首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Adrenodoxin (Adx) is a [2Fe-2S] ferredoxin involved in electron transfer reactions in the steroid hormone biosynthesis of mammals. In this study, we deleted the sequence coding for the complete interaction domain in the Adx cDNA. The expressed recombinant protein consists of the amino acids 1-60, followed by the residues 89-128, and represents only the core domain of Adx (Adx-cd) but still incorporates the [2Fe-2S] cluster. Adx-cd accepts electrons from its natural redox partner, adrenodoxin reductase (AdR), and forms an individual complex with this NADPH-dependent flavoprotein. In contrast, formation of a complex with the natural electron acceptor, CYP11A1, as well as electron transfer to this steroid hydroxylase is prevented. By an electrostatic and van der Waals energy minimization procedure, complexes between AdR and Adx-cd have been proposed which have binding areas different from the native complex. Electron transport remains possible, despite longer electron transfer pathways.  相似文献   

2.
Under iron-deficient conditions Flavodoxin (Fld) replaces Ferredoxin in Anabaena as electron carrier from Photosystem I (PSI) to Ferredoxin-NADP+ reductase (FNR). Several residues modulate the Fld interaction with FNR and PSI, but no one appears as specifically critical for efficient electron transfer (ET). Fld shows a strong dipole moment, with its negative end directed towards the flavin ring. The role of this dipole moment in the processes of interaction and ET with positively charged surfaces exhibited by PSI and FNR has been analysed by introducing single and multiple charge reversal mutations on the Fld surface. Our data confirm that in this system interactions do not rely on a precise complementary surface of the reacting molecules. In fact, they indicate that the initial orientation driven by the alignment of dipole moment of the Fld molecule with that of the partner contributes to the formation of a bunch of alternative binding modes competent for the efficient ET reaction. Additionally, the fact that Fld uses different interaction surfaces to dock to PSI and to FNR is confirmed.  相似文献   

3.
Dipole moments of proteins arise from helical dipoles, hydrogen bond networks and charged groups at the protein surface. High protein dipole moments were suggested to contribute to the electrostatic steering between redox partners in electron transport chains of respiration, photosynthesis and steroid biosynthesis, although so far experimental evidence for this hypothesis was missing. In order to probe this assumption, we changed the dipole moment of the electron transfer protein adrenodoxin and investigated the influence of this on protein-protein interactions and electron transfer. In bovine adrenodoxin, the [2Fe-2S] ferredoxin of the adrenal glands, a dipole moment of 803 Debye was calculated for a full-length adrenodoxin model based on the Adx(4-108) and the wild type adrenodoxin crystal structures. Large distances and asymmetric distribution of the charged residues in the molecule mainly determine the observed high value. In order to analyse the influence of the resulting inhomogeneous electric field on the biological function of this electron carrier the molecular dipole moment was systematically changed. Five recombinant adrenodoxin mutants with successively reduced dipole moment (from 600 to 200 Debye) were analysed for their redox properties, their binding affinities to the redox partner proteins and for their function during electron transfer-dependent steroid hydroxylation. None of the mutants, not even the quadruple mutant K6E/K22Q/K24Q/K98E with a dipole moment reduced by about 70% showed significant changes in the protein function as compared with the unmodified adrenodoxin demonstrating that neither the formation of the transient complex nor the biological activity of the electron transfer chain of the endocrine glands was affected. This is the first experimental evidence that the high dipole moment observed in electron transfer proteins is not involved in electrostatic steering among the proteins in the redox chain.  相似文献   

4.
Cysteine synthase from Escherichia coli is a bienzyme complex comprised of serine acetyltransferase (SAT) and O-acetylserine sulfhydrylase A. The site of interaction of a SAT molecule was investigated by gel chromatography and surface plasmon technique using various mutant-type SATs, to better understand the mechanism involved in complex formation. The C-terminus of SAT, Ile 273, along with Glu 268 and Asp 271, was found to be essential for complex formation. The effects of O-acetyl-L-serine and sulfide on the affinity for the complex formation were also studied using a surface plasmon technique.  相似文献   

