首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bone graft substitutes have become an essential component in a number of orthopedic applications. Autologous bone has long been the gold standard for bone void fillers. However, the limited supply and morbidity associated with using autologous graft material has led to the development of many different bone graft substitutes. Allogeneic demineralized bone matrix (DBM) has been used extensively to supplement autograft bone because of its inherent osteoconductive and osteoinductive properties. Synthetic and natural bone graft substitutes that do not contain growth factors are considered to be osteoconductive only. Bioactive glass has been shown to facilitate graft containment at the operative site as well as activate cellular osteogenesis. In the present study, we present the results of a comprehensive in vitro and in vivo characterization of a combination of allogeneic human bone and bioactive glass bone void filler, NanoFUSE® DBM. NanoFUSE® DBM is shown to be biocompatible in a number of different assays and has been cleared by the FDA for use in bone filling indications. Data are presented showing the ability of the material to support cell attachment and proliferation on the material thereby demonstrating the osteoconductive nature of the material. NanoFUSE® DBM was also shown to be osteoinductive in the mouse thigh muscle model. These data demonstrate that the DBM and bioactive glass combination, NanoFUSE® DBM, could be an effective bone graft substitute.  相似文献   

2.
Current osteoinductive protein therapy utilizes bolus administration of large doses of bone morphogenetic proteins (BMPs), which is costly, and may not replicate normal bone healing. The limited in vivo biologic activity of BMPs requires the investigation of growth factors that may enhance this activity. In this study, we utilized the C3H10T1/2 murine mesenchymal stem cell line to test the hypotheses that osteoactivin (OA) has comparable osteoinductive effects to bone morphogenetic protein-2 (BMP-2), and that sustained administration of either growth factor would result in increased osteoblastic differentiation as compared to bolus administration. Sustained release biodegradable hydrogels were designed, and C3H10T1/2 cells were grown on hydrogels loaded with BMP-2 or OA. Controls were grown on unloaded hydrogels, and positive controls were exposed to bolus growth factor administration. Cells were harvested at several time points to assess osteoblastic differentiation. Alkaline phosphatase (ALP) staining and activity, and gene expression of ALP and osteocalcin were assessed. Treatment with OA or BMP-2 resulted in comparable effects on osteoblastic marker expression. However, cells grown on hydrogels demonstrated osteoblastic differentiation that was not as robust as cells treated with bolus administration. This study shows that OA has comparable effects to BMP-2 on osteoblastic differentiation using both bolus administration and continuous release, and that bolus administration of OA has a more profound effect than administration using hydrogels for sustained release. This study will lead to a better understanding of appropriate delivery methods of osteogenic growth factors like OA for repair of fractures and segmental bone defects.  相似文献   

3.
Bone reconstruction can be performed with an autogeneic graft from various donor regions. Osteoconductive and osteoinductive bone substitutes originate from substances of diverse chemical and morphological types and can have a synthetic or a biological derivation. Alongside autogeneic bone transplants and allogenic and xenogeneic bone implants, alloplastic bone replacements of synthetic or semi-synthetic origin are being used for defect reconstruction. In an animal model in rabbits five bone substitutes and one autogeneic graft were surgically incorporated into identical bone defects (10times 10 mm in size) in six anatomically defined regions of the skull. With scintigraphic and histological methods, the metabolic dynamics of the bone is examined as it reacts to the transplantation of autogeneic bone or to implanted bone replacement material. The different autogeneic, xenogeneic and alloplastic bone replacement materials can be differentiated according to the functional quality of the new tissue and the dynamics of the bone conversion thus induced. In the comparison of mineralized, osteoconductive bone subsitutes (TCP, HA, calcium carbonate ceramics) with demineralized, osteoinductive implants (DBM new, DBM old) and autogeneic bone grafts, the bone inducing matrices show the largest quantity of new bone formation, making possible a volume-constant reconstruction. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
Demineralized bone matrix (DBM) grafts induce new bone formation by locally releasing matrix-associated growth factors, such as bone morphogenetic proteins (BMPs), to the surrounding tissue after implantation. However, the release kinetics of BMPs from DBM lack characterization. Such information can potentially help to improve processing techniques to maximize graft osteoinductive potential, as well as increase understanding of the osteoinductive process itself. We produced DBM with three particle size ranges from bovine cortical bone, i.e., <106, 106–300, and 300–710?μm and extracted 1.5?g of each size range in 40?ml of Sorensen’s buffer at room temperature for up to 168?h. The BMP-7 concentration of the DBM and the buffer were measured at each time point using enzyme-linked immunosorbant assay. Based on measurement of the concentration of BMP-7 in the buffer, the 0–8?h elution rate was high, i.e., 3.3, 2.9, and 2.2?ng BMP-7/g DBM?h, and for the 8–168?h interval was much lower, at 0.039, 0.15, and 0.11?ng BMP-7/g DBM?h for the three size ranges, respectively. By 168?h, there was no indication that elution was nearing completion. Measurement of the residual BMP-7 remaining in the DBM as a function of time yielded unexpected results, i.e., after the BMP-7 content of the DBM declined for the first 4–6?h, it paradoxically increased for the remaining interval. We propose a two-compartment model to help explain these results in terms of the possible distribution of BMP-7 in bone matrix.  相似文献   

