首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A histological study of the hepatopancreas of the blue crab Callinectes sapidus parasitized by the rhizocephalan barnacle Loxothylacus texanus was conducted to explore if the degree of development of the parasite’s rootlet system was correlated to its maturation process as seen by external characters of its reproductive body or externa. Four types of crabs were examined: control, with virgin and mature externa, and scarred. A clear progression with an increase in number and size of the parasite’s rootlets in the hosts’ hepatopancreas can be seen. Although the hepatopancreatic tubules remain functional, the hepatopancreas appears as a loose structure, completely infiltrated with L. texanus rootlets, in advanced stages of the parasitism.  相似文献   

2.
Summary Seven morphologically different types of neurosecretory granules have been found in the axon terminals of the sinus gland of the blue crab, Callinectes sapidus. They differ from each other in size, shape, staining characteristics, solubility characteristics, core matrix characteristics, axon terminal matrix characteristics, presence or absence of space between the granule membrane and granule core matrix, and frequency of occurrence. Five of the types are segregated in different axon terminals and are believed to represent different hormone-protein complexes. Two of the types, which have lost part or all of their granular contents, are thought to be variants of the other five types. The differences in granular morphology are better revealed by some fixation procedures than others. Palade's acetate-veronal buffered osmium tetroxide, in particular, reveals striking differences. The following observations suggest that different hormone-protein complexes are segregated in different axon terminals and that these complexes may be morphologically distinguished at the level of the electron microscope.Supported by USPHS-NIH Training Grant GM-00669 and Grant GB-7595X from the National Science Foundation.  相似文献   

3.
A cuticular glycosidase with characteristics of N-acetyl-β- -hexosaminidase (HexNAcase) was identified in post-ecdysial crab cuticle. Its appearance coincided with changes in cuticular glycoproteins and the onset of mineralization. To test if HexNAcase might be the causative agent in the alteration of the glycans and initiation of calcification, newly molted crab cuticle was treated with exogenous HexNAcase. Treating cuticular extracts from crabs at 0 h post-ecdysis with exogenous HexNAcase mimicked those changes observed in vivo. Specifically, the enzyme decreased the concanavalin A affinity of an 83-kDa glycoprotein that binds to calcite crystals in vitro. Treating pieces of 0 h post-ecdysial cuticle with HexNAcase rendered them capable of nucleating calcite in vitro (similar to 5 h post-ecdysial cuticle), while untreated, 0 h controls remained uncalcified. The data imply a role of the cuticular HexNAcase-like enzyme in the initiation of calcite nucleation in the newly formed exoskeleton.  相似文献   

4.
We have previously demonstrated a marked change in sugar moieties of glycoproteins of the cuticle of the blue crab, Callinectes sapidus, between 0.5 and 3 h post-ecdysis. The present study has identified a glycosidase that appears in the cuticle during the early post-ecdysial hours. The enzyme has affinities for p-nitrophenyl derivatives of both N-acetylglucosamine and N-acetylgalactosamine. Both activities are competitively inhibited by chitobiose, suggesting that the enzyme could be a N-acetylhexosaminidase (EC 3.2.1.52). Atypical of N-acetylhexosaminidases described to date, this enzyme has a pH optimum of 7.0. The enzyme activity is high during the post-ecdysial period coincident with the changes in glycoprotein profiles observed in vivo. Partial purification of the enzyme has been accomplished by Sephacryl size-exclusion chromatography followed by concanavalin A affinity chromatography.  相似文献   

5.
6.
A reovirus (tentatively designated as Callinectes sapidus reovirus, CsRV) was found in the blue crabs C. sapidus collected in Chesapeake Bay in 2005. Histological examination of hepatopancreas and gill from infected crabs revealed eosinophilic to basophilic, cytoplasmic, inclusions in hemocytes and in cells of connective tissue. A cDNA library was constructed from total RNA extracted from hemolymph of infected crabs. One clone (designated as CsRV-28) with a 532-bp insert was 75% identical in nucleotide sequence (and 95% similar in translated amino acid sequence) to the quanylytransferase gene of the Scylla serrata reovirus (SsRV). The insert of CsRV-28 was labeled with digoxigenin-11-dUTP and hybridized to sections of hepatopancreas and gill of infected C. sapidus, this probe reacted to hemocytes and cells in the connective tissue. No reaction was seen in any of the tissues prepared from uninfected crabs. Thus, this in situ hybridization procedure can be used to diagnose CsRV.  相似文献   

