首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Chromosome breakage in germline and somatic genomes gives rise to copy number variation (CNV) responsible for genomic disorders and tumorigenesis. DNA sequence is known to play an important role in breakage at chromosome fragile sites; however, the sequences susceptible to double-strand breaks (DSBs) underlying CNV formation are largely unknown. Here we analyze 140 germline CNV breakpoints from 116 individuals to identify DNA sequences enriched at breakpoint loci compared to 2800 simulated control regions. We find that, overall, CNV breakpoints are enriched in tandem repeats and sequences predicted to form G-quadruplexes. G-rich repeats are overrepresented at terminal deletion breakpoints, which may be important for the addition of a new telomere. Interstitial deletions and duplication breakpoints are enriched in Alu repeats that in some cases mediate non-allelic homologous recombination (NAHR) between the two sides of the rearrangement. CNV breakpoints are enriched in certain classes of repeats that may play a role in DNA secondary structure, DSB susceptibility and/or DNA replication errors.  相似文献   

2.
In our previous studies, we have shown the mutagenicity of bleomycin (BLM) at the nuclear hprt locus. In the present study we have analyzed mutagenic effects of BLM in mitochondrial DNA (mtDNA) using short extension-PCR (SE-PCR) method for detection of low-copy deletions. Fisher 344 rats were treated with a single dose of BLM and total DNA preparations from splenic lymphocytes were processed in SE-PCR assay. Spontaneous deletions were typically flanked by direct repeats (78.5%), while the in BLM-treated group, direct repeats were found in only 46.6% of breakpoints. The ratio between deletions based on direct repeats and random sequence deletions changed from 3.67 in control group to 0.87 in BLM-treated animals, which corresponds to an approximate 1.7-fold increase in the deletion mutation frequency. Furthermore, 62.5% of deletions not flanked by direct repeats in the treated group contained cleavage sites for BLM. The localization of breakpoints was not entirely random. We have found four clusters containing deletions from both groups indicative of deletion hot spots. The results indicate that BLM exposure may be associated with the induction of mtDNA mutations, and suggest the utility of SE-PCR method for evaluating drug-induced genotoxicity.  相似文献   

3.
4.
To investigate the genetic stability of the dairy organism Lactobacillus bulgaricus, we have analyzed 107 spontaneous mutations of the beta-galactosidase gene of this organism. Ten of these mutations were DNA rearrangements giving rise to different deletions, located predominantly within a small hot spot area. The DNA sequences of the different deletion junctions have been determined. The analysis showed that the deletions can be divided into two classes, depending on the presence of short direct-repeat sequences at the deletion endpoints and on the length of the deleted sequences. Possible mechanisms of these deletion formations and the involvement of inverted-repeat sequences that may enhance slipped DNA mispairing are discussed.  相似文献   

5.
The Duchenne muscular dystrophy locus is remarkable in that it shows a high mutation rate and the majority of mutations found are deletions. These deletions are generated as meiotic as well as mitotic events and occur preferentially in the central region of the gene. Nothing is known so far about the mechanisms involved. This paper reports the first sequencing of deletion junctions in the dystrophin gene. The data from a study of two patients with deletions in the central region of dystrophin show the breakpoints to lie in regions of introns in which stretches of dA-dT are seen. The relationship between these observations and possible mechanisms for the mutations is discussed.  相似文献   

6.
Minisatellites are composed of tandem repetitive DNA sequences and are present at many positions in the human genome. They frequently mutate to new length alleles in the germline, by complex and incompletely understood recombination mechanisms which may operate during meiosis. In several minisatellites the mutation events are restricted to one end of the repeat array, indicating a possible association with elements that act in cis. Mutant alleles do not show exchange of flanking regions. To construct a model system suitable for further investigations of the mutation process, we have integrated the human minisatellite MS32, flanked by synthetic markers, in the vicinity of a meiotic recombination hot spot upstream of the LEU2 locus in the yeast Saccharomyces cerevisiae. Here we provide direct evidence for a meiotic origin of MS32 mutations. Mutation events were polarised towards both ends of the minisatellite and varied from simple duplications and deletions to complex intra- and interallelic events. Interallelic events were frequently accompanied by exchange of regions flanking the minisatellite. The results also support the notion that cis-acting elements are involved in the mutational process. The fact that MS32 mutant structures are similar in yeast and human shows that meiotic recombination plays a crucial role in both organisms and emphasises the usefulness of yeast strains harbouring minisatellites as a model system for the study of minisatellite mutation. Received: 1 March 1997 / Accepted: 16 May 1997  相似文献   

