首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hormone-sensitive lipase (HSL) plays an important role in the regulation of rodent fat cell lipolysis. It is regarded as an adipose tissue-specific enzyme whose sole metabolic role is the catalysis of hormone-stimulated lipolysis in mammalian cells. In this report we describe the functional and structural analysis of an EstE5 protein from a soil metagenome library. Function analysis results indicated that EstE5 preferentially hydrolyzes short-chain ester compounds, and our kinetic studies revealed the optimal pH and temperature. Based on the structural analysis, we defined the active site and the binding pocket. Structurally, EstE5 belongs to the HSL family and these structural studies may have applications in the production of value-added products, including pharmaceuticals.  相似文献   

2.

Background  

EstE1 is a hyperthermophilic esterase belonging to the hormone-sensitive lipase family and was originally isolated by functional screening of a metagenomic library constructed from a thermal environmental sample. Dimers and oligomers may have been evolutionally selected in thermophiles because intersubunit interactions can confer thermostability on the proteins. The molecular mechanisms of thermostabilization of this extremely thermostable esterase are not well understood due to the lack of structural information.  相似文献   

3.
We introduce an upgraded version of the error-prone polymerase chain reaction (epPCR) comprising three DNA polymerase-catalyzed steps. It improves the common epPCR strategy such that random mutations can be confined exactly to a distinct, but freely selectable, sequence region within a gene without the need for flanking restriction endonuclease sites. The new method is called protein domain library generation by overlap extension (PDLGO). To validate PDLGO, we generated a random library of EstE, a multidomain esterase from Xanthomonas vesicatoria. It was demonstrated that random mutations appear exclusively within the catalytic domains as intended. The domains of EstE flanking the catalytic domains are required for transport of EstE to the cell envelope and remain unaltered. Microplates with integrated pH sensors, providing a substrate-independent high-throughput screening tool, were used to analyze whole cells of E. coli expressing the variants of the EstE library. A variant (P286H) with substantially increased catalytic activity was identified. Our results indicate that combining PDLGO with microplates containing integrated pH sensors provides a simple and rapid toolbox for directed evolution of esterases.  相似文献   

4.
5.
Percoll gradient fractions of homogenates of murine cloned cytotoxic T lymphocytes (CTL) were analyzed for the trypsin-like enzyme alpha-N-benzyloxy-carbonyl-L-lysinethiobenzyl ester (BLT) esterase recently described in CTL homogenates. Enzymatic activity was found in three areas of the gradient: the dense cytolysin containing granules; a light granule fraction; and a variable amount in the soluble fraction at the top of the gradient. Gel filtration columns showed a major peak of BLT esterase activity eluted at the position of a 60-kDa protein, and an additional, minor BLT esterase peak eluting at about 27 kDa. The separated enzymes were both significantly inhibited by the serine protease inhibitors diisopropylfluorophosphate and phenylmethyl sulfonyl fluoride (PMSF), indicating they are both serine proteases, but showed different patterns of inhibition by a series of inhibitors, suggesting the larger enzyme is not a simple dimer of the smaller. pH activity profiles of both CTL BLT esterases showed an optimum at about pH 8. PMSF inactivation of BLT esterase in detergent extracts of CTL diminished sharply as the pH was dropped below 7. Agents which raise the pH of acidic intracellular compartments were found to markedly enhance the PMSF inactivation of BLT esterase in intact CTL, showing that the granules have a low internal pH. Similarly, [3H]diisopropylfluorophosphate labeling of intact CTL gave four protein bands on non-reduced gels, of which two were labeled threefold more effectively in the presence of chloroquine. In parallel studies of inactivation of CTL lytic activity, PMSF pretreatment caused a 50% reduction of the lytic activity under conditions where greater than 90% of the BLT esterase activity was inactivated. Addition of agents raising the intragranular pH dramatically enhanced the BLT esterase inactivation but did not concomitantly reduce CTL lytic activity. These results indicate that inactivation of lytic function by PMSF is unlikely to be due to its reaction with protease in acidic granules, and suggest that the activity of these enzymes may not be required for cytotoxicity.  相似文献   

