首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The distribution of antioxidants between bundle sheath and mesophyll cells of maize leaves was analysed in plants grown at 20 degrees C, 18 degrees C and 15 degrees C. The purity of the isolated bundle sheath and mesophyll fractions was determined using compartment-specific marker enzymes. In plants grown at 15 degrees C, ascorbate peroxidase, CuZn-superoxide dismutase (CuZn-SOD) and monodehydroascorbate reductase activities were increased in the bundle sheath cells, and glutathione reductase, dehydroascorbate reductase and monodehydroascorbate reductase activities were enhanced in the mesophyll cells. SOD was absent from the mesophyll of plants grown at 20 degrees C but an Fe-SOD activity was found in the mesophyll of plants grown at 15 degrees C. Foliar Mn-SOD activities were decreased at 15 degrees C compared to 20 degrees C. Catalase was undetectable in the mesophyll extracts of plants grown at 15 degrees C. Ascorbate and glutathione contents were considerably higher in the mesophyll than the bundle sheath fractions of plants grown at 20 degrees C. The ratios of reduced to oxidized forms of these antioxidants were significantly decreased in the bundle sheath, but increased in the mesophyll of leaves grown at 15 degrees C. Foliar H2O2 accumulated at 15 degrees C compared to 20 degrees C. Most of the foliar H2O2 was localized in the mesophyll tissues at all growth temperatures. The differential distribution of antioxidants between leaf bundle sheath and mesophyll tissues, observed at 20 degrees C, is even more pronounced when plants are grown at 15 degrees C and may contribute to the extreme sensitivity of maize to low temperatures.  相似文献   

2.
Fatty acid synthetase (FAS) preparations from Saccharomyces cerevisiae cells grown at either 35 or 10 degrees C produced the same products at different temperatures and showed quite similar temperature-dependencies in Arrhenius plots, with break points at 25 degrees C. This break point does not appear to reflect a phase transition of phospholipids present in the purified FAS preparations but rather is associated with protein conformational changes. S. cerevisiae cells grown at 35 degrees C and then shifted to 10 degrees C produced fatty acids with a shorter average chain length than those fatty acids synthesized at 10 degrees C by cells already adapted to 10 degrees C (hyper response). Acetyl-CoA carboxylase activity was relatively higher in the cells grown at 35 degrees C than in the cells grown at 10 degrees C; moreover, fatty acids with longer average chain lengths were synthesized in vitro at higher malonyl-CoA concentrations, which was consistent with the difference in the average chain lengths of newly synthesized fatty acids in cells grown at 35 and 10 degrees C. However, the activity levels of acetyl-CoA carboxylase and fatty acid synthetase alone did not account for the hyper response phenomena.  相似文献   

3.
4.
AIMS: To provide data on the effects on culture temperature and physiological state of cells on heat resistance of Enterococcus faecium, which may be useful in establishing pasteurization procedures. METHODS AND RESULTS: The heat resistance of this Ent. faecium (ATCC 49624 strain) grown at different temperatures was monitored at various stages of growth. In all cases, the bacterial cells in the logarithmic phase of growth were more heat sensitive. For cells which had entered in the stationary phase, D70 values of 0.53 min at 5 degrees C, 0.74 min at 10 degrees C, 0.83 min at 20 degrees C, 0.79 min at 30 degrees C, 0.63 min at 37 degrees C, 0.48 min at 40 degrees C and 0.41 min at 45 degrees C were found. By extending the incubation times cells were more heat resistant as stationary phase progressed, although a different pattern was observed for cells grown at different temperatures. At the lower temperatures heat resistance increased progressively, reaching D70 values of 1.73 min for cells incubated at 5 degrees C for 50 days and 1.04 min for those grown at 10 degrees C for 16 days. At other temperatures assayed heat resistance became stable for late stationary phase cells, reaching D70 values of 1.05, 1.08 and 1.01 min for cultures incubated at 20, 30 and 37 degrees C. Heat resistance of cells obtained at higher temperatures, 40 and 45 degrees C, was significantly lower, with D70 values of 0.76 and 0.67 min, respectively. Neither the growth temperature nor the growth phase modified the z-values significantly. CONCLUSIONS: D70 values obtained for Ent. faecium (ATCC 49624) varies from 0.33 to 1.73 min as a function of culture temperature and physiological state of cells. However, z values calculated were not significantly influenced by these factors. A mean value of 4.50 +/- 0.39 degrees C was found. SIGNIFICANCE AND IMPACT OF THE STUDY: Overall results strongly suggest that, to establish heat processing conditions of pasteurized foods ensuring elimination of Ent. faecium, it is advisable to take into account the complex interaction of growth temperature and growth phase of cells acting on bacterial thermal resistance.  相似文献   