5.
CYP175A1 is a thermophilic cytochrome P450 and hydroxylates β-carotene. We previously identified a native electron transport system for CYP175A1. In this report, we constructed two fusion proteins consisting of CYP175A1, ferredoxin (Fdx), and ferredoxin-NADP+ reductase (FNR): H2N-CYP175A1-Fdx-FNR-COOH (175FR) and H2N-CYP175A1-FNR-Fdx-COOH (175RF). Both 175FR and 175RF were expressed in Escherichia coli and purified. The Vmax value for β-carotene hydroxylation was 25 times higher with 175RF than 175FR and 9 times higher with 175RF than CYP175A1 (non-fused protein), although the km values of these enzymes were similar. 175RF retained 50% residual activity even at 80 °C. Furthermore, several mutants of the CYP175A1 domain of 175RF were prepared and one mutant (Q67G/Y68I) catalyzed the hydroxylation of an unnatural substrate, testosterone. Thus, this is the first report of a thermostable self-sufficient cytochrome P450 and the engineering of a thermophilic cytochrome P450 for the oxidation of an unnatural substrate.  相似文献   

6.
H(+)-ATPsynthases couple a transmembrane proton transport with ATP synthesis and ATP hydrolysis. Previously, the relative subunit movement during this process has been measured by fluorescence resonance energy transfer (FRET) between two organic fluorophores covalently bound to different subunits. To improve the photophysical stability, a luminescent CdSe/ZnS nanocrystal (quantum dot) was bound to the enzyme and an organic fluorophore, Alexa568, was used as fluorescence acceptor. Single-molecule spectroscopy with the membrane integrated labeled H(+)-ATPsynthase was carried out. Single-pair FRET indicates three different conformations of the enzyme. During ATP hydrolysis relative intramolecular subunit movements are observed in real time.  相似文献   

7.
The functional connection between redox component Y z identified as Tyr-161 of polypeptide D-1 (Debus et al. 1988) and P680+ was analyzed by measurements of laser flash induced absorption changes at 830 nm in PS II membrane fragments from spinach. It was found that neither DCMU nor the ADRY agent 2-(3-chloro-4-trifluoromethyl) anilino-3,5-dinitrothiophene (ANT 2p) affects the rate of P680+ reduction by Y z under conditions where the catalytic site of water oxidation stays in the redox state S1. In contrast to that, a drastic retardation is observed after mild trypsin treatment at pH=6.0. This effect which is stimualted by flash illumination can be largely reversed by Ca2+. The above mentioned data lead to the following conclusions: (a) the segment of polypeptide D-1 containing Tyr-161 and coordination sites of P680 is not allosterically affected by structural changes due to DCMU binding at the QB-site which is also located in D-1. (b) ANT 2p as a strong protonophoric uncoupler and ADRY agent does not modify the reaction coordinate of P680+ reduction by Y z , and (c) Ca2+ could play a functional role for the electronic and vibrational coupling between the redox groups Y z and P680. The electron transport from Y z to P680+ is discussed within the framework of a nonadiabatic process. Based on thermodynamic considerations the reorganization energy is estimated to be in the order of 0.5 V.Abbreviations ADRY acceleration of the deactivation reactions of the water splitting enzyme system Y - ANT 2p 2-(3-chloro-4-trifluoromethyl)anilino-3,5 dinitrothiophene - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - MES 2[N-Morpholino]ethanesulfonic acid - PS II photosystem II - QA, QB primary and secondary plastoquinone acceptor of photosystem II - S i redox states of the catalytic site of water oxidation - Y z redox active Tyr-161 of polypeptide D-1  相似文献   