6.
A new assay procedure for triglyceride lipase [EC 3.1.1.3] was developed in which radioactive triolein was dissolved in ethanol and directly added to the reaction mixture in the absence of serum and albumin. In the rat adipose tissue there appeared to be a triglyceride lipase measurable with this assay in addition to the two previously defined lipases, lipoprotein lipase [EC 3.1.1.34] and hormone-sensitive lipase. The enzyme was active in the absence of serum and was strongly inhibited by albumin. The molecular weight was estimated to be about 42,000. Adenosine 3',5'-monophosphate-dependent protein kinase [EC 2.7.1.27] was unable to activate the enzyme. The three species of lipases mentioned above behaved differently upon chromatography on a Sepharose 4B column, and were distinguishable from each other in their physical and kinetic properties. The physiological roles of the new species of lipase remain to be explored.  相似文献   

7.

Objectives

To investigate the properties of a novel metagenome-derived member of the hormone-sensitive lipase family of lipolytic enzymes.

Results

A forest soil metagenome-derived gene encoding an esterase (Est06) belonging to the hormone-sensitive lipase family of lipolytic enzymes was subcloned, heterologously expressed and characterized. Est06 is a polypeptide of 295 amino acids with a molecular mass of 31 kDa. The deduced protein sequence shares 61% similarity with a hypothetical protein from the marine symbiont Candidatus Entotheonella sp. TSY1. Purified Est06 exhibited high affinity for acyl esters with short-chain fatty acids, and showed optimum activity with p-nitrophenyl valerate (C5). Maximum enzymatic activity was at 50 °C and pH 7. Est06 exhibited high stability at moderate temperatures by retaining all of its catalytic activity below 30 °C over 13 days. Additionally, Est06 displayed high stability between pH 5 and 9. Esterase activity was not inhibited by metal ions or detergents, although organic solvents decreased activity.

Conclusions

The combination of Est06 properties place it among novel biocatalysts that have potential for industrial use including low temperature applications.
  相似文献   

8.
An aromatic amino acid, Tyr or Trp, located in the esterase active site wall, is highly conserved, with hyperthermophilic esterases showing preference for Tyr and lower temperature esterases showing preference for Trp. In this study, we investigated the role of Tyr182 in the active site wall of hyperthermophilic esterase EstE1. Mutation of Tyr to Phe or Ala had a moderate effect on EstE1 thermal stability. However, a small-to-large mutation such as Tyr to His or Trp had a devastating effect on thermal stability. All mutant EstE1 enzymes showed reduced catalytic rates and enhanced substrate affinities as compared with wild-type EstE1. Hydrogen bond formation involving Tyr182 was unimportant for maintaining EstE1 thermal stability, as the EstE1 structure is already adapted to high temperatures via increased intramolecular interactions. However, removal of hydrogen bond from Tyr182 significantly decreased EstE1 catalytic activity, suggesting its role in stabilization of the active site. These results suggest that Tyr is preferred over a similarly sized Phe residue or bulky His or Trp residue in the active site walls of hyperthermophilic esterases for stabilizing the active site and regulating catalytic activity at high temperatures.  相似文献   

9.
The moderate thermophilic eubacterium Alicyclobacillus (formerly Bacillus) acidocaldarius expresses a thermostable carboxylesterase (esterase 2) belonging to the hormone-sensitive lipase (HSL)-like group of the esterase/lipase family. Based on secondary structures predictions and a secondary structure-driven multiple sequence alignment with remote homologous protein of known three-dimensional (3D) structure, we previously hypothesized for this enzyme the alpha/beta-hydrolase fold typical of several lipases and esterases and identified Ser155, Asp252, and His282 as the putative members of the catalytic triad. In this paper we report the construction of a 3D model for this enzyme based on the structure of mouse acetylcholinesterase complexed with fasciculin. The model reveals the topological organization of the fold corroborating our predictions. As regarding the active-site residues, Ser155, Asp252, and His282 are located close to each other at hydrogen bond distances. Their catalytic role was here probed by biochemical and mutagenic studies. Moreover, on the basis of the secondary structure-driven multiple sequence alignment and the 3D structural model, a residue supposed important for catalysis, Gly84, was mutated to Ser. The activity of the mutated enzyme was drastically reduced. We propose that Gly84 is part of a putative "oxyanion hole" involved in the stabilization of the transition state similar to the C group of the esterase/lipase family.  相似文献   