5.
Growth rate, sugar transport, and amino acid transport of yeast cells grown at 12 degrees C were inhibited by cool-white fluorescent light. At light intensities below 1,250 lx, growth and membrane transport were only slightly inhibited. Above 1,250 lx, there was increasing inhibition of both processes. Transport of histidine was completely inhibited after 3 to 5 days in cultures grown at 12 degrees C under 3,500-lx illumination. Cells grown at 20 degrees C were not inhibited by light intensities that caused complete loss of viability and membrane transport activity in cells grown at 12 degrees C.  相似文献   

6.
K Poole  V Braun 《Journal of bacteriology》1988,170(11):5146-5152
Log-phase cells of Serratia marcescens cultured at 30 degrees C were approximately 10-fold more hemolytic than those grown at 37 degrees C. By using a cloned gene fusion of the promoter-proximal part of the hemolysin gene (shlA) to the Escherichia coli alkaline phosphatase gene (phoA), hemolysin gene expression as a function of alkaline phosphatase activity was measured at 30 and 37 degrees C. No difference in alkaline phosphatase activity was observed as a function of growth temperature, although more hemolysin was detectable immunologically in whole-cell extracts of cells grown at 30 degrees C. The influence of temperature was, however, growth phase dependent, because the hemolytic activities of cells cultured to early log phase at 30 and 37 degrees C were comparable. Given the outer membrane location of the hemolysin, lipopolysaccharide (LPS) was examined as a candidate for mediating the temperature effect on hemolytic activity. Silver staining of LPS in polyacrylamide gels revealed a shift towards shorter O-antigen molecules at 37 degrees C relative to 30 degrees C. Moreover, there was less binding of O-antigen-specific bacteriophage to S. marcescens with increasing growth temperature, a finding consistent with temperature-mediated changes in LPS structure. Smooth strains of S. marcescens were 20- to 30-fold more hemolytic than rough derivatives, a result confirming that changes in LPS structure can influence hemolytic activity. The alkaline phosphatase activity of rough strains harboring the shlA-phoA fusion was threefold lower than that of smooth strains harboring the fusion plasmids, a result consistent with a decrease in hemolysin gene expression in rough strains. The absence of a similar effect of temperature on gene expression may be related to less-marked changes in LPS structure as a function of temperature compared with a smooth-to-rough mutational change.  相似文献   

7.
A psychrotrophic pseudomonad isolated from iced fish oxidized alanine at temperatures close to 0 degrees C and grew over the range 0 degrees C-35 degrees C. The rate of oxidation of alanine, measured manometrically, by cells grown at 2 degrees C was lower than that of cells grown at 22 degrees C. However, the consumption of oxygen after heat treatment at 35 degrees for 35 min was reduced considerably by 2 degrees C grown cells. Alanine oxidase activity was tested in an extract from cells grown at 2 degrees C and 22 degrees C with alanine as the sole carbon, nitrogen, and energy source. Cells grown at 2 degrees C produced an alanine oxidase with a temperature optimum of 35 degrees C and pH optimum of 8, which lost about 80% activity by heat treatment at 40 degrees C for 30 min. There was no change in activity after dialysis at pH 7, 8, or 9. Extracts from cells grown at 22 degrees C contained an alanine oxidase system with an optimum temperature of 45 degrees C, a pH optimum above 8, and only about 30% reduction of activity after heat treatment. This enzyme activity was concentrated in the 0.5 M elution fraction from a Sephadex column, and dialysis reduced the activity at pH 7 and 8. Mesophilic enzyme synthesis apparently started around a growth temperature of 10 degrees C. The crude alanine oxidase systems of Pseudomonas aeruginosa derived from cells grown at 13 degrees C and 37 degrees C had a common optimum temperature of 45 degrees C. These data suggest that one mechanism of psychrophilic growth by psychrotrophic bacteria may be the induction of enzymes with low optimum temperatures in response to low temperature conditions.  相似文献   

