首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The endoplasmic reticulum (ER) is not only a home for folding and posttranslational modifications of secretory proteins but also a reservoir for intracellular Ca2+. Perturbation of ER homeostasis contributes to the pathogenesis of various neurodegenerative diseases, such as Alzheimer''s and Parkinson diseases. One key regulator that underlies cell survival and Ca2+ homeostasis during ER stress responses is inositol-requiring enzyme 1α (IRE1α). Despite extensive studies on this ER membrane-associated protein, little is known about the molecular mechanisms by which excessive ER stress triggers cell death and Ca2+ dysregulation via the IRE1α-dependent signaling pathway. In this study, we show that inactivation of IRE1α by RNA interference increases cytosolic Ca2+ concentration in SH-SY5Y cells, leading to cell death. This dysregulation is caused by an accelerated ER-to-cytosolic efflux of Ca2+ through the InsP3 receptor (InsP3R). The Ca2+ efflux in IRE1α-deficient cells correlates with dissociation of the Ca2+-binding InsP3R inhibitor CIB1 and increased complex formation of CIB1 with the pro-apoptotic kinase ASK1, which otherwise remains inactivated in the IRE1α–TRAF2–ASK1 complex. The increased cytosolic concentration of Ca2+ induces mitochondrial production of reactive oxygen species (ROS), in particular superoxide, resulting in severe mitochondrial abnormalities, such as fragmentation and depolarization of membrane potential. These Ca2+ dysregulation-induced mitochondrial abnormalities and cell death in IRE1α-deficient cells can be blocked by depleting ROS or inhibiting Ca2+ influx into the mitochondria. These results demonstrate the importance of IRE1α in Ca2+ homeostasis and cell survival during ER stress and reveal a previously unknown Ca2+-mediated cell death signaling between the IRE1α–InsP3R pathway in the ER and the redox-dependent apoptotic pathway in the mitochondrion.  相似文献   

3.
Ca2+ signals propagate in wave form along individual cells of the central nervous system(CNS) and through networks of connected cells of neuronal and multiple glial cell types. Inorder for wave fronts to convey information, signaling mechanisms are required that allowwaves to propagate reproducibly and without decrement in signal strength over long distances.CNS Ca2+ waves are under specific integrated local control, made possible by interactions atlocal subcellular microdomains between endoplasmic reticulum and mitochondria. Activemitochondria located near the mouth of inositol trisphosphate receptor (InsP3R) channel clustersin glia take up Ca2+, which may prevent a buildup of Ca2+ around the InsP3R channel, therebydecreasing the rate of Ca2+-induced receptor inactivation, and prolonging channel open time.Mitochondria may amplify InsP;i3-dependent Ca2;pl signals by a transient permeability transitionin response to Ca2+ uptake into the mitochondrion. Other evidence suggests privileged accessinto mitochondria for Ca2+ entering neurons by glutamatergic receptor channels. This enablesspecific signal modulation as the Ca2+ wave is propagated into neurons, such that mitochondrialocated close to glutamate channels can prolong the neuronal cytosolic response time bysuccessive uptake and release of Ca2+. Disruption of mitochondrial function deregulates theability of CNS-derived cells to undergo normal Ca2+ signaling and wave propagation.  相似文献   

4.
There is a body of evidence suggesting that Ca2+ handling proteins assemble into signaling complexes required for a fine regulation of Ca2+ signals, events that regulate a variety of critical cellular processes. Canonical transient receptor potential (TRPC) and Orai proteins have both been proposed to form Ca2+-permeable channels mediating Ca2+ entry upon agonist stimulation. A number of studies have demonstrated that inositol 1,4,5-trisphosphate receptors (IP3Rs) interact with plasma membrane TRPC channels; however, at present there is no evidence supporting the interaction between Orai proteins and IP3Rs. Here we report that treatment with thapsigargin or cellular agonists results in association of Orai1 with types I and II IP3Rs. In addition, we have found that TRPC3, RACK1 (receptor for activated protein kinase C-1), and STIM1 (stromal interaction molecule 1) interact with Orai1 upon stimulation with agonists. TRPC3 expression silencing prevented both the interaction of Orai1 with TRPC3 and, more interestingly, the association of Orai1 with the type I IP3R, but not with the type II IP3R, thus suggesting that TRPC3 selectively mediates interaction between Orai1 and type I IP3R. In addition, TRPC3 expression silencing attenuated ATP- and CCh-stimulated interaction between RACK1 and the type I IP3R, as well as Ca2+ release and entry. In conclusion, our results indicate that agonist stimulation results in the formation of an Orai1-STIM1-TRPC3-RACK1-type I IP3R complex, where TRPC3 plays a central role. This Ca2+ signaling complex might be important for both agonist-induced Ca2+ release and entry.  相似文献   

