glucose transporter distribution, as assessed by D-glucose-inhibitable cytochalasin B binding, suggesting that Rs and Ri ligands modulate the intrinsic activity of the glucose transporter present in the plasma membrane.  相似文献   

8.
Catecholamine-induced lipolysis is chiefly mediated through the recently characterized beta 3-adrenergic receptor (AR) in rat adipocytes. Discrepancies between the ability of beta 3-AR agonists to stimulate adenylyl cyclase and the resulting lipolysis were recently reported. cAMP-dependent protein kinase (A-kinase) activation induced by these agonists was compared to lipolysis. Agonist potencies were similar for A-kinase activity ratios and lipolysis. The same A-kinase activity ratio to lipolysis relationship was found for the beta 3-AR agonists tested.  相似文献   

9.
Agonist-induced lipolysis of adipose fat is robustly inhibited by insulin or by feedback inhibition by the long-chain fatty acids (LCFA) produced during lipolysis. However, the mode of action of LCFA in suppressing adipose lipolysis is not clear. β,β'-Tetramethyl hexadecanedioic acid (Mββ/ EDICA16) is a synthetic LCFA that is neither esterified into lipids nor β-oxidized, and therefore, it was exploited for suppressing agonist-induced lipolysis in analogy to natural LCFA. Mββ is shown here to suppress isoproterenol-induced lipolysis in the rat in vivo as well as in 3T3-L1 adipocytes. Inhibition of isoproterenol-induced lipolysis is due to decrease in isoproterenol-induced cAMP with concomitant inhibition of the phosphorylation of hormone-sensitive lipase and perilipin by protein kinase A. Suppression of cellular cAMP levels is accounted for by inhibition of the adenylate cyclase due to suppression of Raf1 expression by Mββ-activated AMPK. Suppression of Raf1 is further complemented by induction of components of the unfolded-protein-response by Mββ. Our findings imply genuine inhibition of agonist-induced adipose lipolysis by LCFA, independent of their β-oxidation or reesterification. Mββ suppression of agonist-induced lipolysis and cellular cAMP levels independent of the insulin transduction pathway may indicate that synthetic LCFA could serve as insulin mimetics in the lipolysis context under conditions of insulin resistance.  相似文献   

10.
In isolated, 32Pi-loaded, rat adipocytes, we have examined phosphorylation of the major cAMP-dependent protein kinase (A-kinase) substrate, a protein that appears to be associated with the lipid storage droplet and migrates in sodium dodecyl sulfate-polyacrylamide gel electrophoresis as a 65-67-kDa doublet. In control cells, a strong phosphorylation signal is detected as the (+/- cAMP) A-kinase activity ratio ranges from approximately 0.1 to approximately 0.3-0.4 with increasing isoproterenol concentrations. By contrast, insulin-treated cells exhibiting A-kinase activity ratios over the range of 0.1-0.25 contain less 32P in the 65-67-kDa protein than control cells exhibiting identical A-kinase activity ratios. At higher activity ratios (greater than 0.3), this reduction in phosphorylation of the 65-67-kDa protein by insulin disappears. It is concluded that insulin stimulates a phosphatase activity that acts on the 65-67-kDa protein. Insulin actions aside, these studies reveal two interesting phenomena. 1) Whereas elevated, steady-state A-kinase activities are established rapidly (1-2 min) upon isoproterenol stimulation, phosphorylation of the 65-67-kDa substrate proceeds through a burst, followed by a decline to a steady-state level by 10-12 min. An "adaptation" mechanism, providing for a constant response to a constant stimulus, may underlie this lack of parallelism between the time course of phosphorylation and A-kinase activity. 2) Removal of [32Pi] orthophosphate immediately before isoproterenol stimulation leads to a rapid (t approximately 10 min) loss in labeling of the 65-67-kDa protein, whereas the phosphorylation state of other phosphoproteins are not changed. These data suggest that elevation of A-kinase activity leads to a rapid exchange of external Pi with an ATP pool that is used by A-kinase.  相似文献   