8.
A macrocyclic ligand possessing a donor set of {N3S2} synthesised via Cs+-templation, 4-(pyridin-2-ylmethyl)-1,7-dithia-4,10-diazacyclododecane (L) and its Cu(II) complex, [CuL(NCMe)]2+ (6), are described. This Cu(II) complex interacts with a range of anions, F, Cl, Br, I, HCOO, AcO, CO32−, NO3, C2O42−, H2PO4, SCN, CN, BF4. Of the investigated anions, I, SCN, and CN, show strong interaction with the Cu(II) centre as indicated by their spectral variations. The iodide particularly demonstrates distinct change in colour. This change originates from a newly appeared band at 471 nm upon iodide binding, which arises from the ligand (I) to Cu(II) charge transfer (LMCT) in the iodide-substituted Cu(II) complex, [CuLI]+ (7). All organic compounds are characterised by NMR spectroscopy and/or microanalysis. The identities of the two Cu(II) complexes are confirmed by using microanalysis and the complex 6 is crystallographically analysed.  相似文献   

9.
Han Bao  Keisuke Kawakami  Jian-Ren Shen 《BBA》2008,1777(9):1109-1115
In intact PSII, both the secondary electron donor (TyrZ) and side-path electron donors (Car/ChlZ/Cytb559) can be oxidized by P680+ at cryogenic temperatures. In this paper, the effects of acceptor side, especially the redox state of the non-heme iron, on the donor side electron transfer induced by visible light at cryogenic temperatures were studied by EPR spectroscopy. We found that the formation and decay of the S1TyrZ EPR signal were independent of the treatment of K3Fe(CN)6, whereas formation and decay of the Car+/ChlZ+ EPR signal correlated with the reduction and recovery of the Fe3+ EPR signal of the non-heme iron in K3Fe(CN)6 pre-treated PSII, respectively. Based on the observed correlation between Car/ChlZ oxidation and Fe3+ reduction, the oxidation of non-heme iron by K3Fe(CN)6 at 0 °C was quantified, which showed that around 50-60% fractions of the reaction centers gave rise to the Fe3+ EPR signal. In addition, we found that the presence of phenyl-p-benzoquinone significantly enhanced the yield of TyrZ oxidation. These results indicate that the electron transfer at the donor side can be significantly modified by changes at the acceptor side, and indicate that two types of reaction centers are present in intact PSII, namely, one contains unoxidizable non-heme iron and another one contains oxidizable non-heme iron. TyrZ oxidation and side-path reaction occur separately in these two types of reaction centers, instead of competition with each other in the same reaction centers. In addition, our results show that the non-heme iron has different properties in active and inactive PSII. The oxidation of non-heme iron by K3Fe(CN)6 takes place only in inactive PSII, which implies that the Fe3+ state is probably not the intermediate species for the turnover of quinone reduction.  相似文献   

10.
This study provides evidence for enhanced electron flow from the stromal compartment of the photosynthetic membranes to P700+ via the cytochrome b6/f complex (Cyt b6/f) in leaves of Cucumis sativus L. submitted to chilling-induced photoinhibition. The above is deduced from the P700 oxidation–reduction kinetics studied in the absence of linear electron transport from water to NADP+, cyclic electron transfer mediated through the Q-cycle of Cyt b6/f and charge recombination in photosystem I (PSI). The segregation of these pathways for P700+ rereduction were achieved by the use of a 50-ms multiple turnover white flash or a strong pulse of white or far-red illumination together with inhibitors. In cucumber leaves, chilling-induced photoinhibition resulted in ∼20% loss of photo-oxidizible P700. The measurement of P700+ was greatly limited by the turnover of cyclic processes in the absence of the linear mode of electron transport as electrons were rapidly transferred to the smaller pool of P700+. The above is explained by integrating the recent model of the cyclic electron flow in C3 plants based on the Cyt b6/f structural data [Joliot and Joliot (2006) Biochim Biophys Acta 1757:362–368] and a photoprotective function elicited by a low NADP+/NAD(P)H ratio [Rajagopal et al. (2003) Biochemistry 42:11839–11845]. Over-reduction of the photosynthetic apparatus results in the accumulation of NAD(P)H in vivo to prevent NADP+-induced reversible conformational changes in PSI and its extensive damage. As the ferredoxin:NADP reductase is fully reduced under these conditions, even in the absence of PSII electron transport, the reduced ferredoxin generated during illumination binds at the stromal openings in the Cyt b6/f complex and activates cyclic electron flow. On the other hand, the excess electrons from the NAD(P)H pool are routed via the Ndh complex in a slow process to maintain moderate reduction of the plastoquinone pool and redox poise required for the operation of ferredoxin:plastoquinone reductase mediated cyclic flow.  相似文献   

