首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Components of astrocytic intercellular calcium signaling   总被引:5,自引:0,他引:5  
It has become evident that astrocytes play major roles in central nervous system (CNS) function. Because they are endowed with ion channels, transport pathways, and enzymatic intermediates optimized for ionic uptake, degradation of metabolic products, and inactivation of numerous substances, they are able to sense and correct for changes in neural microenvironment. Besides this housekeeping role, astrocytes modulate neuronal activity either by direct communication through gap junctions or through the release of neurotransmitters and/or nucleotides affecting nearby receptors. One prominent mode by which astrocytes regulate their own activity and influence neuronal behavior is via Ca2+ signals, which may be restricted within one cell or be transmitted throughout the interconnected syncytium through the propagation of intercellular calcium waves. This review aims to outline the most recent advances regarding the active communication of astrocytes that is encoded by intracellular calcium variation.  相似文献   

3.
Gap junction channels are made of a family proteins called connexins. The best-studied type of connexin, Connexin43 (Cx43), is phosphorylated at several sites in its C-terminus. The tumor-promoting phorbol ester TPA strongly inhibits Cx43 gap junction channels. In this study we have investigated mechanisms involved in TPA-induced phosphorylation of Cx43 and inhibition of gap junction channels. The data show that TPA-induced inhibition of gap junction intercellular communication (GJIC) is dependent on both PKC and the MAP kinase pathway. The data suggest that PKC-induced activation of MAP kinase partly involves Src-independent trans-activation of the EGF receptor, and that TPA-induced shift in SDS-PAGE gel mobility of Cx43 is caused by MAP kinase phosphorylation, whereas phosphorylation of S368 by PKC does not alter gel migration of Cx43. We also show that TPA, in addition to phosphorylation of S368, also induces phosphorylation of S255 and S262, in a MAP kinase-dependent manner. The data add to our understanding of the molecular mechanisms involved in the interplay between signaling pathways in regulation of GJIC.  相似文献   

4.
Smooth muscle contraction is regulated by changes in cytosolic Ca2+ concentration ([Ca2+]i). In response to stimulation, Ca2+ increase in a single cell can propagate to neighbouring cells through gap junctions, as intercellular Ca2+ waves. To investigate the mechanisms underlying Ca2+ wave propagation between smooth muscle cells, we used primary cultured rat mesenteric smooth muscle cells (pSMCs). Cells were aligned with the microcontact printing technique and a single pSMC was locally stimulated by mechanical stimulation or by microejection of KCl. Mechanical stimulation evoked two distinct Ca2+ waves: (1) a fast wave (2 mm/s) that propagated to all neighbouring cells, and (2) a slow wave (20 μm/s) that was spatially limited in propagation. KCl induced only fast Ca2+ waves of the same velocity as the mechanically induced fast waves. Inhibition of gap junctions, voltage-operated calcium channels, inositol 1,4,5-trisphosphate (IP3) and ryanodine receptors, shows that the fast wave was due to gap junction mediated membrane depolarization and subsequent Ca2+ influx through voltage-operated Ca2+ channels, whereas, the slow wave was due to Ca2+ release primarily through IP3 receptors. Altogether, these results indicate that temporally and spatially distinct mechanisms allow intercellular communication between SMCs. In intact arteries this may allow fine tuning of vessel tone.  相似文献   

5.
We have investigated the effect of Alendronate and Pamidronate, two bisphosphonates widely employed for the treatment of pathologies related to bone loss, on the setting properties and in vitro bioactivity of a calcium phosphate bone cement. The cement composition includes α-tricalcium phosphate (α-TCP) (90 wt%), nanocrystalline hydroxyapatite (5 wt%) and CaHPO4 · 2H2O (5 wt%). Disodium Alendronate and disodium Pamidronate were added to the liquid phase (bidistilled water) at two different concentrations: 0.4 and 1 mM (AL0.4, AL1.0, PAM0.4, PAM1.0). Both the initial and the final setting times of the bisphosphonate-containing cements increase with respect to the control cement. X-ray diffraction analysis, mechanical tests, and SEM investigations were carried out on the cements after different times of soaking in physiological solution. The rate of transformation of α-TCP into calcium deficient hydroxyapatite, as well as the microstructure of the cements, is not affected by the presence of Alendronate and Pamidronate. At variance, the bisphosphonates provoke a modest worsening of the mechanical properties. MG63 osteoblasts grown on the cements show a normal morphology and biological tests demonstrate very good rate of proliferation and viability in every experimental time. In particular, both Alendronate and Pamidronate promote osteoblast proliferation and differentiation, whereas they inhibit osteoclastogenesis and osteoclast function.  相似文献   