5.
Neovascularization is required for bone formation and successful fracture healing. In the process of neovascularization, endothelial progenitor cells (EPCs) play an important role and finish vascular repair through reendothelialization to promote successful fracture healing. In this study, we found that dynamic compression can promote the proliferation and capillary-like tube formation of EPCs in the demineralized bone matrix (DBM) scaffold seed. EPCs isolated from the bone marrow of rats have been cultured in DBM scaffolds before dynamic compression and then seeded in the DBM scaffolds under dynamic conditions. The cells/scaffold constructs were subjected to cyclic compression with 5% strain and at 1 Hz for 4 h/day for 7 consecutive days. By using MTT and real-time PCR, we found that dynamic compression can significantly induce the proliferation of EPCs in three-dimensional culture with an even distribution of cells onto DBM scaffolds. Both in vitro and in vivo, the tube formation assays in the scaffolds showed that the loaded EPCs formed significant tube-like structures. These findings suggest that dynamic compression promoted the vasculogenic activities of EPCs seeded in the scaffolds, which would benefit large bone defect tissue engineering.  相似文献   

6.
Mesenchymal stem cells (MSC) are resident pluripotent cells of bone marrow stroma. MSC are able to differentiate into chondroblasts, adipocytes, neurons, glia, cardiomyocytes, or osteoblasts. The problem of MSC usage in cell therapy of bone defects is widely discussed at present. The experiments were carried out using rats of inbred line Wistar-Kyoto. MSC were isolated from bone marrow and cultivated in vitro. Demineralized bone matrices (DBM) were obtained from parietal bones of rats and hens. Part of DBM was loaded with MSC. Bone defects were made in cranium parietal regions. DBM with or without MSC or metal plates were transplanted in these regions. It was shown that the application of MSC increased angiogenesis and osteogenesis in the damaged bone. The implantation of rat's DBM with MSC led to the formation of a full value bone. MSC suppressed inflammation, when transplantation of hen's DBM was carried out. The application of MSC always improved bone tissue regeneration.  相似文献   

7.
In order to understand the effect of antibiotics delivery to bone tissue, by biodegradable polymeric drug disc, for the treatment of osteomyelitis, a three-dimensional simulation model is developed. The simulation investigates the effect of pressure-induced convection on drug distribution, by taking into account the pressure gradient that exists between capillaries and interstitial space, and also as a result of the surgical opening. The clotting process at the surgical opening is incorporated into the simulation, and the effect of clotting duration is investigated. The clotting duration for the baseline simulation is 2 days and it is observed that increasing this duration depresses the mean drug concentration in the marrow and cortical bone. The effect of double burst release profile is also studied and it is observed that drug concentration drops too rapidly after the first burst to provide any therapeutic effect. However, it is shown that the drug concentration after the second burst stays above the minimum inhibitory concentration of the bacteria for a longer period of time, than would have been observed for a mono-burst release. Inserting non-biodegradable polymethylmethacrylate (PMMA) beads into bone seems to cause a higher average concentration of drug in the marrow. However, this could be brought about by the difference in the geometry between the disc and the bead, and the amount of drug packed in each bead. Further simulations on the management of dead space shows the ineffectiveness of having the void filled up with surgical gel as it becomes an additional barrier to drug delivery to the infected tissues.  相似文献   