11.
The effect of adenosine in insulin secretion and adenylate cyclase activity of rat islets of Langerhans was investigated. Adenosine inhibited insulin secretion stimulated by glucose, glucagon, prostaglandin E2, tolbutamine and theophylline. Adenosine decreased basal adenylate cyclase activity of the islets as well as that stimulated by glucagon prostaglandin E2 and GTP, although fluoride-stimulated activity was not affected. Neither insulin secretion nor adenylate cyclase activity of the islets was affected by adenine, AMP or ADP. The inhibitory effect of adenosine on adenylate cyclase activity was not altered by either phenoxybenzamine (alpha-adrenergic blocker) or propranolol (beta-adrenergic blocker), suggesting that the effect is not mediated through the adrenergic receptors of the islet cells. These results suggest that the intracellular concentration of adenosine in the beta-cell may play a role in regulating insulin secretion and that this effect may be mediated via alterations in the activity of adenylate cyclase in the beta-cell.  相似文献   

12.
Previous studies using rat adipocytes have shown that the ability of insulin to antagonize lipolysis induced by physiological concentrations of catecholamines is diminished at high concentrations of these hormones. Since such high concentrations of catecholamines cause an accumulation of free fatty acids, a decrease in cellular ATP level and a ‘short lived’ increase in cAMP (that is many fold higher than required to activate lipolysis maximally), we studied which of these modulates the antilipolytic activity of insulin. We found that inhibition of adenylate cyclase by virazole (2 mM), which lowers the initial cyclic AMP burst by about 70%, enables insulin to antagonize lipolysis at high isoproterenol concentrations. In contrast, reduction of cellular ATP level by 40% and 70%, using cyanide ion, or increasing free fatty acids in the medium to a level that suppresses the effects of insulin on glucose metabolism, failed to compromise the antilipolytic activity of the hormone. These data indicate that the inability of insulin to antagonize lipolysis induced by high isoproterenol concentrations is the direct consequence of the initial, larger burst of cyclic AMP.  相似文献   

13.
Clofibrate (Atromid-S), nicotinic acid, and insulin are known to be potent hypolipidemic and antilipolytic agents. The present study was undertaken to define the mechanism of action of this latter effect on isolated rat and human fat cells. Sodium clofibrate (0.42 mM), nicotinic acid (0.42 mM), and insulin (100 microU/mL) were shown to inhibit norepinephrine-stimulated lipolysis in rat and human adipose cells and this inhibition was associated with a reduction in intracellular 3',5'-cyclic AMP levels. A similar cyclic AMP lowering effect was demonstrated with insulin in the presence of procaine-HCL, which uncouples the adenylate cyclase system from lipolysis. This insulin effect was attributed to inhibition of adenylate cyclase. A direct and significant inhibition of adenylate cyclase in membrane fractions obtained from isolated human adipocytes was demonstrated for all three antilipolytic agents. The common membrane site of action of these agents whereby adenylate cyclase activity is depressed, thus decreasing cyclic AMP production and free fatty acid (FFA) mobilization from adipose stores, implies a central role for the adenylate cyclase system. These findings are consistent with the view that the hypotriglyceridemic effects of clofibrate, nicotinic acid, and insulin may be partly explained by deprivation of FFA substrate for hepatic very low density lipoprotein synthesis.  相似文献   

14.
Digitonin-permeabilized adipocytes were used to study the coupling of adenylate cyclase (AC) to lipolysis in exercise-trained rats. Isoproterenol-(IPR) stimulated lipolysis in permeabilized cells was significantly greater in trained than in control rats. Under essentially identical conditions, the dose-response curve for IPR stimulation of AC activity in the absence of 3-isobutyl-1-methylxanthine was similar in trained and control rats. However, the potency of stimulation by IPR as a percentage of the basal level was greater in trained rats. AC activity and lipolysis in the presence of 3-isobutyl-1-methylxanthine were also significantly greater in trained than in control rats. Least-squares analysis by plotting the log AC vs. lipolysis values showed that the regression coefficient was about three-fold greater in trained than in control rats. The concentration of endogenous adenosine 3',5'-cyclic monophosphate (cAMP) needed to produce a half-maximal lipolytic response was 18.58 and 10.81 pmol.min-1.10(6) cells-1 in control and trained rats, respectively. Thus a positive relationship existed between lipolysis and AC activity, with a tighter coupling in trained rats. Lipolysis in response to exogenous cAMP tended to be greater in trained than in control rats, and the difference was statistically significant for 50 microM and 10 mM cAMP. Our finding support the concept that the major mechanism of enhanced lipolysis in trained rats was an increase in the activity of enzymatic step(s) distal to cAMP.  相似文献   