6.
7.
Podocalyxin (PODXL) is an anti-adhesive glycoprotein expressed abundantly in the epithelial cells of kidney glomeruli. In contrast, we report herein that expression of podocalyxinGFP (PODXLGFP) in CHO cells increased the adherence to immobilized fibronectin, spreading, and migration. The transient knockdown of PODXL or the expression of PODXL lacking the cytosolic carboxyterminal domain (PODXL-Δ451) inhibited cell adherence. Moreover, the effect of PODXL was prevented by the ectodomain of podocalyxin (PODXL-Δ429), by RGD peptides, or by inhibitors of the vitronectin receptor (αvβ3). CHO-PODXLGFP also showed adherence to human vascular endothelial cells (HUVEC), exhibiting polarization of granular PODXL and emission of long and thin, spike-like, protrusions with PODXL granules progressing along. We found PODXL colocalized with β1 integrins at membrane ruffle regions on the leading edge of the cell and a blocking β1 mAb prevented the spreading of cells. PODXL was also associated with submembrane actin in lamellipodia ruffles, or with vinculin at cell protrusions. The proadhesive effects of PODXL were absent in sialic acid deficient O-glycomutant CHO cells. To conclude, we present evidence indicating that human PODXL enhances the adherence of cells to immobilized ligands and to vascular endothelial cells through a mechanism(s) dependent on the activity of integrins.  相似文献   

8.
9.
'Transcytosis' of calcium (Ca) from bone by osteoclasts was identified by using a newly developed method that uses fixed or living osteoclast-like cells previously differentiated in vitro, a Ca-specific cell-membrane-impermeable fluorescent dye, and confocal laser scanning microscopy. This method, called the cell-membrane-impermeable dye method, revealed that in fixed osteoclast-like cells, a large quantity of Ca was confined within vacuoles and transported toward the apical cell membrane in the cells. These Ca-confined vacuoles were co-localized with marker proteins of both ruffled border and lysosome. The vacuoles were disrupted when treated with an inhibitor of ruffled border ATPase. In living osteoclast-like cells, Ca-confined vacuoles were again preferentially located at the central region and near the apical cell membrane. These results suggest actual transcytosis of Ca from bone by osteoclasts, and are the first direct evidence of the significant role of osteoclasts in the entire process of Ca metabolism in bone.  相似文献   

10.
Summary The ultrastructure of the chief cells of the parathyroid gland and thyroid parafollicular (C) cells and the morphology of bone in calcium depletion and subsequent repletion were examined in young growing pigs. A low calcium diet resulted in osteopenia, increased removal of the cartilaginous core, osteoclasia and osteocytic osteolysis. Subsequent repletion quickly returned bone to normal. In pigs fed the low calcium diet, there was a marked depletion of secretory granules but a striking increase in the number of microtubules in chief cells. Increasing the calcium content of the diet to normal quickly returned the ultrastructural appearance of chief cells to apparent normal. In the initial response to calcium repletion, chief cells exhibited large number of lysosomes and occasionally prominent paracrystalloid bodies. Electron microscopic examination of parafollicular (C) cells of the thyroid gland failed to reveal differences in ultrastructure between test and control pigs. These findings support the view that bone resorption following calcium deficiency may be the result of a secondary hyperparathyroidism rather than of calcium deficiency per se.Supported by U.S.P.H.S. Grant A.M. 12957 from the Division of Arthritis and Metabolic Diseases  相似文献   

11.
Bone marrow- (BM-) derived cells can differentiate into smooth muscle-like cells (SMLC), resulting in vascular pathogenesis. However, the molecular mechanism of the differentiation remains unknown. We have recently reported that Notch signaling promotes while a Notch target HERP1 inhibit the differentiation of mesenchymal cells to SMC. During the differentiation of BM-derived mononuclear cells into smooth muscle α-actin (SMA)-positive cells, expression of Jagged1 and SMC-specific Notch3 was increased. Blocking Notch with γ-secretase inhibitor prevented the induction of SMA. Wire-mediated vascular injury was produced in femoral arteries in mice transplanted with green fluorescent protein (GFP)-positive cells. Many double-positive cells for GFP/Jagged1 or GFP/Notch3 were detected in the thickened neointima. In contrast, only a few SMA-positive cells were positive for GFP in neointima where HERP1, a suppressor for Notch, were abundantly expressed. In conclusion, Notch-HERP1 pathway plays an important role in differentiation of BM-derived mononuclear cells into SMLC.  相似文献   