5.
The inositol 1,4,5-trisphosphate (InsP(3)) receptor (InsP3R) is an endoplasmic reticulum-localized Ca2+ -release channel that controls complex cytoplasmic Ca(2+) signaling in many cell types. At least three InsP3Rs encoded by different genes have been identified in mammalian cells, with different primary sequences, subcellular locations, variable ratios of expression, and heteromultimer formation. To examine regulation of channel gating of the type 3 isoform, recombinant rat type 3 InsP3R (r-InsP3R-3) was expressed in Xenopus oocytes, and single-channel recordings were obtained by patch-clamp electrophysiology of the outer nuclear membrane. Gating of the r-InsP3R-3 exhibited a biphasic dependence on cytoplasmic free Ca2+ concentration ([Ca2+]i). In the presence of 0.5 mM cytoplasmic free ATP, r-InsP3R-3 gating was inhibited by high [Ca2+]i with features similar to those of the endogenous Xenopus type 1 Ins3R (X-InsP3R-1). Ca2+ inhibition of channel gating had an inhibitory Hill coefficient of approximately 3 and half-maximal inhibiting [Ca2+]i (Kinh) = 39 microM under saturating (10 microM) cytoplasmic InsP3 concentrations ([InsP3]). At [InsP3] < 100 nM, the r-InsP3R-3 became more sensitive to Ca2+ inhibition, with the InsP(3) concentration dependence of Kinh described by a half-maximal [InsP3] of 55 nM and a Hill coefficient of approximately 4. InsP(3) activated the type 3 channel by tuning the efficacy of Ca2+ to inhibit it, by a mechanism similar to that observed for the type 1 isoform. In contrast, the r-InsP3R-3 channel was uniquely distinguished from the X-InsP3R-1 channel by its enhanced Ca2+ sensitivity of activation (half-maximal activating [Ca2+]i of 77 nM instead of 190 nM) and lack of cooperativity between Ca2+ activation sites (activating Hill coefficient of 1 instead of 2). These differences endow the InsP3R-3 with high gain InsP3-induced Ca2+ release and low gain Ca2+ -induced Ca2+ release properties complementary to those of InsP3R-1. Thus, distinct Ca2+ signals may be conferred by complementary Ca2+ activation properties of different InsP3R isoforms.  相似文献   

6.
In hepatocytes, as in other cell types, Ca2+ signaling is subject to complex regulations, which result largely from the intrinsic characteristics of the different inositol 1,4,5-trisphosphate receptor (InsP3R) isoforms and from their interactions with other proteins. Although sigma1 receptors (Sig-1Rs) are widely expressed in the liver, their involvement in hepatic Ca2+ signaling remains unknown. We here report that in this cell type Sig-1R interact with type 1 isoforms of the InsP3 receptors (InsP3R-1). These results obtained by immunoprecipitation experiments are confirmed by the observation that Sig-1R proteins and InsP3R-1 colocalize in hepatocytes. However, Sig-1R ligands have no effect on InsP3-induced Ca2+ release in hepatocytes. This can be explained by the rather low expression level expression of InsP3R-1. In contrast, we find that Sig-1R ligands can inhibit agonist-induced Ca2+ signaling via an inhibitory effect on InsP3 synthesis. We show that this inhibition is due to the stimulation of PKC activity by Sig-1R, resulting in the well-known down-regulation of the signaling pathway responsible for the transduction of the extracellular stimulus into InsP3 synthesis. The PKC sensitive to Sig-1R activity belongs to the family of conventional PKC, but the precise molecular mechanism of this regulation remains to be elucidated.  相似文献   