7.
Mitochondrial DNA (mtDNA) deletion mutations cause many human diseases and are linked to age-induced mitochondrial dysfunction. Mapping the mutation spectrum and quantifying mtDNA deletion mutation frequency is challenging with next-generation sequencing methods. We hypothesized that long-read sequencing of human mtDNA across the lifespan would detect a broader spectrum of mtDNA rearrangements and provide a more accurate measurement of their frequency. We employed nanopore Cas9-targeted sequencing (nCATS) to map and quantitate mtDNA deletion mutations and develop analyses that are fit-for-purpose. We analyzed total DNA from vastus lateralis muscle in 15 males ranging from 20 to 81 years of age and substantia nigra from three 20-year-old and three 79-year-old men. We found that mtDNA deletion mutations detected by nCATS increased exponentially with age and mapped to a wider region of the mitochondrial genome than previously reported. Using simulated data, we observed that large deletions are often reported as chimeric alignments. To address this, we developed two algorithms for deletion identification which yield consistent deletion mapping and identify both previously reported and novel mtDNA deletion breakpoints. The identified mtDNA deletion frequency measured by nCATS correlates strongly with chronological age and predicts the deletion frequency as measured by digital PCR approaches. In substantia nigra, we observed a similar frequency of age-related mtDNA deletions to those observed in muscle samples, but noted a distinct spectrum of deletion breakpoints. NCATS-mtDNA sequencing allows the identification of mtDNA deletions on a single-molecule level, characterizing the strong relationship between mtDNA deletion frequency and chronological aging.  相似文献   

8.
Velo-cardio-facial syndrome (VCFS) is the most common microdeletion syndrome in humans. It occurs with an estimated frequency of 1 in 4, 000 live births. Most cases occur sporadically, indicating that the deletion is recurrent in the population. More than 90% of patients with VCFS and a 22q11 deletion have a similar 3-Mb hemizygous deletion, suggesting that sequences at the breakpoints confer susceptibility to rearrangements. To define the region containing the chromosome breakpoints, we constructed an 8-kb-resolution physical map. We identified a low-copy repeat in the vicinity of both breakpoints. A set of genetic markers were integrated into the physical map to determine whether the deletions occur within the repeat. Haplotype analysis with genetic markers that flank the repeats showed that most patients with VCFS had deletion breakpoints in the repeat. Within the repeat is a 200-kb duplication of sequences, including a tandem repeat of genes/pseudogenes, surrounding the breakpoints. The genes in the repeat are GGT, BCRL, V7-rel, POM121-like, and GGT-rel. Physical mapping and genomic fingerprint analysis showed that the repeats are virtually identical in the 200-kb region, suggesting that the deletion is mediated by homologous recombination. Examination of two three-generation families showed that meiotic intrachromosomal recombination mediated the deletion.  相似文献   

9.
10.
Using whole cosmids as probes, we have mapped 242 DMD/BMD deletion breakpoints located in the major deletion hot spot of the DMD gene. Of these, 113 breakpoints were mapped more precisely to individual restriction enzyme fragments in the distal 80 kb of the 170-kb intron 44. An additional 12 breakpoints are distributed over the entire region, with no significant local variation in frequency. Furthermore, deletion sizes vary and are not influenced by the positions of the breakpoints. This argues against a predominant role of one or a few specific sequences in causing frequent rearrangements. It suggests that structural characteristics or a more widespread recombinogenic sequence makes this region so susceptible to deletion. Our study revealed several RFLPs, one of which is a 300-bp insertion/deletion polymorphism. Abnormally migrating junction fragments are found in 81% of the precisely mapped deletions and are highly valuable in the diagnosis of carrier females.  相似文献   

11.
Three new neurofibromatosis type 1 (NF1) mutations have been detected and characterized. Pulsed-field gel and Southern blot analyses reveal the mutations to be deletions of 190, 40, and 11 kb of DNA. The 11 kb deletion does not contain any of the previously characterized genes that lie between two NF1 translocation breakpoints, but it does include a portion of a rodent/human conserved DNA sequence previously shown to span one of the translocation breakpoints. By screening cDNA libraries with the conserved sequence, we identified a number of cDNA clones from the translocation breakpoint region (TBR), one of which hybridizes to an approximately 11 kb mRNA. The TBR gene crosses at least one of the chromosome 17 translocation breakpoints found in NF1 patients. Furthermore, the newly characterized NF1 deletions remove internal exons of the TBR gene. Although these mutations might act by compromising regulatory elements affecting some other gene, these findings strongly suggest that the TBR gene is the NF1 gene.  相似文献   

12.