12.
Autism spectrum disorder (ASD) is a group of complex, neurological disorders that affect early cognitive, social, and verbal development. Our understanding of ASD has vastly improved with advances in genomic sequencing technology and genetic models that have identified >800 loci with variants that increase susceptibility to ASD. Although these findings have confirmed its high heritability, the underlying mechanisms by which these genes produce the ASD phenotypes have not been defined. Current efforts have begun to “functionalize” many of these variants and envisage how these susceptibility factors converge at key biochemical and biophysical pathways. In this review, we discuss recent work on intracellular calcium signaling in ASD, including our own work, which begins to suggest it as a compelling candidate mechanism in the pathophysiology of autism and a potential therapeutic target. We consider how known variants in the calcium signaling genomic architecture of ASD may exert their deleterious effects along pathways particularly involving organelle dysfunction including the endoplasmic reticulum (ER), a major calcium store, and the mitochondria, a major calcium ion buffer, and theorize how many of these pathways intersect.  相似文献   

13.
In the cochlea, cell damage triggers intercellular Ca2+ waves that propagate through the glial-like supporting cells that surround receptor hair cells. These Ca2+ waves are thought to convey information about sensory hair cell-damage to the surrounding supporting cells within the cochlear epithelium. Mitochondria are key regulators of cytoplasmic Ca2+ concentration ([Ca2+]cyt), and yet little is known about their role during the propagation of such intercellular Ca2+ signalling. Using neonatal rat cochlear explants and fluorescence imaging techniques, we explore how mitochondria modulate supporting cell [Ca2+]cyt signals that are triggered by ATP or by hair cell damage. ATP application (0.1–50 μM) caused a dose dependent increase in [Ca2+]cyt which was accompanied by an increase in mitochondrial calcium. Blocking mitochondrial Ca2+ uptake by dissipating the mitochondrial membrane potential using CCCP and oligomycin or using Ru360, an inhibitor of the mitochondrial Ca2+ uniporter, enhanced the peak amplitude and duration of ATP-induced [Ca2+]cyt transients. In the presence of Ru360, the mean propagation velocity, amplitude and extent of spread of damage-induced intercellular Ca2+ waves was significantly increased. Thus, mitochondria function as spatial Ca2+ buffers during agonist-evoked [Ca2+]cyt signalling in cochlear supporting cells and play a significant role in regulating the spatio-temporal properties of intercellular Ca2+ waves.  相似文献   

14.

Background

Honokiol, a cell-permeable phenolic compound derived from the bark of magnolia trees and present in Asian herbal teas, has a unique array of pharmacological actions, including the inhibition of multiple autonomic responses. We determined the effects of honokiol on calcium signaling underlying transmission mediated by human M3 muscarinic receptors expressed in Chinese hamster ovary (CHO) cells. Receptor binding was determined in radiolabelled ligand binding assays; changes in intracellular calcium concentrations were determined using a fura-2 ratiometric imaging protocol; cytotoxicity was determined using a dye reduction assay.

Results

Honokiol had a potent (EC50 ≈ 5 μmol/l) inhibitory effect on store operated calcium entry (SOCE) that was induced by activation of the M3 receptors. This effect was specific, rapid and partially reversible, and was seen at concentrations not associated with cytotoxicity, inhibition of IP3 receptor-mediated calcium release, depletion of ER calcium stores, or disruption of M3 receptor binding.

Conclusions

It is likely that an inhibition of SOCE contributes to honokiol disruption of parasympathetic motor functions, as well as many of its beneficial pharmacological properties.  相似文献   

15.
Motose H  Fukuda H  Sugiyama M 《Planta》2001,213(1):121-131
The transdifferentiation of isolated mesophyll cells of zinnia (Zinnia elegans L.) into tracheary elements (TEs) has been well studied as a model of plant cell differentiation. In order to investigate intercellular communication in this phenomenon, two types of culture method were developed, in which mesophyll cells were embedded in a thin sheet of agarose gel and cultured on solid medium, or embedded in microbeads of agarose gel and cultured in liquid medium. A statistical analysis of the two-dimensional distribution of TEs in the thin-sheet cultures demonstrated their aggregation. In the microbead cultures, the frequency of TE differentiation was shown to depend on the local cell density (the cell density in each microbead): TE differentiation required local cell densities of more than 105 cells ml−1. These results suggest that TE differentiation involves cell-cell communication mediated by a locally acting diffusible factor. This presumptive factor was characterized by applying a modified version of the sheet culture, which used two sheets of different cell densities, a low-density sheet and a high-density sheet. Differentiation of TEs in the former could be induced only by bringing it into contact with the latter. Insertion of a 25-kDa-cutoff membrane between the high-density and low-density sheets severely suppressed such induction of TEs in the low-density sheet while a 300-kDa-cutoff membrane suppressed induction only slightly. Insertion of agarose sheets containing immobilized pronase E or trypsin also interfered with the induction of TEs in the low-density sheets. Thus, a proteinaceous macromolecule of 25–300 kDa in molecular weight was assumed to mediate the local intercellular communication required for TE differentiation. This substance was designated “xylogen” with reference to its xylogenic activity. The time of requirement for xylogen during TE differentiation was assessed by experiments in which cells in the low-density sheet were separated from xylogen produced in the high-density sheet at various times by insertion of a 25-kDa-cutoff membrane between the two sheets, and was estimated to be from the 36th hour to the 60th hour of culture (12–36 h before visible thickening of secondary cell walls of TEs). Received: 13 July 2000 / Accepted: 4 October 2000  相似文献   