11.
In Desulfovibrio metabolism, periplasmic hydrogen oxidation is coupled to cytoplasmic sulfate reduction via transmembrane electron transfer complexes. Type II tetraheme cytochrome c3 (TpII-c3), nine-heme cytochrome c (9HcA) and 16-heme cytochrome c (HmcA) are periplasmic proteins associated to these membrane-bound redox complexes and exhibit analogous physiological function. Type I tetraheme cytochrome c3 (TpI-c3) is thought to act as a mediator for electron transfer from hydrogenase to these multihemic cytochromes. In the present work we have investigated Desulfovibrio africanus (Da) and Desulfovibrio vulgaris Hildenborough (DvH) TpI-c3/TpII-c3 complexes. Comparative kinetic experiments of Da TpI-c3 and TpII-c3 using electrochemistry confirm that TpI-c3 is much more efficient than TpII-c3 as an electron acceptor from hydrogenase (second order rate constant k = 9 x 10(8) M(-1) s(-1), K(m) = 0.5 microM as compared to k = 1.7 x 10(7) M(-1) s(-1), K(m) = 40 microM, for TpI-c3 and TpII-c3, respectively). The Da TpI-c3/TpII-c3 complex was characterized at low ionic strength by gel filtration, analytical ultracentrifugation and cross-linking experiments. The thermodynamic parameters were determined by isothermal calorimetry titrations. The formation of the complex is mainly driven by a positive entropy change (deltaS = 137(+/-7) J mol(-1) K(-1) and deltaH = 5.1(+/-1.3) kJ mol(-1)) and the value for the association constant is found to be (2.2(+/-0.5)) x 10(6) M(-1) at pH 5.5. Our thermodynamic results reveal that the net increase in enthalpy and entropy is dominantly produced by proton release in combination with water molecule exclusion. Electrostatic forces play an important role in stabilizing the complex between the two proteins, since no complex formation is detected at high ionic strength. The crystal structure of Da TpI-c3 has been solved at 1.5 angstroms resolution and structural models of the complex have been obtained by NMR and docking experiments. Similar experiments have been carried out on the DvH TpI-c3/TpII-c3 complex. In both complexes, heme IV of TpI-c3 faces heme I of TpII-c3 involving basic residues of TpI-c3 and acidic residues of TpII-c3. A secondary interacting site has been observed in the two complexes, involving heme II of Da TpII-c3 and heme III of DvH TpI-c3 giving rise to a TpI-c3/TpII-c3 molar ratio of 2:1 and 1:2 for Da and DvH complexes, respectively. The physiological significance of these alternative sites in multiheme cytochromes c is discussed.  相似文献   

12.
Interleukin-13 (IL-13) is a critical mediator of pulmonary pathology associated with asthma. Drugs that block the biological function of IL-13 may be an effective treatment for asthma. IL-13 signals by forming a ternary complex with IL-13Rα1 and IL-4R. Genetic variants of IL-13 and of its receptor components have been linked to asthma. One in particular, IL-13R110Q, is associated with increased IgE levels and asthma. We characterized the interactions of the binary complexes composed of IL-13 or IL-13R110Q with IL-13Rα1 and the ternary complexes composed of IL-13 or IL-13R110Q and IL-13Rα1 with IL-4R using surface plasmon resonance and time-resolved fluorescence resonance energy transfer (TR-FRET). By both biophysical methods, we found no differences between IL-13 and IL-13R110Q binding in either the binary or the ternary complex. IL-4R bound to the IL-13/IL-13Rα1 complex with slow on and off rates, resulting in a relatively weak affinity of about 100 nM. We developed a TR-FRET assay targeting the interaction between the IL-4R and the binary complex. Two antibodies with known binding epitopes to IL-13 that block binding to either IL-13Rα1 or IL-4R inhibited the TR-FRET signal formed by the ternary complex. This assay will be useful to identify and characterize inhibitory molecules of IL-13 function.  相似文献   