15.
Genistein affects lipogenesis and lipolysis in isolated rat adipocytes   总被引:2,自引:0,他引:2  
Genistein is a phytoestrogen found in several plants eaten by humans and food-producing animals and exerting a wide spectrum of biological activity. In this experiment, the impact of genistein on lipogenesis and lipolysis was studied in isolated rat adipocytes. Incubation of the cells (106 cells/ml in plastic tubes at 37°C with Krebs-Ringer buffer, 90 min) with genistein (0.01, 0.3, 0.6 and 1 mM) clearly restricted (1 nM) [U-14C]glucose conversion to total lipids in the absence and presence of insulin. When [14C]acetate was used as the substrate for lipogenesis, genistein (0.01, 0.1 and 1 mM) exerted a similar effect. Thus, the anti-lipogenetic action of genistein may be an effect not only of alteration in glucose transport and metabolism, but this phytoestrogen can also restrict the fatty acids synthesis and/or their estrification. Incubation of adipocytes with estradiol at the same concentrations also resulted in restriction of lipogenesis, but the effect was less marked. Genistein (0.1 and 1 mM) augmented basal lipolysis in adipocytes. This process was strongly restricted by insulin (1 μM) and H-89 (an inhibitor of protein kinase A; 50 μM) and seems to be primarily due to the inhibitory action of the phytoestrogen on cAMP phosphodiesterase in adipocytes. Genistein at the smallest concentration (0.01 mM) augmented epinephrine-stimulated (1 μM) lipolysis but failed to potentiate lipolysis induced by forskolin (1 μM) or dibutyryl-cAMP (1 mM). These results suggest genistein action on the lipolytic pathways before activation of adenylate cyclase. The restriction of lipolysis stimulated by several lipolytic agents – epinephrine, forskolin and dibutyryl-cAMP were observed when adipocytes were incubated with genistein at highest concentrations (0.1 and 1 mM). These results prove the inhibitory action of this phyestrogen on the final steps of the lipolytic cascade, i.e. on protein kinase A or hormone sensitive lipase. Estradiol, added to the incubation medium, did not affect lipolysis. It can be concluded that genistein significantly affects lipogenesis and lipolysis in isolated rat adipocytes.  相似文献   

16.
Interleukin 2 (IL 2) stimulated DNA synthesis of murine T lymphocytes (CT6) in a concentration-dependent manner, over a range of 1-1000 units/ml. This proliferative effect of IL 2 was attenuated by simultaneous exposure to prostaglandin E2 (PGE)2. In intact cells, IL 2 inhibited both basal and PGE2-stimulated cAMP production; the amount of cAMP generated was dependent upon the relative concentrations of IL 2 and PGE2. The effect of IL 2 on CT6 cell proliferation and cAMP production was mimicked by the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA), which, like IL 2, causes a translocation and activation of protein kinase C. While PGE2 stimulated adenylate cyclase activity in membrane preparations, neither IL 2 nor TPA inhibited either basal or stimulated membrane adenylate cyclase activity. However, when CT6 cells were pretreated with IL 2 or TPA and membranes incubated with calcium and ATP, both basal and PGE2-and NaF-stimulated membrane adenylate cyclase activity was inhibited. This inhibition of adenylate cyclase activity was also observed if membranes from untreated cells were incubated with protein kinase C purified from CT6 lymphocytes in the presence of calcium and ATP. The data suggest that the decreased cAMP production which accompanies CT6 cell proliferation results from an inhibition of adenylate cyclase activity mediated by protein kinase C and that these two distinct protein phosphorylating systems interact to modulate the physiological response to IL 2.  相似文献   

17.
In the insulin-secreting beta cell line Rin m 5F, galanin, a newly discovered ubiquitous neuropeptide, inhibited, by 50%, the stimulation of insulin release induced by gastric inhibitory polypeptide (GIP) or forskolin, i.e. two cAMP-generating effectors. In contrast, it failed to decrease the stimulation of insulin release elicited by either the Ca2+-mobilizing agent, carbamoylcholine, or by dibutyryl-cAMP. Concomitantly, galanin inhibited the GIP- and forskolin-stimulated cAMP production. Furthermore, adenylate cyclase in membranes from Rin m 5F cells was highly sensitive to galanin, which exerted a marked inhibitory effect on the forskolin-stimulated enzyme activity. All these galanin effects were observed at low physiological doses, in the nanomolar range. Overnight treatment of the Rin m 5F cells with pertussis toxin completely abolished the inhibitory effect of galanin on insulin release, cAMP production and adenylate cyclase activity. Moreover, pertussis toxin specifically ADP-ribosylated a 39-kDa protein present in membranes from those cells. Taken together, these data show that the galanin inhibition of insulin release most likely occurs through the inhibition of adenylate cyclase, involving a petussis-toxin-sensitive inhibitory GTP-binding regulatory protein.  相似文献   