16.
The aim of this study was to investigate the effect of common vitamin D receptor (VDR) gene polymorphisms on the bone mineral density (BMD) of Greek postmenopausal women. Healthy postmenopausal women (n=578) were recruited for the study. The BMD of the lumbar spine and hip was measured using dual-energy X-ray absorptiometry with the Lunar DPX-MD device. Assessment of dietary calcium intake was performed with multiple 24-h recalls. Genotyping was performed for the BsmI, TaqI and Cdx-2 polymorphisms of the VDR gene. The selected polymorphisms were not associated with BMD, osteoporosis or osteoporotic fractures. Stratification by calcium intake revealed that in the low calcium intake group (<680 mg/day), all polymorphisms were associated with the BMD of the lumbar spine (P<.05). After adjustment for potential covariates, BsmI and TaqI polymorphisms were associated with the presence of osteoporosis (P<.05), while the presence of the minor A allele of Cdx-2 polymorphism was associated with a lower spine BMD (P=.025). In the higher calcium intake group (>680 mg/day), no significant differences were observed within the genotypes for all polymorphisms. The VDR gene is shown to affect BMD in women with low calcium intake, while its effect is masked in women with higher calcium intake. This result underlines the significance of adequate calcium intake in postmenopausal women, given that it exerts a positive effect on BMD even in the presence of negative genetic predisposition.  相似文献   

17.
We investigated the effect of newborn bovine serum on the intracellular calcium [Ca2+]i response of primary cultured bone cells stimulated by fluid flow. As it has been previously established that these cells exhibit [Ca2+]i responses to fluid flow shear stress in saline media without growth factors or other chemically stimulatory factors, we hypothesized that the addition of serum to the flow medium would enhance the mechanosensitivity of the cells. We examined the effect of a short-term (10–15 min) exposure of the cells to 2 and 10% serum prior to flow stimulation (pretreated) compared to not exposing the cells prior to flow stimulation (unpretreated). The cells were subjected to a well-defined, 90-s flow stimulus with shear stress levels ranging from 0.02 to 3.5 Pa in a laminar flow chamber using a saline medium supplemented with 2 or 10% serum. For pretreatment, the serum concentration was the same from pre-flow to flow exposure. We observed a differential effect in the magnitude of the peak [Ca2+]i response modulated by the concentration of serum in the pre-flow medium. Additionally, ATP-supplemented flow was examined as a comparison to the serum-supplemented flow and exhibited a similar trend in the peak [Ca2+]i flow response that was dependent on ATP concentration and pre-flow exposure conditions. These findings demonstrate that under the conditions of this study, chemical agonist exposure can modulate the [Ca2+]i response in bone cells subjected to fluid flow-induced shear stress.  相似文献   

18.
Summary Ion-selective microelectrodes inserted into the compound eyes of Calliphora were used to monitor the changes in extracellular concentration of Ca2+ and Na+ (Cao, Nao) brought about by a 1-min exposure to white light (maximal luminous intensity 0.1 cd/cm2).Using Ringer solution as the reference (Ca2+ = 1 mM), the dark concentration of the calcium in the retina was found to be (1.4 ± 0.4) mM (n=12). Stimulation with light reduces Cao. At intensities near maximal the Cao signal is phasic, reaching a transient minimum about 6 s after light onset and then rising to a nearly stable plateau below the dark level (-3.3% ± 2.6%). Cao signals measured in the white-eyed mutant (chalky), which lacks pigment granules, are comparable to those in the wild type.Conclusions: (a) There are no extracellular Ca2+ binding sites that regulate light adaptation, such as were postulated by Hochstrate and Hamdorf (1985). (b) Ca2+ influx into the photoreceptors seems to be necessary for light adaptation, (c) The pigment granules have no major function in intracellular calcium regulation.The time course of the Nao signals resembles that of the Cao signals. Because the percentage concentration change is small, light-induced extracellular Na+-depletion cannot contribute to a reduced response amplitude at light adaptation.Abbreviations Ca i intracellular Ca2+ concentration - Ca o extracellular Ca2+ concentration - Kino extracellular K+ concentration - Na o extracellular Na+ concentration  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号