8.
【目的】小菜蛾是危害十字花科蔬菜的世界性重要害虫。通过分析抗生素对小菜蛾的毒性效应,了解肠道细菌对小菜蛾适合度的影响,有助于更好地阐明小菜蛾肠道细菌的功能。【方法】利用抗生素处理含有高丰度肠道细菌的萝卜苗饲养品系(FZss)小菜蛾幼虫,同时利用抗生素处理饲料饲养的无肠道细菌(SLss)小菜蛾幼虫,分析抗生素及肠道细菌对小菜蛾适合度的影响。【结果】抗生素处理FZss品系小菜蛾导致了小菜蛾发育历期延长,虫重、蛹重、化蛹率、产卵量和成虫寿命降低。利用抗生素处理无肠道菌的SLss品系小菜蛾幼虫,小菜蛾化蛹率和单雌产卵量均显著降低,而对发育历期、虫重和蛹重则无影响。【结论】综合两个研究的结果发现抗生素处理后宿主适合度的降低一方面是由于抗生素的毒性效应导致,另一方面是由于小菜蛾肠道细菌的缺失引起。抗生素的毒性效应主要表现为对化蛹率和单雌产卵量的影响,而肠道细菌则对小菜蛾的发育历期、虫重、蛹重以及成虫寿命具有重要的促进作用。  相似文献   

9.
The demineralized bone matrix (DBM) putty is a traditional bone graft utilized to facilitate the repair and reconstruction of bone. Recent studies indicated the DBM putties with the various carriers were different in bone repairing ability. In order to prepare a kind of DBM putty with a good biocompatibility and bioactivity, the DBM gel was processed from the DBM and the feasibility as a carrier for the DBM putty was evaluated. After the bovine DBM gel was prepared, the BMPs content as well as the ability to promote osteogenic differentiation of MC3T3-E1 cells in vitro were investigated. Then the DBM putty was prepared and filled into the rat calvarial defect model to evaluate the bone repairing ability by micro-CT and histology. The result showed there was 2.953?±?0.054 ng BMP contained in per gram of the DBM gel. And the ALP production of MC3T3-E1 cells in the DBM gels group increased with prolonged culturing, the mineralized nodules formed in MC3T3-E1 cells on 14th day after co-culture. The putty prepared by DBM gel was easy to handle without loss of DBM particles at room temperature. In the rat calvarial bone defect experiment, histological observation showed more mature bone formed in the DBM putty group than that in the type I collagen group at 12 weeks, which indicated the bone putty prepared by DBM gel exhibited a better bone repair capability.  相似文献   

10.
Bone morphogenetic proteins (BMPs) that have the potential to elicit new bone in vivo have been used in a tissue-engineering approach for the repair of bone injuries and bone defects. Although it is now possible to generate large amounts of recombinant human (rh) BMPs for medical use, the major challenge remains in the development of optimal local delivery systems for these proteins. Here we describe the development of a synthetic biodegradable polymer, poly-d,l-lactic acid-p-dioxanone-polyethylene glycol block copolymer (PLA-DX-PEG). This polymer exhibits promising degradation characteristics for BMP delivery systems and good biocompatibility under test conditions. PLA-DX-PEG/rhBMP-2 composite implants induced ectopic new bone formation effectively when tested in vivo, and can repair large bone defects orthotopically. This polymeric delivery system represents an advance in the technology for the enhancement of bone repair.  相似文献   