13.
Shinkarev VP  Wraight CA 《FEBS letters》2007,581(8):1535-1541
The cytochrome bc(1) complex (commonly called Complex III) is the central enzyme of respiratory and photosynthetic electron transfer chains. X-ray structures have revealed the bc(1) complex to be a dimer, and show that the distance between low potential (b(L)) and high potential (b(H)) hemes, is similar to the distance between low potential hemes in different monomers. This suggests that electron transfer between monomers should occur at the level of the b(L) hemes. Here, we show that although the rate constant for b(L)-->b(L) electron transfer is substantial, it is slow compared to the forward rate from b(L) to b(H), and the intermonomer transfer only occurs after equilibration within the first monomer. The effective rate of intermonomer transfer is about 2-orders of magnitude slower than the direct intermonomer electron transfer.  相似文献   

14.
Han Bao  Yanan Ren  Jingquan Zhao 《BBA》2010,1797(3):339-346
The correlation between the reduction of QA and the oxidation of TyrZ or Car/ChlZ/Cytb559 in spinach PSII enriched membranes induced by visible light at 10 K is studied by using electron paramagnetic resonance spectroscopy. Similar g = 1.95-1.86 QA-•EPR signals are observed in both Mn-depleted and intact samples, and both signals are long lived at low temperatures. The presence of PPBQ significantly diminished the light induced EPR signals from QA-•, Car+•/Chl+• and oxidized Cytb559, while enhancing the amplitude of the S1TyrZ• EPR signal in the intact PSII sample. The quantification and stability of the g = 1.95-1.86 EPR signal and signals arising from the oxidized TyrZ and the side-path electron donors, respectively, indicate that the EPR-detectable g = 1.95-1.86 QA-• signal is only correlated to reaction centers undergoing oxidation of the side-path electron donors (Car/ChlZ/Cytb559), but not of TyrZ. These results imply that two types of QA-• probably exist in the intact PSII sample. The structural difference and possible function of the two types of QA are discussed.  相似文献   

15.
The D1-precursor protein of the photosystem II reaction centre contains a carboxy-terminal extension whose proteolytic removal is necessary for oxygen-evolving activity. To address the question of the role of the carboxy-terminal extension in the green alga Chlamydomonas reinhardtii, we truncated D1 by converting codon Ser345 of the psbA gene into a stop codon. Particle gun transformation of an in vitro modified psbA gene fragment also carrying mutations conferring herbicide resistance yielded a homoplasmic transformant containing the stop codon. Since oxygen evolution capacity is not affected in this mutant as compared with herbicide-resistant control cells, the carboxy-terminal extension is dispensable for a functional photosystem II complex under normal growth conditions.  相似文献   

16.
17.
The kinetics of the association between cytochrome P450 (P450) and microsomal epoxide hydrolase (mEH) was studied by means of resonant mirror based on the principle of surface plasmon resonance. The dissociation equilibrium constants (K(D)) for the affinity of P450 enzymes for mEH were estimated by resonant mirror using an optical biosensor cell covalently bound to rat mEH. Comparable K(D) values were obtained for CYP1A1 and 2B1, and these were greater by one order of magnitude than that for the CYP2C11. To clarify the influences of P450 enzymes on the catalytic activity of mEH, the hydrolyzing activity for styrene oxide and benzo(a)pyrene-7,8-oxide [B(a)P-oxide] was analyzed in the presence or absence of P450s. Styrene oxide hydrolysis was activated by all P450s including the CYP1A, 2B, 2C, and 3A subfamilies. In agreement with the association affinity determined by resonant mirror, CYP2C11 tends to have enhanced activity for styrene oxide hydrolysis. On the other hand, B(a)P-oxide hydrolysis was enhanced by only CYP2C11 while CYP1A1 and CYP2B1 had no effect. These results suggest that (1) many P450 enzymes associate nonspecifically with mEH, (2) the CYP2C11 plays a greater role in the association/activation of mEH and (3) the P450-mediated activation of mEH depends upon the substrate of mEH.  相似文献   