10.
Twenty-four putative lipase/esterase genes of Mycobacterium tuberculosis H37Rv were expressed in Escherichia coli and assayed for long-chain triacylglycerol (TG) hydrolase activity. We show here that the product of Rv3097c (LIPY) hydrolyzed long-chain TG with high specific activity. LIPY was purified after solubilization from inclusion bodies; the enzyme displayed a K(m) of 7.57 mM and V(max) of 653.3 nmol/mg/min for triolein with optimal activity between pH 8.0 and pH 9.0. LIPY was inhibited by active serine-directed reagents and was inactivated at temperatures above 37 degrees C. Detergents above their critical micellar concentrations and divalent cations inhibited the activity of LIPY. The N-terminal half of LIPY showed sequence homology with the proline glutamic acid-polymorphic GC-rich repetitive sequences protein family of M. tuberculosis. The C-terminal half of LIPY possesses amino acid domains homologous with the hormone-sensitive lipase family and the conserved active-site motif GDSAG. LIPY shows low sequence identity with the annotated lipases of M. tuberculosis and with other bacterial lipases. We demonstrate that hypoxic cultures of M. tuberculosis, which had accumulated TG, hydrolyzed the stored TG when subjected to nutrient starvation. Under such conditions, lipY was induced more than all lipases, suggesting a central role for it in the utilization of stored TG. We also show that in the lipY-deficient mutant, TG utilization was drastically decreased under nutrient-deprived condition. Thus, LIPY may be responsible for the utilization of stored TG during dormancy and reactivation of the pathogen.  相似文献   

11.
Hormone-sensitive lipase and cholesterol ester hydrolase of chicken adipose tissue were markedly activated by adenosine 3':5'-monophosphate (cAMP)-dependent protein kinase (on the average, 235 to 275%; occasionally as much as 1000%). Diglyceride and monoglyceride hydrolases were also activated, but to a lesser extent (60 to 87%). The activation of all four hydrolases was inhibited by protein kinase inhibitor and reversed by the addition of exogenous protein kinase. Following activation by cAMP-dependent protein kinase, all four hydrolases were deactivated in a Mg2+-dependent reaction and then reactivated to or near initial levels on incubation with cAMP and Mg2+-ATP. The reversible deactivation is assumed to reflect activity of one or more protein phosphatases. The maximum activation obtainable for the four hydrolases decreased when the tissue had been previously exposed to glucagon, indicating that the glucagon-induced activation was probably similar to or identical with the activation demonstrated in cell-free preparations. The pH optima for the four hydrolase activities were similar (7.13 to 7.38). Although the absolute activities and relative degrees of kinase activation differed according to the particular emulsified substrates used, the results do not rule out the possibility that all four hydrolase activities are referable to a single hormone-sensitive hydrolase. Hormone-sensitive acyl hydrolases were separated from lipoprotein lipase by heparin-Sepharose affinity chromatography. Lipoprotein lipase was active against triolein, diolein, and monoolein, but not cholesterol oleate. Incubation of lipoprotein lipase with exogenous protein kinase, cAMP, and Mg2+ATP had no effect on any of the three hydrolase activities. Lipoprotein lipase was further purified to homogeneity and used to prepare antiserum in rabbits. The immunoglobin G fraction from these antisera completely inhibited lipoprotein lipase eluted from heparin-Sepharose columns. However, the hormone-sensitive hydrolase activities (not retained on heparin-Sepharose affinity chromatography) were not inhibited by anti-lipoprotein lipase immunoglobin G, and anti-lopoprotein lipase immunoglobin G did not affect the activation process in crude fractions. Thus, hormone-sensitive lipase and lipoprotein lipase, functionally distinct enzymes, have been physically resolved and immunochemically distinguished. Apparently lipoprotein lipase activity is not regulated, at least directly, by cAMP-dependent protein kinase.  相似文献   