Background

The detailed study of breakpoints associated with copy number variants (CNVs) can elucidate the mutational mechanisms that generate them and the comparison of breakpoints across species can highlight differences in genomic architecture that may lead to lineage-specific differences in patterns of CNVs. Here, we provide a detailed analysis of Drosophila CNV breakpoints and contrast it with similar analyses recently carried out for the human genome.

Results

By applying split-read methods to a total of 10x coverage of 454 shotgun sequence across nine lines of D. melanogaster and by re-examining a previously published dataset of CNVs detected using tiling arrays, we identified the precise breakpoints of more than 600 insertions, deletions, and duplications. Contrasting these CNVs with those found in humans showed that in both taxa CNV breakpoints fall into three classes: blunt breakpoints; simple breakpoints associated with microhomology; and breakpoints with additional nucleotides inserted/deleted and no microhomology. In both taxa CNV breakpoints are enriched with non-B DNA sequence structures, which may impair DNA replication and/or repair. However, in contrast to human genomes, non-allelic homologous-recombination (NAHR) plays a negligible role in CNV formation in Drosophila. In flies, non-homologous repair mechanisms are responsible for simple, recurrent, and complex CNVs, including insertions of de novo sequence as large as 60 bp.

Conclusions

Humans and Drosophila differ considerably in the importance of homology-based mechanisms for the formation of CNVs, likely as a consequence of the differences in the abundance and distribution of both segmental duplications and transposable elements between the two genomes.  相似文献   

13.
A wide variety of mutations in the parkin gene, including exon deletions and duplications, as well as point mutations, result in autosomal recessive early-onset parkinsonism. Interestingly, several of these anomalies were found repeatedly in unrelated patients and may therefore result from recurrent, de novo mutational events or from founder effects. In the present study, haplotype analysis, using 10 microsatellite markers covering a 4.7-cM region known to contain the parkin gene, was performed in 48 families, mostly from European countries, with early-onset autosomal recessive parkinsonism. The patients carried 14 distinct mutations in the parkin gene, and each mutation was detected in more than one family. Our results support the hypothesis that exon rearrangements occurred independently, whereas some point mutations, found in families from different geographic origins, may have been transmitted by a common founder.  相似文献   

14.
The meiotic behavior of two graded series of deletion mutations in the ADE8 gene in Saccharomyces cerevisiae was analyzed to investigate the molecular basis of meiotic recombination. Postmeiotic segregation (PMS) was observed for a subset of the deletion heterozygosities, including deletions of 38 to 93 base pairs. There was no clear relationship between deletion length and PMS frequency. A common sequence characterized the novel joint region in the alleles which displayed PMS. This sequence is related to repeated sequences recently identified in association with recombination hotspots in the human and mouse genomes. We propose that these particular deletion heterozygosities escape heteroduplex DNA repair because of fortuitous homology to a binding site for a protein.  相似文献   

15.
NRXN1 microdeletions occur at a relatively high frequency and confer increased risk for neurodevelopmental and neurobehavioral abnormalities. The mechanism that makes NRXN1 a deletion hotspot is unknown. Here, we identified deletions of the NRXN1 region in affected cohorts, confirming a strong association with the autism spectrum and other neurodevelopmental disorders. Interestingly, deletions in both affected and control individuals were clustered in the 5′ portion of NRXN1 and its immediate upstream region. To explore the mechanism of deletion, we mapped and analyzed the breakpoints of 32 deletions. At the deletion breakpoints, frequent microhomology (68.8%, 2–19 bp) suggested predominant mechanisms of DNA replication error and/or microhomology-mediated end-joining. Long terminal repeat (LTR) elements, unique non-B-DNA structures, and MEME-defined sequence motifs were significantly enriched, but Alu and LINE sequences were not. Importantly, small-size inverted repeats (minus self chains, minus sequence motifs, and partial complementary sequences) were significantly overrepresented in the vicinity of NRXN1 region deletion breakpoints, suggesting that, although they are not interrupted by the deletion process, such inverted repeats can predispose a region to genomic instability by mediating single-strand DNA looping via the annealing of partially reverse complementary strands and the promoting of DNA replication fork stalling and DNA replication error. Our observations highlight the potential importance of inverted repeats of variable sizes in generating a rearrangement hotspot in which individual breakpoints are not recurrent. Mechanisms that involve short inverted repeats in initiating deletion may also apply to other deletion hotspots in the human genome.  相似文献   