7.
The noncalcified inner branchiostegal cuticle, which lines the branchial chamber, was examined histologically and ultrastructurally over the molt cycle in the blue crab, Callinectes sapidus. In intermolt crabs (stage C4) the epithelium underlying the inner cuticle is cuboidal and has abundant intercellular spaces and a prominent basement membrane. Apolysis occurs at stage D0 and dissolution of the cuticle is accompanied by the formation of numerous lysosomes in the epithelium. During stage D1, cells increase in height, apical mitochondria become more abundant, and the cuticle continues to be resorbed. An epicuticle is formed in early D2, arising from a fusion of small subunits apparently attached to short apical microvilli. Cuticle deposition continues through D2 and is complete by stage D3. By the time cuticle deposition is complete, the epithelium has become extremely columnar and cells are filled with bundles of microtubules. In stage D4, an amorphous electron‐dense core appears in the microtubule‐filled cells, which are attached to the cuticle at their apical end and anchored to their basement membrane at the basal surface. These microtubule‐filled cells persist through ecdysis, stage E, but during stage A1 the cores disappear and some organelles begin to reappear in the cytoplasm. By stage A2, the cells return to the cuboidal morphology seen in intermolt and remain so throughout the remainder of the molt cycle. This new pattern of cuticle deposition resembles that observed in the gills of crustaceans in that the cuticle is uncalcified and there is no postecdysial cuticle formation. However, instead of apolysis being delayed until just before ecdysis, the inner cuticle is formed during the first half of premolt, allowing the epithelial cells time to differentiate into a morphology that provides tensile strength for the stress of ecdysis. These new observations demonstrate that cuticle formation can follow very diverse structural and temporal patterns. In order to integrate and coordinate these diverse patterns, it is suggested that a suite of feedback mechanisms must be present. J. Morphol. 240:267–281, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

8.
Blue crabs, Callinectes sapidus (Rathbun), are an ecologically and commercially important species along the East coast of North America. Over the past century and a half, blue crabs have been exposed to an expanding set of exotic species, a few of which are potential competitors. To test for interactions with invasive crabs, juvenile C. sapidus males were placed in competition experiments for a food item with two common non-indigenous crabs, the green crab Carcinus maenas (L.) and the Japanese shore crab, Hemigrapsus sanguineus (De Haan). Agonistic interactions were evaluated when they occurred. In addition, each species’ potential to resist predators was examined by testing carapace strength. Results showed that C. maenas was a superior competitor to both C. sapidus and H. sanguineus for obtaining food, while the latter two species were evenly matched against each other. Regarding agonism, C. sapidus, was the “loser” a disproportionate number of times. C. sapidus carapaces also had a significantly lower breaking strength. These experiments suggest that both as a competitor, and as potential prey, juvenile blue crabs have some disadvantages compared with these common sympatric exotic crab species, and in areas where these exotics are common, juvenile native blue crabs may be forced to expend more energy in conflict that could be spent foraging, and may be forced away from prime food items toward less optimum prey.  相似文献   

9.
Cardiovascular and respiratory variables were recorded in the blue crab, Callinectes sapidus, during injury and subsequent autotomy of a chela. Cardiac function and haemolymph flow rates were measured using a pulsed-Doppler flowmeter. Oxygen uptake was recorded using an intermittent flow respirometry system. Crabs reacted to the loss of a chela with a rapid increase in heart rate, which was sustained for 2 h. Stroke volume of the heart also increased after the chela was autotomized. A combined increase in heart rate and stroke volume led to an increase in cardiac output, which was maintained for an hour after the loss of a chela. There was also differential haemolymph perfusion of various structures. There was no change in perfusion of the anterolateral arteries or posterior and anterior aortae, during injury of the chela or subsequent autotomy. Haemolymph flow rates did increase significantly through the sternal artery during injury and immediately following autotomy of the chela. This was at the expense of blood flow to the digestive gland: a sustained decrease in haemolymph flow through the hepatic arteries occurred for 3 h following autotomy. Fine-scale cardiac changes associated with the act of autotomy included a bradycardia and/or associated cardiac pausing before the chela was shed, followed by a subsequent increase in cardiac parameters. Changes in the cardiovascular physiology were paralleled by an increase in oxygen uptake, which was driven by an increased ventilation of the branchial chambers. Although limb loss is a major event, it appears that only acute changes in physiology occur. These may benefit the individual, allowing rapid escape following autotomy with a subsequent return to normal activity.  相似文献   