8.
In this work we demonstrated that promastigotes of Leishmania amazonensis exhibit an Mg-dependent ecto-ATPase activity, which is stimulated by heat shock. The Mg-dependent ATPase activity of cells grown at 22 and 28 degrees C was 41.0+/-5.2 nmol Pi/h x 10(7)cells and 184.2+/-21.0 nmol Pi/h x 10(7)cells, respectively. When both promastigotes were pre-incubated at 37 degrees C for 2h, the ATPase activity of cells grown at 22 degrees C was increased to 136.4+/-10.6 nmol Pi/h x 10(7) whereas that the ATPase activity of cells grown at 28 degrees C was not modified by the heat shock (189.8+/-10.3 nmol Pi/h x 10(7)cells). It was observed that Km of the enzyme from cells grown at 22 degrees C (Km=980.2+/-88.6 microM) was the same to the enzyme from cells grown at 28 degrees C (Km=901.4+/-91.9 microM). In addition, DIDS (4,4'-diisothiocyanatostilbene 2,2'-disulfonic acid) and suramin, two inhibitors of ecto-ATPases, also inhibited similarly the ATPase activities from promastigotes grown at 22 and 28 degrees C. We also observed that cells grown at 22 degrees C exhibit the same ecto-phosphatase and ecto 3'- and 5'-nucleotidase activities than cells grown at 28 degrees C. Interestingly, cycloheximide, an inhibitor of protein synthesis, suppressed the heat-shock effect on ecto-ATPase activity of cells grown at 22 degrees C were exposed at 37 degrees C for 2h. A comparison between the stimulation of the Mg-dependent ecto-ATPase activity of virulent and avirulent promastigotes by the heat shock showed that avirulent promastigotes had a higher stimulation than virulent promastigotes after heat stress.  相似文献   

9.
tsFT20 cells derived from mouse FM3A cells are DNA temperature-sensitive mutants, which have heat-labile DNA polymerase alpha activity. When tsFT20 cells were incubated at restrictive temperatures, intracellular levels of DNA polymerase alpha activity changed biphasically, showing an initial fast decrease (phase I) and a subsequent slow decrease (phase II). The activity of DNA polymerase alpha from tsFT20 cells cultured at a permissive temperature (33 degrees C) was greatly increased by the addition of glycerol or ethylene glycol to the reaction mixture, while little increase in enzyme activity was observed at any concentration of glycerol or ethylene glycol tested with the enzyme from the cells cultured at a restrictive temperature (39 degrees C) for 8 h (phase II). The activity of DNA polymerase alpha from wild-type cells was also increased by the addition of glycerol but the increase was much less than that in the tsFT20 cells. An in vitro preincubation experiment showed that DNA polymerase alpha from tsFT20 cells cultured at 33 degrees C very rapidly lost its ability to be stimulated by glycerol. Furthermore, the experiment using the extracts prepared from tsFT20 cells cultured at 39 degrees C for various periods showed that the ability to be stimulated by glycerol decreased with the duration of incubation time at 39 degrees C. DNA polymerase alpha from the revertants, which can grow at 39 degrees C and exhibit a partial recovery in heat stability of DNA polymerase alpha activity, showed an intermediate response to glycerol, between those of DNA polymerase alpha from tsFT20 and from the wild-type cells. Finally, it was observed that the level of enzyme activity that can be stimulated by glycerol correlated well with the DNA synthesizing ability of tsFT20 cells.  相似文献   

10.
The capsular polysaccharide of Escherichia coli K92 consists of a linear polymer of Neu5Ac with alternating alpha(2-8) and alpha(2-9) linkages. It accumulates when the bacterium is grown at 37 degrees C in a defined medium containing D-xylose and L-asparagine as carbon and nitrogen sources. Release of the capsular polymer into the medium was maximal (450 micrograms x ml-1) in the stationary phase of growth (76 h). This medium could be useful for obtaining sufficient polymer to develop effective vaccines. The enzyme, CMP-Neu5Ac synthetase, was not detected in cells grown at 20 degrees C. The lack of this enzyme explains the absence of polymer biosynthesis when the bacterium was grown at 20 degrees C.  相似文献   

11.
A cold-sensitive (CS) mutant of the psychrotroph, Bacillus psychrophilus, was obtained by N-methyl-N'-nitro-N-nitrosoguanidine mutagenization and penicillin counterselection. In the presence of citrate, the wild-type grew well at both 5 and 20 degrees C whereas the CS mutant grew well at 20 degrees C (the permissive temperature) but, at 5 degrees C (the restrictive temperature), grew at a reduced rate for two to three generations followed by a complete plateau in growth. Upon return of the CS mutant to 20 degrees C, after a delay of about 40 h, growth resumed at the appropriate rate. The CS mutant exhibited growth rates similar to parental rates on a wide variety of carbon sources at 5 degrees C, but when Krebs cycle intermediates were used as substrates and in the presence of an equimolar amount of citrate, the typical cold-sensitive growth pattern occurred. Comparison of oxidative phosphorylation in the parent and CS mutant indicated that no phosphorylation occurred at 5 degrees C in the CS mutant during the plateau in growth. Examination of the effect of temperature on ATPase activity showed that at 5 degrees C the specific activity of ATPase isolated from the CS mutant grows at 5 degrees C was 15-fold less than the ATPases isolated from wild-type cells grown at either 5 or 20 degrees C and 10.5-fold lower than ATPase from CS mutant cells grown at 20 degrees C. The large reduction in CS mutant ATPase activity at 5 degrees C appears to be at least partly due to an effect on synthesis since citrate did not inhibit preformed ATPase.  相似文献   