16.
Parkin-associated Parkinson’s disease   总被引:5,自引:0,他引:5  
Mutations in the PARK2 gene coding for parkin cause autosomal recessive juvenile parkinsonism (AR-JP), a familial form of Parkinsons disease (PD). Parkin functions as an E3 ubiquitin ligase, and loss of this ubiquitin ligase activity appears to be the mechanism underlying pathogenesis of AR-JP. Recently, the spectrum of genetic, clinical, and pathological findings on AR-JP has been significantly expanded. Moreover, a considerable number of parkin interactors and/or substrates have been identified and characterized, and animal models of parkin deficiency have been generated. In this review, we provide an overview of the most relevant findings and discuss their implications for the pathogenesis of AR-JP and sporadic PD.  相似文献   

17.
Feany MB  Pallanck LJ 《Neuron》2003,38(1):13-16
An autosomal recessive juvenile-onset form of Parkinson's disease (AR-JP) is caused by loss-of-function mutations of the parkin gene, which encodes a ubiquitin-protein ligase. Three recent reports demonstrate that parkin can protect neurons from diverse cellular insults, including alpha-synuclein toxicity, proteasomal dysfunction, Pael-R accumulation, and kainate-induced excitotoxicity. These findings suggest a central role for parkin in maintaining dopaminergic neuronal integrity and strengthen the link between AR-JP and the more common sporadic form of Parkinson's disease.  相似文献   

18.
Duchenne muscular dystrophy (DMD) is a common X-linked recessive disease of muscle degeneration and death. In order to provide accurate and reliable genetic counseling and prenatal diagnosis, we screened DMD mutations in a cohort of 119 Chinese patients using multiplex ligation-dependent probe amplification (MLPA) and denaturing high performance liquid chromatography (DHPLC) followed by Sanger sequencing. In these unrelated DMD patients, we identified 11 patients with DMD small mutations (9.2%) and 81 patients with DMD deletions/duplications (del/dup) (68.1%), of which 64 (79.0%) were deletions, 16 (19.8%) were duplications, and one (1.2%) was both deletion and duplication. Furthermore, we analyzed the frequency of DMD breakpoint in the 64 deletion cases by calculating exon-deletion events of certain exon interval that revealed a novel mutation hotspot boundary. To explore why DMD rearrangement breakpoints were predisposed to specific regions (hotspot), we precisely characterized junction sequences of breakpoints at the nucleotide level in 21 patients with exon deleted/duplicated in DMD with a high-resolution SNP microarray assay. There were no exactly recurrent breakpoints and there was also no significant difference between single-exon del/dup and multiple-exon del/dup cases. The data from the current study provided a comprehensive strategy to detect DMD mutations for clinical practice, and identified two deletion hotspots at exon 43–55 and exon 10–23 by calculating exon-deletion events of certain exon interval. Furthermore, this is the first study to characterize DMD breakpoint at the nucleotide level in a Chinese population. Our observations provide better understanding of the mechanism for DMD gene rearrangements.  相似文献   

19.
A number of common contiguous gene syndromes have been shown to result from nonallelic homologous recombination (NAHR) within region-specific low-copy repeats (LCRs). The reciprocal duplications are predicted to occur at the same frequency; however, probably because of ascertainment bias and milder phenotypes, reciprocal events have been identified in only a few cases to date. We previously described seven patients with dup(17)(p11.2p11.2), the reciprocal of the Smith-Magenis syndrome (SMS) deletion, del(17)(p11.2p11.2). In >90% of patients with SMS, identical approximately 3.7-Mb deletions in 17p11.2 have been identified. These deletions are flanked by large (approximately 200 kb), highly homologous, directly oriented LCRs (i.e., proximal and distal SMS repeats [SMS-REPs]). The third (middle) SMS-REP is inverted with respect to them and maps inside the commonly deleted genomic region. To investigate the parental origin and to determine whether the common deletion and duplication arise by unequal crossovers mediated through NAHR between the proximal and distal SMS-REPs, we analyzed the haplotypes of 14 families with SMS and six families with dup(17)(p11.2p11.2), using microsatellite markers directly flanking the SMS common deletion breakpoints. Our data indicate that reciprocal deletion and duplication of 17p11.2 result from unequal meiotic crossovers. These rearrangements occur via both interchromosomal and intrachromosomal exchange events between the proximal and distal SMS-REPs, and there appears to be no parental-origin bias associated with common SMS deletions and the reciprocal duplications.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号