10.
Prophenoloxidase activation is a component of the immune system in insects and crustaceans. We recently purified and cloned a new prophenoloxidase-activating proteinase (PAP-2) from hemolymph of the tobacco hornworm Manduca sexta [J. Biol. Chem. 278, 3552-3561]. As the terminal component of a putative serine proteinase cascade, this enzyme activates prophenoloxidase (proPO) via limited proteolysis. To purify and study the activating proteinase for PAP-2 from this insect, we expressed the zymogen of PAP-2 (proPAP-2) in insect cells infected by a recombinant baculovirus that harbors the cDNA. To facilitate the purification of proPAP-2, we modified a commercial vector (pFastBac1) by inserting a synthetic DNA fragment encoding a hexahistidine sequence, allowing fusion of the affinity tag to the carboxyl terminus of a protein. After Spodoptera frugiperda Sf21 cells were infected by the virus, recombinant proPAP-2 was efficiently secreted into the media at a concentration of 5.9 microg/ml under the optimal conditions. After ammonium sulfate precipitation, the proenzyme was purified to near homogeneity by affinity chromatography on Ni(2+)-NTA agarose. Western blot analysis indicated that the recombinant proPAP-2 has a mobility slightly lower than that of the zymogen from M. sexta hemolymph. The molecular mass and isoelectric point of proPAP-2 were determined to be 47,573+/-11Da and 6.6, respectively. After the purified proenzyme was added to hemolymph from induced M. sexta larvae, it was rapidly activated by an unknown proteinase in the presence of peptidoglycan.  相似文献   

11.
Zhu L  Song L  Mao Y  Zhao J  Li C  Xu W 《Molecular biology reports》2008,35(2):257-264
The serine proteases with clip domain are involved in various innate immune functions in invertebrate such as antimicrobial activity, cell adhesion, pattern recognition and regulation of the prophenoloxidase system. A serine protease with clip-domain cDNA (Cf SP) was obtained by Expressed sequence taggings (ESTs) method and rapid amplification of cDNA ends (RACE). The Cf SP full-length cDNA was of 1,152 bp, including a 5'-terminal untranslated region (UTR) of 63 bp, a 3'-terminal UTR of 81 bp with a canonical polyadenylation signal sequence AATAAA and a poly(A) tail, and an open reading frame of 1,008 bp encoding a polypeptide of 336 amino acids with a putative signal peptide of 19 amino acids. The deduced amino acid sequence of Cf SP contained an amino-terminal clip domain with three disulfide bonds formed six conserved Cys residues, a carboxyl-terminal trypsin-like domain with the conserved His-Asp-Ser catalytic triad, and a low complexity linker sequence. The Cf SP was strongly expressed in hemocytes and the mRNA expression of Cf SP was up-regulated and increased 3.2-fold and 2.6-fold at 16 h after injection of Vibrio anguillarum and Micrococcus luteus. The results suggested that Cf SP gene might be involved in immune response of Gram-negative and Gram-positive microbial infection in scallop.  相似文献   

12.
Two serine protease inhibitors (named BMSI 1 and BMSI 2, respectively) were identified from the skin secretions of the toad, Bombina microdeladigitora. The cDNAs encoding BMSIs were cloned from a cDNA library prepared from the toad skin. The deduced complete amino acid sequences of BMSIs indicate that mature BMSI 1 and BMSI 2 are composed of 60 amino acids including 10 half-cystines to form 5 disulfide bridges. A FASTA search in the databanks revealed that BMSIs exhibit sequence similarity with other serine protease inhibitors from amphibians of the genus Bombina. BMSI 1 potently inhibited trypsin and thrombin with a K(i) value of 0.02 μM and 0.15 μM, respectively. Sequence analysis revealed that all serine protease inhibitors from five amphibians of the genus Bombina share highly conserved primary structures.  相似文献   