12.
We have studied the kinetics of hydrolysis of triacylglycerols, vinyl esters and p-nitrophenyl butyrate by four carboxylesterases of the HSL family, namely recombinant human hormone-sensitive lipase (HSL), EST2 from Alicyclobacillus acidocaldarius, AFEST from Archeoglobus fulgidus, and protein RV1399C from Mycobacterium tuberculosis. The kinetic properties of enzymes of the HSL family have been compared to those of a series of lipolytic and non-lipolytic carboxylesterases including human pancreatic lipase, guinea pig pancreatic lipase related protein 2, lipases from Mucor miehei and Thermomyces lanuginosus, cutinase from Fusarium solani, LipA from Bacillus subtilis, porcine liver esterase and Esterase A from Aspergilus niger. Results indicate that human HSL, together with other lipolytic carboxylesterases, are active on short chain esters and hydrolyze water insoluble trioctanoin, vinyl laurate and olive oil, whereas the action of EST2, AFEST, protein RV1399C and non-lipolytic carboxylesterases is restricted to solutions of short chain substrates. Lipolytic and non-lipolytic carboxylesterases can be differentiated by their respective value of K(0.5) (apparent K(m)) for the hydrolysis of short chain esters. Among lipolytic enzymes, those possessing a lid domain display higher activity on tributyrin, trioctanoin and olive oil suggesting, then, that the lid structure contributes to enzyme binding to triacylglycerols. Progress reaction curves of the hydrolysis of p-nitrophenyl butyrate by lipolytic carboxylesterases with lid domain show a latency phase which is not observed with human HSL, non-lipolytic carboxylesterases, and lipolytic enzymes devoid of a lid structure as cutinase.  相似文献   

13.
14.
The three-dimensional (3D) structure of the hyperthermophilic esterase EstE1 was constructed by homology modeling using Archaeoglobus fulgidus esterase as a reference, and the thermostability-structure relationship was analyzed. Our results verified the predicted 3D structure of EstE1 and identified the ion pair networks and hydrophobic interactions that are critical determinants for the thermostability of EstE1.  相似文献   

15.
A new esterase gene from the hyperthermophilic archaeon Archaeoglobus fulgidus, reported to show homology with the mammalian hormone-sensitive lipase (HSL)-like group of the esterase/lipase family, was cloned by means of the polymerase chain reaction from the A. fulgidus genome. In order to compare the biochemical properties of this putative hyperthermophilic enzyme with those of the homologous, thermophilic member of HSL group, namely Alicyclobacillus (formerly Bacillus) acidocaldarius esterase 2 (EST2), an overexpression system in Escherichia coli was established. The recombinant protein, expressed in soluble and active form at 20 mg/liter of E. coli culture, was purified to homogeneity and characterized. The enzyme, a 35.5-kDa monomeric protein, was demonstrated to be a B"-type carboxylesterase (EC 3.1.1.1) on the basis of substrate specificity and the action of inhibitors. Among the p-nitrophenyl (PNP) esters tested the best substrate was PNP-hexanoate with K(m) and k(cat) values of 11 +/- 3 microM (mean +/- SD, n = 3) and 1014 +/- 38 s(-1) (mean +/- SD, n = 3), respectively, at 70 degrees C and pH 7.1. Inactivation by diethylpyrocarbonate, phenylmethylsulfonylfluoride, diisopropylfosfofluoridate (DFP), and physostigmine, as well as labeling with [(3)H]DFP, supported our previous suggestion of a catalytic triad made up of Ser(160)-His(285)-Asp(255). The sequence identity with the thermostable A. acidocaldarius EST2 was 42.5%. The enzyme proved to be much more stable than its Alicyclobacillus counterpart. The conformational dynamics of the two proteins were investigated by frequency-domain fluorometry and anisotropy decay and the activity/stability/temperature relationship was discussed.  相似文献   