7.
Toxoplasma gondii is an obligate intracellular parasite that invades host cells, creating a parasitophorous vacuole where it communicates with the host cell cytosol through the parasitophorous vacuole membrane. The lytic cycle of the parasite starts with its exit from the host cell followed by gliding motility, conoid extrusion, attachment, and invasion of another host cell. Here, we report that Ca2+ oscillations occur in the cytosol of the parasite during egress, gliding, and invasion, which are critical steps of the lytic cycle. Extracellular Ca2+ enhances each one of these processes. We used tachyzoite clonal lines expressing genetically encoded calcium indicators combined with host cells expressing transiently expressed calcium indicators of different colors, and we measured Ca2+ changes in both parasites and host simultaneously during egress. We demonstrated a link between cytosolic Ca2+ oscillations in the host and in the parasite. Our approach also allowed us to measure two new features of motile parasites, which were enhanced by Ca2+ influx. This is the first study showing, in real time, Ca2+ signals preceding egress and their direct link with motility, an essential virulence trait.  相似文献   

8.
Extended synaptotagmins (E-Syts) are a recently identified family of proteins that tether the endoplasmic reticulum (ER) to the plasma membrane (PM) in part by conferring regulation of cytosolic calcium (Ca2+) at these contact sites (Cell, 2013). However, the mechanism by which E-Syts link this tethering to Ca2+ signaling is unknown. Ca2+ waves in polarized epithelia are initiated by inositol 1,4,5-trisphosphate receptors (InsP3Rs), and these waves begin in the apical region because InsP3Rs are targeted to the ER adjacent to the apical membrane. In this study we investigated whether E-Syts are responsible for this targeting. Primary rat hepatocytes were used as a model system, because a single InsP3R isoform (InsP3R-II) is tethered to the peri-apical ER in these cells. Additionally, it has been established in hepatocytes that the apical localization of InsP3Rs is responsible for Ca2+ waves and secretion and is disrupted in disease states in which secretion is impaired. We found that rat hepatocytes express two of the three identified E-Syts (E-Syt1 and E-Syt2). Individual or simultaneous siRNA knockdown of these proteins did not alter InsP3R-II expression levels, apical localization or average InsP3R-II cluster size. Moreover, apical secretion of the organic anion 5-chloromethylfluorescein diacetate (CMFDA) was not changed in cells lacking E-Syts but was reduced in cells in which cytosolic Ca2+ was buffered. These data provide evidence that E-Syts do not participate in the targeting of InsP3Rs to the apical region. Identifying tethers that bring InsP3Rs to the apical region remains an important question, since mis-targeting of InsP3Rs leads to impaired secretory activity.  相似文献   

9.
10.

Background

Mechanosensing and its downstream responses are speculated to involve sensory complexes containing Ca2+-permeable mechanosensitive channels. On recognizing osmotic signals, plant cells initiate activation of a widespread signal transduction network that induces second messengers and triggers inducible defense responses. Characteristic early signaling events include Ca2+ influx, protein phosphorylation and generation of reactive oxygen species (ROS). Pharmacological analyses show Ca2+ influx mediated by mechanosensitive Ca2+ channels to influence induction of osmotic signals, including ROS generation. However, molecular bases and regulatory mechanisms for early osmotic signaling events remain poorly elucidated.

Results

We here identified and investigated OsMCA1, the sole rice homolog of putative Ca2+-permeable mechanosensitive channels in Arabidopsis (MCAs). OsMCA1 was specifically localized at the plasma membrane. A promoter-reporter assay suggested that OsMCA1 mRNA is widely expressed in seed embryos, proximal and apical regions of shoots, and mesophyll cells of leaves and roots in rice. Ca2+ uptake was enhanced in OsMCA1-overexpressing suspension-cultured cells, suggesting that OsMCA1 is involved in Ca2+ influx across the plasma membrane. Hypo-osmotic shock-induced ROS generation mediated by NADPH oxidases was also enhanced in OsMCA1-overexpressing cells. We also generated and characterized OsMCA1-RNAi transgenic plants and cultured cells; OsMCA1-suppressed plants showed retarded growth and shortened rachises, while OsMCA1-suppressed cells carrying Ca2+-sensitive photoprotein aequorin showed partially impaired changes in cytosolic free Ca2+ concentration ([Ca2+]cyt) induced by hypo-osmotic shock and trinitrophenol, an activator of mechanosensitive channels.