18.
Prefoldin is a molecular chaperone that captures a protein-folding intermediate and transfers it to a group II chaperonin for correct folding. The manner by which prefoldin interacts with a group II chaperonin is poorly understood. Here, we have examined the prefoldin interaction site in the archaeal group II chaperonin, comparing the interaction of two Thermococcus chaperonins and their mutants with Pyrococcus prefoldin by surface plasmon resonance. We show that the mutations of Lys250 and Lys256 of Thermococcus alpha chaperonin residues to Glu residues increase the affinity to Pyrococcus prefoldin to the level of Thermococcus beta chaperonin and Pyrococcus chaperonin, indicating that their Glu250 and Glu256 residues of the helical protrusion region are responsible for relatively stronger binding to Pyrococcus prefoldin than Thermococcus alpha chaperonin. Since the putative chaperonin binding sites in the distal ends of Pyrococcus prefoldin are rich in basic residues, electrostatic interaction seems to be important for their interaction. The substrate protein transfer rate from prefoldin correlates well with its affinity for chaperonin.  相似文献   

19.
The organization of carbonic anhydrase (CA) system in halo- and alkaliphilic cyanobacterium Rhabdoderma lineare was studied by Western blot analysis and immunocytochemical electron microscopy. The presence of putative extracellular α-CA of 60 kDa in the glycocalyx, forming a tight sheath around the cell, and of two intracellular β-CA is reported. We show for the first time that the β-CA of 60 kDa is expressed constitutively and associated with polypeptides of photosystem II (β-CA-PS II). Another soluble β-CA of 25 kDa was induced in low-bicarbonate medium. Induction of synthesis of the latter β-CA was accompanied by an increase in the intracellular pool of inorganic carbon, which suggests an important role of this enzyme in the functioning of a CO2-concentrating mechanism.  相似文献   

20.
The 26 amino acid bee venom toxin, melittin, is an amphipathic helical polypeptide which inhibits the gastric (H+ + K+)ATPase. The site of interaction with the (H+ + K+)ATPase was shown to be the alpha subunit of the (H+ + K+)ATPase in studies using [125I]azidosalicylyl melittin, a radioactive photoaffinity analog of melittin. A synthetic amphipathic polypeptide (Trp3) containing tryptophan, which exhibits a structure similar to that of melittin, also inhibited the gastric (H+ + K+)ATPase, and prevented labeling by [125I]azidosalicylyl melittin. These findings suggested that melittin and the synthetic amphipathic helical polypeptide were bound to the same or overlapping site(s). In the present studies, novel tritiated photoaffinity analogs of Trp3 containing benzoylphenylalanine (in place of tryptophan) were used to photoaffinity label the (H+ + K+)ATPase. These studies help to establish that the (H+ + K+)ATPase contains a binding site for polypeptides which exhibit an amphipathic helical motif. The precise amino acid sequence of the polypeptide appears to be of secondary importance for interaction with the (H+ + K+)ATPase as long as the alpha helical motif is present. The benzoylphenylalanine containing polypeptides are ideal for mapping the binding site on the (H+ + K+)ATPase. Using an antibody which recognizes this amphipathic helical (melittin-like) motif, we have demonstrated that the gastric parietal cell contains a 67 kDa melittin-like protein. This protein was associated with the gastric parietal cell apical membrane in the stimulated (secreting) state, but not in the resting (non-secreting) state. The binding site for the gastric melittin-like protein appears to overlap with the melittin binding site on the alpha subunit of the (H+ + K+)ATPase. The potential physiological significance of the melittin binding site and the overlapping binding site for this newly identified endogenous melittin-like protein on the (H+ + K+)ATPase to regulated HCl secretion by the parietal cell is presently under investigation. Evidence is presented which demonstrates that melittin binds to other E1-E2 ion pumps, raising the possibility that there might exist similar intracellular proteins which interact with other ion pumps.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号