13.
Quite different ultrastructural changes were observed in the columnar cell and the goblet cell of the silkworm midgut after administration of the crystalline toxin of Bacillus thuringiensis. Shortly after the ingestion of the toxin, the deep infoldings of the basal cell membrane of some columnar cells became very irregular in shape and the mitochondria near the basal region were transformed into a condensed form. A few goblet cells showed relatively high electron density in the cytoplasm. The earliest pathological changes were slight and located in a region lying between the first and second thirds of the midgut. With the passage of time, they spread anteriorly and posteriorly to include the entire anterior two thirds of the midgut and became more profound. The cytoplasm of columnar cells became very electron transparent. Most mitochondria were transformed into a condensed form and the endoplasmic reticulum assumed a vacuole-like configuration. The basal infoldings of the cell membrane almost disappeared. On the other hand, the cytoplasm of the goblet cells became very electron dense and granular. The clear basal infoldings of the cell membrane were enlarged making a striking contrast with the dense cytoplasm. However, the mitochondria and the endoplasmic reticulum did not show any pathological deformation.  相似文献   

14.
Seagrasses form temporally dynamic, fragmented subtidal landscapes in which both large- and small-scale habitat structure may influence faunal survival and abundance. We compared the relative influences of seagrass (Zostera marina L.) habitat fragmentation (patch size and isolation) and structural complexity (shoot density) on juvenile blue crab (Callinectes sapidus Rathbun) survival and density in a Chesapeake Bay seagrass meadow. We tethered crabs to measure relative survival, suction sampled for crabs to measure density, and took seagrass cores to measure shoot density in patches spanning six orders of magnitude (ca. 0.25-30,000 m2) both before (June) and after (September) seasonally predictable decreases in seagrass structural complexity and increases in seagrass fragmentation. We also determined if juvenile blue crab density and seagrass shoot density varied between the edge and the interior of patches. In June, juvenile blue crab survival was not linearly related to seagrass patch size or to shoot density, but was significantly lower in patches separated by large expanses of unvegetated sediment (isolated patches) than in patches separated by <1 m of unvegetated sediment (connected patches). In September, crab survival was inversely correlated with seagrass shoot density. This inverse correlation was likely due to density-dependent predation by juvenile conspecifics (i.e. cannibalism); juvenile blue crab density increased with seagrass shoot density, was inversely correlated with crab survival, and was greater in September than in June. Shoot density effects on predator behavior and on conspecific density also likely caused crab survival to be lower in isolated patches than in connected patches in June. Isolated patches were either large (patch area >3000 m2) or very small (<1 m2). Large isolated patches had the lowest shoot densities, which may have allowed predators to easily find tethered crabs. Very small isolated patches had the highest shoot densities and consequently a high abundance of predators (=juvenile conspecifics). Though shoot density did not differ between the edge and the interior of patches, crabs were more abundant in the interior of patches than at the edge. These results indicate that seagrass fragmentation does not have an overriding influence on juvenile blue crab survival and density, and that crab cannibalism and seasonal changes in landscape structure may influence relationships between crab survival and seagrass habitat structure. Habitat fragmentation, structural complexity, faunal density, and time all must be incorporated into future studies on faunal survival in seagrass landscapes.  相似文献   

15.
A thermostable extracellular serine protease from Aspergillus fumigatus was purified 8.8-fold using a 4-step protocol. The enzyme was produced using a 36 h solid-state culture, had a molecular weight of 88 kDa and exhibited maximal enzyme activity at pH 7 and 60 °C. Structural analysis revealed that the protease is monomeric and non-glycosylated. Thermal inactivation of the pure enzyme followed first-order kinetics. The half-life (t1/2) of the pure enzyme at 50, 60 and 70 °C was 65, 34 and 14 min, respectively. The denaturation and activation energies were 69 and 62 kJ mol−1, respectively. Thermodynamic parameters (entropy and enthalpy) suggested that the protease was highly thermostable. This is the first report on the thermodynamic parameters of proteases produced by A. fumigatus.  相似文献   

16.
A previously undiscovered intracellular serine protease activity, which we have called intracellular serine protease-4, was identified in extracts of stationary Bacillus subtilis cells, purified 260 fold from the cytoplasmic fraction, and characterized. The new protease was stable and active in the absence of Ca2+ ions and hydrolyzed azocasein and the chromogenic substrate carbobenzoxy-carbonyl-alanyl-alanyl-leucyl-p-nitroanilide, but not azocollagen or a variety of other chromogenic substrates. The protease was strongly inhibited by phenylmethylsulfonylfluoride, chymostatin and antipain, but not by chelators, sulfhydryl-reactive agents or trypsin inhibitors. Its activity was stimulated by Ca2+ ions and gramicidin S; its pH and temperature optima were 9.0 and 37°C, respectively. Although intracellular serine protease-4 was immunochemically distinct from intracellular serine protease-1, it was absent from a mutant in which the gene encoding the latter was disrupted.  相似文献   