Conclusions

We have identified a sole MCA ortholog in the rice genome and developed both overexpression and suppression lines. Analyses of cultured cells with altered levels of this putative Ca2+-permeable mechanosensitive channel indicate that OsMCA1 is involved in regulation of plasma membrane Ca2+ influx and ROS generation induced by hypo-osmotic stress in cultured rice cells. These findings shed light on our understanding of mechanical sensing pathways.  相似文献   

11.
Human immunodeficiency virus type 1 (HIV-1) release efficiency is directed by late (L) domain motifs in the viral structural precursor polyprotein Gag, which serve as links to the ESCRT (endosomal sorting complex required for transport) machinery. Linkage is normally through binding of Tsg101, an ESCRT-1 component, to the P7TAP motif in the p6 region of Gag. In its absence, budding is directed by binding of Alix, an ESCRT adaptor protein, to the LY36PXnL motif in Gag. We recently showed that budding requires activation of the inositol 1,4,5-triphosphate receptor (IP3R), a protein that “gates” Ca2+ release from intracellular stores, triggers Ca2+ cell influx and thereby functions as a major regulator of Ca2+ signaling. In the present study, we determined whether the L domain links Gag to Ca2+ signaling machinery. Depletion of IP3R and inactivation of phospholipase C (PLC) inhibited budding whether or not Tsg101 was bound to Gag. PLC hydrolysis of phosphatidylinositol-(4,5)-bisphosphate generates inositol (1,4,5)-triphosphate, the ligand that activates IP3R. However, with Tsg101 bound, Gag release was independent of Gq-mediated activation of PLC, and budding was readily enhanced by pharmacological stimulation of PLC. Moreover, IP3R was redistributed to the cell periphery and cytosolic Ca2+ was elevated, events indicative of induction of Ca2+ signaling. The results suggest that L domain function, ESCRT machinery and Ca2+ signaling are linked events in Gag release.  相似文献   

12.
Ca2+ signals through store-operated Ca2+ (SOC) channels, activated by the depletion of Ca2+ from the endoplasmic reticulum, regulate various physiological events. Orai1 is the pore-forming subunit of the Ca2+ release-activated Ca2+ (CRAC) channel, the best characterized SOC channel. Orai1 is activated by stromal interaction molecule (STIM) 1, a Ca2+ sensor located in the endoplasmic reticulum. Orai1 and STIM1 are crucial for SOC channel activation, but the molecular mechanisms regulating Orai1 function are not fully understood. In this study, we demonstrate that protein kinase C (PKC) suppresses store-operated Ca2+ entry (SOCE) by phosphorylation of Orai1. PKC inhibitors and knockdown of PKCβ both resulted in increased Ca2+ influx. Orai1 is strongly phosphorylated by PKC in vitro and in vivo at N-terminal Ser-27 and Ser-30 residues. Consistent with these results, substitution of endogenous Orai1 with an Orai1 S27A/S30A mutant resulted in increased SOCE and CRAC channel currents. We propose that PKC suppresses SOCE and CRAC channel function by phosphorylation of Orai1 at N-terminal serine residues Ser-27 and Ser-30.  相似文献   

13.
The PKD1 or PKD2 genes encode polycystins (PC) 1 and 2, which are associated with polycystic kidney disease. Previously we demonstrated that PC2 interacts with the inositol 1,4,5-trisphosphate receptor (IP3R) to modulate Ca2+ signaling. Here, we investigate whether PC1 also regulates IP3R. We generated a fragment encoding the last six transmembrane (TM) domains of PC1 and the C-terminal tail (QIF38), a section with the highest homology to PC2. Using a Xenopus oocyte Ca2+ imaging system, we observed that expression of QIF38 significantly reduced the initial amplitude of IP3-induced Ca2+ transients, whereas a mutation lacking the C-terminal tail did not. Thus, the C terminus is essential to QIF38 function. Co-immunoprecipitation assays demonstrated that through its C terminus, QIF38 associates with the IP3-binding domain of IP3R. A shorter PC1 fragment spanning only the last TM and the C-terminal tail also reduced IP3-induced Ca2+ release, whereas another C-terminal fragment lacking any TM domain did not. Thus, only endoplasmic reticulum-localized PC1 can modulate IP3R. Finally, we show that in the polarized Madin-Darby canine kidney cells, heterologous expression of full-length PC1 resulted in a smaller IP3-induced Ca2+ response. Overexpression of the IP3-binding domain of IP3R reversed the inhibitory effect of PC1, suggesting interaction of full-length PC1 (or its cleavage forms) with endogenous IP3R in Madin-Darby canine kidney cells. These results indicate that the behavior of full-length PC1 in mammalian cells is congruent with that of PC1 C-terminal fragments in the oocyte system. These data demonstrate that PC1 inhibits Ca2+ release, perhaps opposing the effect of PC2, which facilitates Ca2+ release through the IP3R.  相似文献   