11.
Tissue Engineering is an important method for generating cartilage tissue with isolated autologous cells and the support of biomaterials. In contrast to various gel-like biomaterials, human demineralized bone matrix (DBM) guarantees some biomechanical stability for an application in biomechanically loaded regions. The present study combined for the first time the method of seeding chondrocyte-macroaggregates in DBM for the purpose of cartilage tissue engineering. After isolating human nasal chondrocytes and creating a three-dimensional macroaggregate arrangement, the DBM was cultivated in vitro with the macroaggregates. The interaction of the cells within the DBM was analyzed with respect to cell differentiation and the inhibitory effects of chondrocyte proliferation. In contrast to chondrocyte-macroaggregates in the cell-DBM constructs, morphologically modified cells expressing type I collagen dominated. The redifferentiation of chondrocytes, characterized by the expression of type II collagen, was only found in low amounts in the cell-DBM constructs. Furthermore, caspase 3, a marker for apoptosis, was detected in the chondrocyte-DBM constructs. In another experimental setting, the vitality of chondrocytes as related to culture time and the amount of DBM was analyzed with the BrdU assay. Higher amounts of DBM tended to result in significantly higher proliferation rates of the cells within the first 48 h. After 96 h, the vitality decreased in a dose-dependent fashion. In conclusion, this study provides the proof of concept of chondrocyte-macroaggregates with DBM as an interesting method for the tissue engineering of cartilage. The as-yet insufficient redifferentiation of the chondrocytes and the sporadic initiation of apoptosis will require further investigations.  相似文献   

12.
Local delivery of antibiotics via PMMA (polymethyl-methacrylate) has been widely used in the treatment of chronic osteomyelitis for over 40 years. Unfortunately, PMMA is water insoluble, which seriously limits antibiotic delivery. In addition, the polymerization temperature of PMMA is high, and consequently, only heat-stable antibiotics can be used. Therefore our aim has been to develop an effective antibiotic delivery system, which can be loaded with a wide variety of drugs and deliver the molecules in a predictable manner. Capsules with wall thicknesses of 0.3-0.6 mm from PMMA mixtures containing 40-70 w/w% (weight percent) of sorbitol were prepared and their permeability tested with BPB (Bromophenol Blue). Sorbitol content and wall thickness correlated with the BPB release. SEM (scanning electron microscopy) showed that the canalization of capsules also was well correlated with both sorbitol content and wall thickness. The PMMA-sorbitol-based capsule can potentially be a versatile tool in assuring effective delivery of antibiotics and other substances.  相似文献   

13.
Anthracycline antibiotics (daunorubicin, carminomycin and doxorubicin) N-acylated with antibiotic bruneomycin (streptonigrin) have been obtained from the parent compounds upon treatment with N, N'-dicyclohexylcarbodiimide and N-hydroxysuccinimide. These "chimeric" antibiotics are less active both in vitro and in vivo than the parent antibiotics. This demonstrates the stability of the intermolecular amide linkage in these compounds towards chemical and enzymatic hydrolysis as well as their inability to interact with corresponding receptors in contrast to less hindered derivatives of the parent antibiotics.  相似文献   

14.
As therapeutic agents of choice in the treatment of complicated infections, glycopeptide antibiotics are often preferentially used in cases of osteomyelitis, an infection located in bone and notoriously difficult to successfully manage. Yet frequent and heavy doses of these systemically administered antibiotics are conventionally prescribed to obtain higher antibiotic levels in the bone and reduce the high recurrence rates. Targeting antibiotics to the bone after systemic administration would present at least three potential advantages: (i) greater efficacy, by concentrating the therapeutic agent in bone; (ii) greater convenience, through a reduction in the frequency of administration; and (iii) greater safety, by reducing the levels of systemic drug exposure. We present here the design, synthesis and in vitro evaluation of eight prodrugs of the glycopeptide antibacterial agents vancomycin and oritavancin taking advantage of the affinity of the bisphosphonate group for bone for delivery to osseous tissues.  相似文献   