18.
Objective : To explore the role of endothelin‐1 (ET‐1) on lipid metabolism, we examined the effect of ET‐1 on lipolysis in rat adipocytes. Research Methods and Procedure : Adipocytes isolated from male Sprague‐Dawley rats, weighing 400 to 450 grams, were incubated in Krebs‐Ringer buffer with or without 10?7 M ET‐1 for various times or with various concentrations of ET‐1 for 4 hours; then glycerol release into the incubation medium was measured. In addition, selective ETAR and ETBR blockers were used to identify the ET receptor subtype involved. We also explored the involvement of cyclic adenosine monophosphate (cAMP) in ET‐1‐stimulated lipolysis using an adenylyl cyclase inhibitor and by measuring changes in intracellular cAMP levels in response to ET‐1 treatment. To further explore the underlying mechanism of ET‐1 action, we examined the involvement of the extracellular signal‐regulated kinase (ERK)‐mediated pathways. Results : Our results showed that ET‐1 caused lipolysis in rat adipocytes in a time‐ and dose‐dependent manner. BQ610, a selective ETAR blocker, blocked this effect. The adenylyl cyclase inhibitor, 2′, 5′‐dideoxyadenosine, had no effect on ET‐1‐stimulated lipolysis. ET‐1 did not induce an increase in intracellular cAMP levels. In addition, ET‐1‐induced lipolysis was blocked by inhibition of ERK activation using PD98059. Coincubation of cells with ET‐1 and insulin suppressed ET‐1‐stimulated lipolysis. Discussion : These findings show that ET‐1 stimulates lipolysis in rat adipocytes through the ETAR and activation of the ERK pathway. The underlying mechanism is cAMP‐independent. However, this non‐conventional lipolytic effect of ET‐1 is inhibited by the anti‐lipolytic effect of insulin.  相似文献   

19.
Protein kinase, phosphodiesterase and adenylate cyclase of plasma membrane of adipocytes and the effect of the feedback regulator (FR) on these three enzymes was measured and compared. The basal level ratio of adenylate cyclase to phosphodiesterase to protein kinase was 1:1.9:3.0. Epinephrine and/or FR alters this ratio. FR stimulated protein kinase activity up to 3 fold in the presence of a wide range of enzyme concentrations, 5-50 mug membrane protein/tube. The concentration of FR effective for stimulation of membrane protein kinase was much greater than that needed for inhibition of adenylate cyclase and phosphodiesterases. The inhibition by FR on adenylate cyclase was the most potent effect among the 3 enzymes. 1 U (or 2 U/ml) of FR inhibited 50% of the adenylate cyclase activity in a defined system. The maximum effective concentration of FR for stimulation of membrane protein kinase was greater than 10 U/ml. Histone type 11A was the best substrate for protein phosphorylation so far observed. The FR stimulatory effect was observed at all substrate concentrations used ranging from 1-5 mg/ml. A NaF concentration curve shows that 15 mM NaF gave maximum phosphorylation. The stimulatory effect of FR was observed both in the presence and absence of NaF. Protein kinase of adipocyte plasma membrane was mainly cAMP-independent. The effect of FR (20 U/ml) in stimulation of protein phosphorylation was much greater than that of cAMP (1 X 10(-6) M). The cAMP and FR effects seemed to be additive. Preincubation of plasma membrane with FR in the absence of ATP resulted in no decrease but slight increase in protein kinase activity. A shift in protein kinase, phosphodiesterase and adenylate cyclase ratios by FR suggests the regulatory role of FR in cAMP metabolism in adipocytes.  相似文献   

20.
Insulin antagonized the lipolytic actions of epinephrine in rat epididymal adipocytes when the phosphodiesterase inhibitor, Ro 20-1724, was present. Adipocytes were depleted of functional cAMP by inhibiting adenylate cyclase with N6-phenylisopropyladenosine in the presence of adenosine deaminase such that Ro 20-1724 no longer stimulated lipolysis. The cAMP analogs 8-thioisopropyl-cAMP or 8-thiomethyl-cAMP, which are resistant to phosphodiesterase hydrolysis, were subsequently added to bypass adenylate cyclase and phosphodiesterase action. Under these conditions, insulin antagonized the lipolytic effects of these analogs, even in the presence of Ro 20-1724.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号