12.
The characteristics of the microsomal stearoyl CoA desaturase (EC 1.14.99.5) of vegetative Fusarium oxysporum cells grown at different temperatures were studied. The enzyme had an unusual preference for NADPH (Km = 38 micrometers) over NADH (Km = 89 micrometers) as electron donor, and a relatively high optimum pH of 8.3. Enzyme activity was highest in microsomes from cells grown at 37 degrees C and lowest in cells grown at 15 degrees C. This result correlated well with the observed changes in oleic acid content of the microsomal lipids. Both NADPH-linked reductase activities and hemoprotein content were lowest in cells grown at 37 degrees C. Spectrophotometric analysis of the microsomal hemoproteins indicated the absence of cytochrome b5 and the presence of a b-type heme with a pyridine hemochrome alpha band absorption maximum at 565 nm. Labile sulfide analysis and inhibitor studies with thenoyltrifluoroacetone suggested a role for an iron-sulfur protein in the electron transfer system associated with the desaturase.  相似文献   

13.
Washed cells of Listeria monocytogenes serotype 4b, grown in broth culture at 20 degrees C and at 37 degrees C, were examined by electron microscopy for the presence of flagella. Many flagella were seen in cells grown at 20 degrees C, whereas at 37 degrees C very few were expressed. Flagella sheared from the cell surface were partially purified by differential centrifugation. Using SDS-PAGE and Western blotting two distinct protein bands were seen in this preparation, both with an apparent molecular mass of approximately 29 kDa. Further purification of these proteins was achieved by gel filtration and ion-exchange chromatography. Whole organisms grown at 20 degrees C and 37 degrees C were examined in Western blots using an affinity-purified polyclonal antibody, and a monoclonal antibody, both directed against 29 kDa putative flagellin. Bacteria grown at 20 degrees C expressed abundant flagellin, whereas only trace amounts could be detected in organisms grown at 37 degrees C. It is concluded that organisms grown at 20 degrees C both produce and assemble flagellin at the cell surface, and that flagellin production is a less marked feature of organisms grown at 37 degrees C.  相似文献   

14.
Mitochondrial, microsomal and pellicular membranes were isolated from Tetrahymena cells grown at 39 degrees C or 15 degrees C, and phospholipids, in turn, were separated from total lipids extracted from these membranes. The effect of growth temperature on their solid-to-fluid phase transition temperature was examined by wide-angle X-ray diffraction. The transition temperatures of phospholipids from mitochondria, microsomes and pellicles were 21, 19 and 26 degrees C for cells grown at 39 degrees C and -8, -3 and 6 degrees C for cells grown at 15 degrees C, respectively. All phospholipids were found in a completely fluid state at these growth temperatures. From a comparison between the phospholipids and total lipids from pellicles of cells grown at 39 degrees C, a triterpenoid alcohol, tetrahymanol, caused the transition temperature to increase. The alignment of tetrahymanol in membranes was examined with pellicle'a total lipid oriented in a sample holder.  相似文献   

15.
16.
The survival of Salmonella typhimurium after a standard heat challenge at 55 degrees C for 25 min increased by several orders of magnitude when cells grown at 37 degrees C were pre-incubated at 42 degrees, 45 degrees or 48 degrees C before heating at the higher temperature. Heat resistance increased rapidly after the temperature shift, reaching near maximum levels within 30 min. Elevated heat resistance persisted for at least 10 h. Pre-incubation of cells at 48 degrees C for 30 min increased their resistance to subsequent heating at 50 degrees, 52 degrees, 55 degrees, 57 degrees or 59 degrees C. Survival curves of resistant cells were curvilinear. Estimated times for a '7D' inactivation increased by 2.6- to 20-fold compared with cells not pre-incubated before heat challenge.  相似文献   