15.
Low water solubility and rapid elimination from the brain inhibits local delivery via implants and other delivery systems of most therapeutic drugs to the brain. We have conjugated the chemotherapy drug, camptothecin (CPT), to poly(ethylene glycol) (PEG) of molecular weight 3400 using previously established protocols. These new conjugates are very water-soluble and hydrolyze at a pH-dependent rate to release the active parent drug. We have studied the uptake of these conjugates by cells in vitro and quantified their cytotoxicity toward gliosarcoma cells. These conjugates were loaded into biodegradable polymeric controlled-release implants, and their release characteristics were studied in vitro. We implanted similar polymeric disks into rat brains and used a novel sectioning scheme to determine the concentration profile of CPT in comparison to conjugated CPT in the brain after 1, 7, 14, and 28 days. We have found that PEGylation greatly increases the maximum achievable drug concentration and greatly enhances the distribution properties of CPT, compared to corelease of CPT with PEG. Although only one percent of CPT in the conjugate system was found in the hydrolyzed, active form, drug concentrations were still significantly above cytotoxic levels over a greater distance for the conjugate system. On the basis of these results, we believe that PEGylation shows great promise toward increasing drug distribution after direct, local delivery in the brain for enhanced efficacy in drug treatment.  相似文献   

16.
A method of controlled release that allows the continuous local application of retinoids (vitamin A derivatives) in living tissues has been developed. Several biocompatible 200-microns-diameter polymeric beads have been tested as possible carriers. Each type of bead was loaded by soaking in an isotopically labeled retinoid solution, washed, and then transferred into tissue culture medium for quantitative release measurements. Positively-charged ion-exchange resins of the Dowex 1 type were found to be the most suitable for the controlled release of retinoic acid, a negatively charged compound. For the controlled release of uncharged retinoids such as retinyl acetate, uncharged acrylic ester polymer beads are preferred; these beads can also be used to release the negatively charged compounds retinoic acid and prostaglandin E1. In all cases, a prolonged release is obtained that persists for more than a day. During this interval, the release is diffusion-controlled, and the total amount of compound released is directly proportional to the amount of the compound that the bead is exposed to during the initial loading step. High-performance liquid chromatography has been used to analyze the nature of the released retinoid. When the positively charged beads are loaded with all-trans-retinoic acid, there is a time-dependent decrease in the proportion of the all-trans isomer released which is due to an increased release of two cis isomers. This isomerization reaction occurs at a considerably slower rate when the uncharged beads are used as carriers. To mimic the conditions under which the local release of retinoic acid causes striking pattern duplications in developing chick wings, beads loaded with isotopically labeled retinoids were manually implanted into a slit cut into wing buds of stage-20 chick embryos. The release rate obtained was comparable to that found in vitro, and a time-dependent accumulation of the released radioactive compound was measured that was confined to the tissue near the site of implantation. All of the beads tested were readily accommodated by the tissue and could be easily removed at any time to terminate the treatment. It is believed that the controlled release of chemicals from such tiny biocompatible implants has a wide potential range of applications in biology.  相似文献   

17.
A series of novel amphiphilic triblock copolymers of poly(ethyl ethylene phosphate) and poly(-caprolactone) (PEEP-PCL-PEEP) with various PEEP and PCL block lengths were synthesized and characterized. These triblock copolymers formed micelles composed of a hydrophobic core of poly(-caprolactone) (PCL) and a hydrophilic shell of poly(ethyl ethylene phosphate) (PEEP) in aqueous solution. The micelle morphology was spherical, determined by transmission electron microscopy. It was found that the size and critical micelle concentration values of the micelles depended on both hydrophobic PCL block length and PEEP hydrophilic block length. The in vitro degradation characteristics of the triblock copolymers were investigated in micellar form, showing that these copolymers were completely biodegradable under enzymatic catalysis of Pseudomonas lipase and phosphodiesterase I. These triblock copolymers were used for paclitaxel (PTX) encapsulation to demonstrate the potential in drug delivery. PTX was successfully loaded into the micelles, and the in vitro release profile was found to be correlative to the polymer composition. These biodegradable triblock copolymer micelles are potential as novel carriers for hydrophobic drug delivery.  相似文献   