17.
Euryhaline crustaceans rarely hyporegulates and employ the driving force of the Na,K-ATPase, located at the basal surface of the gill epithelium, to maintain their hemolymph osmolality within a range compatible with cell function during hyper-regulation. Since polyamine levels increase during the adaptation of crustaceans to hyperosmotic media, we investigate the effect of exogenous polyamines on Na,K-ATPase activity in the posterior gills of Callinectes danae, a euryhaline swimming crab. Polyamine inhibition was dependent on cation concentration, charge and size in the following order: spermine > spermidine > putrescine. Spermidine affected K0.5 values for Na+ with minor alterations in K0.5 values for K+ and NH4+, causing a decrease in maximal velocities under saturating Na+, K+ and NH4+ concentrations. Phosphorylation measurements in the presence of 20 µM ATP revealed that the Na,K-ATPase possesses a high affinity site for this substrate. In the presence of 10 mM Na+, both spermidine and spermine inhibited formation of the phosphoenzyme; however, in the presence of 100 mM Na+, the addition of these polyamines allowed accumulation of the phosphoenzyme. The polyamines inhibited pumping activity, both by competing with Na+ at the Na+-binding site, and by inhibiting enzyme dephosphorylation. These findings suggest that polyamine-induced inhibition of Na,K-ATPase activity may be physiologically relevant during migration to fully marine environments.  相似文献   

18.
In this study the pattern of arthrodial membrane deposition in Callinectes sapidus was determined by histological and ultrastructural examination of tissues from the carpus joint of the cheliped collected during premolt, ecdysis, postmolt, and intermolt. Apolysis in the arthrodial membrane occurs at stage D(0) and is synchronous with apolysis of the calcified cuticle. Epicuticle formation begins at early stage D(1) and is completed in late stage D(1). Procuticle deposition starts at D(2) and continues until ecdysis. Numerous cytoplasmic extensions occur throughout the lamellae. Component fibers of the arthrodial membrane are intimately associated with dense plaques on the apical membrane of the underlying hypodermal cells, suggesting a site for fiber polymerization. Deposition of the arthrodial membrane continues after ecdysis, with most of the cuticle thickening occurring during stage C. When stained with PAS and counterstained with hematoxylin, a difference can be discerned between preecdysial and postecdysial procuticle of the arthrodial membrane, a distinction not made in previous studies. The boundary between the arthrodial membrane and calcified cuticle is thicker than either of the two layers and the layers overlap rather than butting up against one another. This pattern suggests that underlying hypodermal cells have to produce multiple types of cuticle over the molt cycle. A summary of the various molting patterns in C. sapidus suggests that the control of these diverse events may prove to be complex.  相似文献   

19.
A common motif found in invertebrate serine proteases involved in immunity and development is the clip domain, proposed to regulate catalytic activity or protein-protein interactions within proteolytic cascades. Snake functions in a cascade that patterns the Drosophila embryo, and provides an accessible model for exploring the structural requirements for clip domain function. We tested Snake zymogens bearing charged-to-alanine mutations in the clip domain for their ability to rescue embryos lacking endogenous Snake and for their interactions by S2 cell co-transfection with upstream Gastrulation Defective and downstream Easter in the protease cascade. Of 13 single and multiple substitutions, one double mutant in a predicted protruding region exhibited a severe defect in embryonic rescue but showed only minimal defects in the co-transfection assay. We discuss implications of these and other results for potential biological roles of the Snake clip domain and for use of the in vitro assay in predicting protease behavior.  相似文献   

20.
Asif-Ullah M  Kim KS  Yu YG 《Phytochemistry》2006,67(9):870-875
Kachri fruit, Cucumis trigonus Roxburghi, contains high protease activity and has been used as meat tenderizer in the Indian subcontinent. A 67 kDa serine protease from Kachri fruit was purified by DEAE-Sepharose and CM-Sepharose chromatography, whose optimum activity was at pH 11 and 70 degrees C. Its activity was strongly inhibited by PMSF, but not by EDTA, pepstatin, or cysteine protease inhibitors. The substrate specificity of the purified protease towards synthetic peptides was comparable to cucumisin, the first characterized subtilisin class plant protease from the sarcocarp of melon fruit (Cucumis melo). These characteristics, along with the N-terminal amino acid sequence, indicated that the isolated protease from Cucumis trigonus Roxburghi is a cucumisin homologue, which belongs to the serine protease family.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号