14.
We recently identified Receptor for Activated C Kinase 1 (RACK1) as one of the molecular links between abscisic acid (ABA) signaling and its regulation on protein translation. Moreover, we identified Eukaryotic Initiation Factor 6 (eIF6) as an interacting partner of RACK1. Because the interaction between RACK1 and eIF6 in mammalian cells is known to regulate the ribosome assembly step of protein translation initiation, it was hypothesized that the same process of protein translation in Arabidopsis is also regulated by RACK1 and eIF6. In this article, we analyzed the amino acid sequences of eIF6 in different species from different lineages and discovered some intriguing differences in protein phosphorylation sites that may contribute to its action in ribosome assembly and biogenesis. In addition, we discovered that, distinct from non-plant organisms in which eIF6 is encoded by a single gene, all sequenced plant genomes contain two or more copies of eIF6 genes. While one copy of plant eIF6 is expressed ubiquitously and might possess the conserved function in ribosome biogenesis and protein translation, the other copy seems to be only expressed in specific organs and therefore may have gained some new functions. We proposed some important studies that may help us better understand the function of eIF6 in plants.Key words: CK1, eIF6, PKC, protein translation, RACK1, ribosome assembly, ribosome biogenesisEukaryotic Initiation Factor 6 (eIF6) was originally purified from wheat germ1 and was found to function as a ribosome dissociation factor through binding to the 60S ribosome subunit and preventing its association with the 40S ribosome subunit.2 Its homologous proteins were later purified from rabbit reticulocyte lysates,3 calf liver4 and human cells.4 The action of eIF6 in preventing the ribosome subunits association was later found to involve another two proteins, the activated Protein Kinase C (PKC) and the Receptor for Activated C Kinase 1 (RACK1) in mammalian cells.5 PKC is a family of proteins that can be activated by elevated cellular concentration of Ca2+ or diacylglycerol and is involved in multiple signal transduction pathways in mammalian cells.6 RACK1 was identified as a receptor for activated PKC, anchoring PKC to the subcellular location where its substrate is present.7,8 In this protein complex, RACK1 serves as a scaffold protein that simultaneously binds to eIF6 and activated PKC to bring these two proteins to close proximity. PKC then phosphorylates eIF6, leading to its dissociation from the 60S ribosome subunit and consequently allowing the association between the 40S and 60S ribosome subunits to assemble a functional 80S subunit to initiate protein translation5 (Fig. 1). Genetic studies supported the role of mammalian eIF6 in protein translation initiation as well as in cell growth.9 More recent structural studies supported a similar role of eIF6 in regulating 80S ribosome assembly in yeast.10,11 Yeast eIF6 (Tif6p) was also known to regulate 60S ribosome biogenesis.12,13 Very recently, eIF6 was identified as a component of a protein complex that interacts with the RNA-induced silencing complex and plays a role in microRNA-directed gene silencing.14 For a more comprehensive review of eIF6''s function in mammalian cells and in yeast, readers should refer to the following review article.15Open in a separate windowFigure 1A schematic presentation of the proposed molecular mode of action of eIF6, RACK1, PKC and CK1 in ribosome assembly and protein translation. Nuclear CK1 phosphorylates eIF6 at Serine 174 and Serine 175. This phosphorylation is required for the shuttling of eIF6 from nucleus into cytosol. eIF6 prevents joining of the cytosolic 60S ribosome subunit with the 40S subunit from forming a functional 80S ribosome. RACK1, via binding simultaneously to the eIF6 and the activated PKC, can facilitate the phosphorylation of eIF6 at Serine 235 by PKC. The Serine 235 phosphorylated eIF6 then disassociates from 60S ribosome, thus allowing the assembly of functional 80S ribosome and initiation of protein translation. CK1, Casein Kinase 1; 60S, 60S ribosome subunit; 40S, 40S ribosome subunit; eIF6, Eukaryotic Initiation Factor 6; RACK1, Receptor for Activated C Kinase 1; PKC, Protein Kinase C; pi, phosphate.Despite considerable progress that has been made in the identification of central components of plant hormone abscisic acid (ABA) signaling, little is known about the molecular mechanism of the long-recognized effect of ABA on protein translation. Our group has been working on the functional analysis of Arabidopsis RACK1 gene family,1619 and has identified RACK1 as a negative regulator of ABA responses.18 Recently, we discovered that RACK1 may play a role in ribosome assembly and 60S ribosome subunit biogenesis and therefore serve as one of the molecular links between ABA signaling and its control on protein translation.20 In addition, we discovered that RACK1 physically interacts with eIF6 in a yeast two-hybrid assay and in a Bi-molecular Fluorescence Complementation assay in an Arabidopsis leaf mesophyll protoplast system. The conserved interaction between RACK1 and eIF6 in plants and in mammals implies an evolutionarily conserved role of eIF6 and RACK1 in ribosome biogenesis, assembly and protein translation.  相似文献   