16.
A high level of cholesterol esterase activity, comparable to that of hormone-sensitive triglyceridase, has been demonstrated in rad adipose tissue. Essentially all of the activity was in the isolated adipocytes, primarily in the 100,000 times g supernatant fraction of the adipocytes. Cholesterol esterase activity in the 100,000 times g supernatant fraction was increased 40 plus or minus 16% by incubation with ATP (0.5 mM), Mg-2+ (1.25 mM), and cyclic adenosine 3':5'-monophosphate (cyclic AMP) (10 muM), conditions which also activated hormone-sensitive triglyceridase. Protein kinase inhibitor (rabbit skeletal muscle) blocked activation, and activation was restored by the addition of excess protein kinase (bovine skeletal muscle). In extracts prepared from adipocytes first incubated for 5 min with 10 muM epinephrine and 1 mM theophylline, there was no cyclic AMP-dependent cholesterol esterase activation, implying that the enzyme had been activated by a similar mechanism in the intact cell. The physiological role of this high level of cholesterol esterase activity in adipose tissue is unclear. Its relationship to hormone-sensitive triglyceride lipase, with which it extensively co-fractionates, and its possible involvement in fat mobilization remain to be determined.  相似文献   

17.
18.
A triglyceride lipase was extracted from defatted pig adipose tissue powder with dilute ammonia and purified about 230-fold by a combination of ammonium sulfate fractionation, heparin-Sepharose 4B, DEAE-cellulose, and Sephadex G-150 column chromatographies and isoelectrofocusing electrophoresis. The enzyme was distinguishable in physical and kinetic properties from the two previously defined lipases in adipose tissue, lipoprotein lipase, and hormone-sensitive lipase. The purified enzyme was fully active in the absence of serum lipoprotein and was not stimulated by adenosine 3':5'-monophosphate-dependent protein kinase. In marked contrast to the already defined lipases, the enzyme was strongly inhibited by serum albumin. The enzyme had a molecular weigt of about 43,000, a pI of 5.2, and pH optimum of 7.0. The enzyme hydrolyzed triolein to oleic acid and glycerol, and did not exhibit esterase activity. The apparent Km for triolein was 0.05 mM. Physiological roles of this new species of lipase remained to be explored.  相似文献   

19.
The reversible deactivation of chicken adipose tissue hormone-sensitive lipase is catalyzed by a lipase phosphatase. Heat-stable protein preparations from rat epididymal fat pads, chicken adipose tissue, and rabbit skeletal muscle inhibited lipase phosphatase activity. Phosphatase inhibitor preparations from rat adipose tissue did not inhibit the protein kinase-catalyzed activation of hormone-sensitive lipase, whereas inhibitor preparations from rabbit skeletal muscle were contaminated with protein kinase inhibitor.  相似文献   

20.
S Chakraborti  J R Michael 《FEBS letters》1991,281(1-2):185-187
Exposure of bovine pulmonary arterial endothelial cells to 1 mM H2O2 stimulated associated TAME-esterase and PLA2 activities. Pretreatment with the serine esterase inhibitors: PMSF (1 mM), DFP (1 mM), and alpha 1-PI (1 mg/ml) inhibited H2O2-induced stimulation of TAME-esterase and PLA2 activities. The TAME-esterase and PLA2 activities under H2O2 exposure were determined to be linearly correlated. Affinity labelling of the endothelial cell membrane with [3H]DFP demonstrated that the serine esterase resides in a protein having molecular weight of 29,000 daltons (29 kDa) which is similar to that of elastase. Treatment of the endothelial cell homogenate with trypsin (1 microgram/ml) also stimulated PLA2 activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号