17.
The effects of pressure on cultures of Lactobacillus plantarum were characterized by determination of the viability and activity of HorA, an ATP-binding cassette multidrug resistance transporter. Changes in the membrane composition of L. plantarum induced by different growth temperatures were determined. Furthermore, the effect of the growth temperature of a culture on pressure inactivation at 200 MPa was determined. Cells were characterized by plate counts on selective and nonselective agar after pressure treatment, and HorA activity was measured by ethidium bromide efflux. Fourier transform-infrared spectroscopy and Laurdan fluorescence spectroscopy provided information about the thermodynamic phase state of the cytoplasmic membrane during pressure treatment. A pressure-temperature diagram for cell membranes was established. Cells grown at 37 degrees C and pressure treated at 15 degrees C lost >99% of HorA activity and viable cell counts within 36 and 120 min, respectively. The membranes of these cells were in the gel phase region at ambient pressure. In contrast, cells grown at 15 degrees C and pressure treated at 37 degrees C lost >99% of HorA activity and viable cell counts within 4 and 8 min, respectively. The membranes of these cells were in the liquid crystalline phase region at ambient pressure. The kinetic analysis of inactivation of L. plantarum provided further evidence that inactivation of HorA is a crucial step during pressure-induced cell death. Comparison of the biological findings and the membrane state during pressure treatment led to the conclusion that the inactivation of cells and membrane enzymes strongly depends on the thermodynamic properties of the membrane. Pressure treatment of cells with a liquid crystalline membrane at 0.1 MPa resulted in HorA inactivation and cell death more rapid than those of cells with a gel phase membrane at 0.1 MPa.  相似文献   

18.
A shift of the growth temperature from 40 degrees C to 18 degrees C promoted an increase in the degree of fatty acids unsaturation and a decrease, from 26 degrees C to 0 degrees C, of the phase transition temperature of thylakoid membranes in Anabaena siamensis. The pattern of photoinhibition of photosynthesis at distinct temperatures varied as a function of the phase transition temperature. In the absence of streptomycin, a pronounced photoinhibition at temperatures near the phase transition (26 degrees C) was observed in cells grown at 40 degrees C, while protection from photodamage was observed at chilling temperatures (15 degrees C to 5 degrees C). In this same range of temperature, such a protection was not verified if cells were grown at 18 degrees C. In both types of cells, however, the rate of photoinactivation in the presence of streptomycin was progressively decreased by lowering the temperature of photoinhibition. When recovery from photoinhibition was followed at the respective temperature in which cells were grown, the restoration profile of the photosynthetic O(2) evolution to initial levels was essentially the same in both types of cells. The protective effect of low temperatures against photoinhibition was attributed to a decreased solubility and diffusion of oxygen in the thylakoid membranes due to an increase of the membrane viscosity that would avoid the photogeneration of reactive oxygen species around PS II.  相似文献   

19.
During the growth of Staphylococcus aureus MF-31, initial catalase activity dropped to a reduced level at the onset of exponential phase before increasing. When S. aureus was grown at 25, 32, or 37 degrees C, catalase activity was found to decrease by 80 to 90% within 1 h of inoculation. Two catalase-negative mutants and wild-type S. aureus MF-31 cells were exposed to exogenous 20 mM H2O2 for 15 min. For wild-type S. aureus, there was no effect from H2O2 until min 15, at which time a 10% decrease in CFU was observed. Both mutants showed increased sensitivity to the H2O2, with 56 and 71% reductions in the CFU for mutants C3 and C4, respectively, after a 15-min exposure. Cells of mutant and wild-type S. aureus were subjected to sublethal heating at 52 degrees C for 20 min. The lack of catalase activity in the mutants resulted in large decreases in enumeration.  相似文献   

20.
Synthesis of catalase in Staphylococcus aureus MF-31.   总被引:1,自引:1,他引:1       下载免费PDF全文
During the growth of Staphylococcus aureus MF-31, initial catalase activity dropped to a reduced level at the onset of exponential phase before increasing. When S. aureus was grown at 25, 32, or 37 degrees C, catalase activity was found to decrease by 80 to 90% within 1 h of inoculation. Two catalase-negative mutants and wild-type S. aureus MF-31 cells were exposed to exogenous 20 mM H2O2 for 15 min. For wild-type S. aureus, there was no effect from H2O2 until min 15, at which time a 10% decrease in CFU was observed. Both mutants showed increased sensitivity to the H2O2, with 56 and 71% reductions in the CFU for mutants C3 and C4, respectively, after a 15-min exposure. Cells of mutant and wild-type S. aureus were subjected to sublethal heating at 52 degrees C for 20 min. The lack of catalase activity in the mutants resulted in large decreases in enumeration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号