15.

Background

Trypanosoma cruzi is a parasitic protist that causes Chagas disease, which is prevalent in Latin America. Because of the unavailability of an effective drug or vaccine, and because about 8 million people are infected with the parasite worldwide, the development of novel drugs demands urgent attention. T. cruzi infects a wide variety of mammalian nucleated cells, with a preference for myocardial cells. Non-dividing trypomastigotes in the bloodstream infect host cells where they are transformed into replication-capable amastigotes. The amastigotes revert to trypomastigotes (trypomastigogenesis) before being shed out of the host cells. Although trypomastigote transformation is an essential process for the parasite, the molecular mechanisms underlying this process have not yet been clarified, mainly because of the lack of an assay system to induce trypomastigogenesis in vitro.

Methodology/Principal Findings

Cultivation of amastigotes in a transformation medium composed of 80% RPMI-1640 and 20% Grace’s Insect Medium mediated their transformation into trypomastigotes. Grace’s Insect Medium alone also induced trypomastigogenesis. Furthermore, trypomastigogenesis was induced more efficiently in the presence of fetal bovine serum. Trypomastigotes derived from in vitro trypomastigogenesis were able to infect mammalian host cells as efficiently as tissue-culture-derived trypomastigotes (TCT) and expressed a marker protein for TCT. Using this assay system, we demonstrated that T. cruzi inositol 1,4,5-trisphosphate receptor (TcIP3R)—an intracellular Ca2+ channel and a key molecule involved in Ca2+ signaling in the parasite—is important for the transformation process.

Conclusion/Significance

Our findings provide a new tool to identify the molecular mechanisms of the amastigote-to-trypomastigote transformation, leading to a new strategy for drug development against Chagas disease.  相似文献   

16.
The inositol 1,4,5-trisphosphate receptor (InsP3R) family of Ca2+ release channels is central to intracellular Ca2+ signaling in mammalian cells. The InsP3R channels release Ca2+ from intracellular compartments to generate localized Ca2+ transients that govern a myriad of cellular signaling phenomena (Berridge, 1993. Nature. 361:315-325; Joseph, 1996. Cell Signal. 8:1-7; Kume et al., 1997. Science. 278:1940-1943; Berridge, 1997. Nature. 368:759-760). express multiple InsP3R isoforms, but only the function of the single type 1 InsP3R channel is known. Here the single-channel function of single type 2 InsP3R channel is defined for the first time. The type 2 InsP3R forms channels with permeation properties similar to that of the type 1 receptor. The InsP3 regulation and Ca2+ regulation of type 1 and type 2 InsP3R channels are strikingly different. Both InsP3 and Ca2+ are more effective at activating single type 2 InsP3R, indicating that single type 2 channels mobilize substantially more Ca2+ than single type 1 channels in cells. Furthermore, high cytoplasmic Ca2+ concentrations inactivate type 1, but not type 2, InsP3R channels. This indicates that type 2 InsP3R channel is different from the type 1 channel in that its activity will not be inherently self-limiting, because Ca2+ passing through an active type 2 channel cannot feed back and turn the channel off. Thus the InsP3R identity will help define the spatial and temporal nature of local Ca2+ signaling events and may contribute to the segregation of parallel InsP3 signaling cascades in mammalian cells.  相似文献   