18.
Natural polysaccharides, due to their outstanding merits, have received more and more attention in the field of drug delivery. In the present study tamoxifen citrate, TMX (a non-steroidal antiestrogenic drug) loaded guar gum nanoparticles, GG NPs, crosslinked with glutaraldehyde were prepared for treatment of breast cancer. An oil in water (o/w) emulsion polymer cross-linking method was employed for preparation of blank and drug loaded sustained release nature biodegradable nanoparticles. Prepared nanoparticles were characterized by morphology in scanning electron microscope (SEM), size distribution in transmission electron microscope (TEM), TMX loading by high performance liquid chromatography (HPLC) and in vitro drug release characteristics. An overall sustained release of the drug from the biodegradable nanoparticles was observed in in vitro release studies. The release of TMX from GG NPs was found to be effected by guar gum and glutaraldehyde concentration. Regression coefficient (R2) analysis suggested that the predominant mechanism behind the drug release from the nanoparticles was time dependent release and diffusion. In vivo studies on female albino mice demonstrated maximum uptake of the drug by mammary tissue after 24 h of administration with drug loaded guar gum nanoparticles in comparison with that with the tablet form of the drug. These findings demonstrate that controlled release of TMX from GG NPs could be a potential alternative pharmaceutical formulation in passive targeting of TMX in breast cancer treatments.  相似文献   

19.
BackgroundCritical size bone defect and fracture unable to regenerate itself, inspire the origination and technological advancement in the field of bone tissue engineering (BTE). The strategies of bone tissue engineering are often classified into three groups: First, is a direct injection of cells into the tissue of interest; second is grafting of cell-scaffold constructs; and third is scaffold-based signaling molecules, drug delivery or both. Much research was available on the first two categories, still finding the structure and property of scaffold close towards the natural tissue is yet to achieve.Aim of the ReviewThe proposed mini review focus on ceramic biomaterials uses for bone regeneration and drug delivery. It covers the fabrication process of scaffold including conventional and non-conventional i.e. rapid prototyping approach along with it advantage. The use of scaffold for drug delivery and signaling molecules such as growth factor is an emerging field of research in tissue engineering.ConclusionThe biodegradable beads used as a local drug delivery system are ubiquitous in surgery to treat post-operative infections but does not play any role in tissue regeneration. The use of this clinically accepted drug delivery technique in bone regeneration is an alternative way for the treatment on several bone infections (especially osteomyelitis and arthritis associated with tuberculosis). It is predicted to be the future of organ replacement and treatment.  相似文献   

20.
Sepsis is a greatly feared complication of total joint arthroplasty. One key question is how to prevent perioperative bacterial adherence, and therefore the potential for infectious complications. The objective of our study was to appraise the emerging capacity of staphylococcal survival on prosthetic materials and to analyze the in vitro effects of gentamicin and vancomycin loaded polymethylmethacrylate (PMMA) cement on bacterial adherence and growth. Hospital acquired staphylococcal strains were systematically inoculated on four orthopedic materials (ultrahigh molecular weight polyethylene, PMMA without antibiotic, commercially produced PMMA loaded with gentamicin, and manually mixed PMMA loaded with gentamicin and vancomycin). Staphylococci were identified using culture and biochemical tests. The inoculated material was allowed to incubate in a liquid broth growth media and subsequently prepared for scanning electron microscopy and bacterial growth quantification. Materials without antibiotics showed evidence of staphylococcal growth. PMMA loaded with only gentamicin grew methicillin-resistant Staphylococcus aureus. Gentamicin-vancomycin loaded PMMA completely inhibited any bacterial growth. Low-dose gentamicin-vancomycin loaded PMMA prevents staphylococcal colonization better than commercially manufactured PMMA loaded with gentamicin. We recommend this combination in high-risk procedures and revision surgeries requiring bone cement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号