17.
The life cycles of apicomplexan parasites progress in accordance with fluxes in cytosolic Ca2+. Such fluxes are necessary for events like motility and egress from host cells. We used genetically encoded Ca2+ indicators (GCaMPs) to develop a cell-based phenotypic screen for compounds that modulate Ca2+ signaling in the model apicomplexan Toxoplasma gondii. In doing so, we took advantage of the phosphodiesterase inhibitor zaprinast, which we show acts in part through cGMP-dependent protein kinase (protein kinase G; PKG) to raise levels of cytosolic Ca2+. We define the pool of Ca2+ regulated by PKG to be a neutral store distinct from the endoplasmic reticulum. Screening a library of 823 ATP mimetics, we identify both inhibitors and enhancers of Ca2+ signaling. Two such compounds constitute novel PKG inhibitors and prevent zaprinast from increasing cytosolic Ca2+. The enhancers identified are capable of releasing intracellular Ca2+ stores independently of zaprinast or PKG. One of these enhancers blocks parasite egress and invasion and shows strong antiparasitic activity against T. gondii. The same compound inhibits invasion of the most lethal malaria parasite, Plasmodium falciparum. Inhibition of Ca2+-related phenotypes in these two apicomplexan parasites suggests that depletion of intracellular Ca2+ stores by the enhancer may be an effective antiparasitic strategy. These results establish a powerful new strategy for identifying compounds that modulate the essential parasite signaling pathways regulated by Ca2+, underscoring the importance of these pathways and the therapeutic potential of their inhibition.  相似文献   

18.
Toxoplasma gondii has a complex life cycle involving different hosts and is dependent on fast responses, as the parasite reacts to changing environmental conditions. T. gondii causes disease by lysing the host cells that it infects and it does this by reiterating its lytic cycle, which consists of host cell invasion, replication inside the host cell, and egress causing host cell lysis. Calcium ion (Ca2+) signaling triggers activation of molecules involved in the stimulation and enhancement of each step of the parasite lytic cycle. Ca2+ signaling is essential for the cellular and developmental changes that support T. gondii parasitism.The characterization of the molecular players and pathways directly activated by Ca2+ signaling in Toxoplasma is sketchy and incomplete. The evolutionary distance between Toxoplasma and other eukaryotic model systems makes the comparison sometimes not informative. The advent of new genomic information and new genetic tools applicable for studying Toxoplasma biology is rapidly changing this scenario. The Toxoplasma genome reveals the presence of many genes potentially involved in Ca2+ signaling, even though the role of most of them is not known. The use of Genetically Encoded Calcium Indicators (GECIs) has allowed studies on the role of novel calcium-related proteins on egress, an essential step for the virulence and dissemination of Toxoplasma. In addition, the discovery of new Ca2+ players is generating novel targets for drugs, vaccines, and diagnostic tools and a better understanding of the biology of these parasites.  相似文献   

19.
20.
RBL-2H3 rat basophilic leukemia cells were homogenized and fractionated. A fraction F3 obtained by differential centrifugation was 6-fold enriched in [3H]-inositol 1,4,5-trisphosphate (InsP3) binding activity, while the NADH-cytochrome c oxidoreductase and sulphatase-C activities were only 3.8- and 2.9-fold enriched, respectively. Furthermore, the three InsP3 receptor (InsP3R) isoforms, two sarco/endoplasmic reticulum Ca 2+ ATPase (SERCA) isoforms (2b and 3) as well as four Ca 2+ binding proteins (calreticulin, calnexin, protein disulfide isomerase (PDI) and BiP), were present in this fraction. Fraction F3 was, therefore, further purified on a discontinuous sucrose density gradient, and the 3 resulting fractions were analyzed. The InsP3 binding sites were distributed over the gradient and did not co-migrate with the RNA. We examined the relative content of the three InsP3R isoforms, of both SERCA2b and 3, as well as that of the four Ca 2+ binding proteins in fraction F3 and the sucrose density gradient fractions. Ins P3R-1 and InsP3R-2 showed a similar distribution, with the highest level in the light and intermediate density fractions. InsP3R-3 distributed differently, with the highest level in the intermediate density fraction. Both SERCA isoforms distributed similarly to InsP3R-1 and InsP3R-2. SERCA3 was present at a very low level in the high density fraction. Calreticulin and BiP showed a pattern similar to that of InsP3R-1 and InsP3R-2 and the SERCs. PDI was clearly enriched in the light density fraction while calnexin was broadly distributed. These results indicate a heterogeneous distribution of the three InsP3R isoforms, the two SERCA isoforms and the four Ca2+ binding proteins investigated. This heterogeneity may underlie specialization of the Ca2+ stores and the subsequent initiation of intracellular Ca2+ signals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号