共查询到20条相似文献,搜索用时 0 毫秒
2.
Macrosynteny and colinearity between Fragaria (strawberry) species showing extreme levels of ploidy have been studied through comparative genetic mapping between the octoploid cultivated strawberry (F. xananassa) and its diploid relatives. A comprehensive map of the octoploid strawberry, in which almost all linkage groups are ranged into the seven expected homoeologous groups was obtained, thus providing the first reference map for the octoploid Fragaria. High levels of conserved macrosynteny and colinearity were observed between homo(eo)logous linkage groups and between the octoploid homoeologous groups and their corresponding diploid linkage groups. These results reveal that the polyploidization events that took place along the evolution of the Fragaria genus and the more recent juxtaposition of two octoploid strawberry genomes in the cultivated strawberry did not trigger any major chromosomal rearrangements in genomes involved in F. xananassa. They further suggest the existence of a close relationship between the diploid Fragaria genomes. In addition, despite the possible existence of residual levels of polysomic segregation suggested by the observation of large linkage groups in coupling phase only, the prevalence of linkage groups in coupling/repulsion phase clearly demonstrates that the meiotic behavior is mainly disomic in the cultivated strawberry. 相似文献
3.
The ripening of strawberry ( Fragaria ananassa Duch.), a non-climacteric fruit, is a complex developmental process that involves many changes in gene expression. To understand
how these changes relate to the biochemistry and composition of the fruit the specific genes involved have been examined.
A high-quality cDNA library prepared from ripe strawberry fruit was differentially screened for ripening-related clones using
cDNA from ripe and white fruits. From 112 up-regulated clones obtained in the primary screen, 66 differentially expressed
clones were isolated from the secondary screen. The partial sequences of these cDNAs were compared with database sequences
and 26 families of non-redundant clones were identified. Northern analysis confirmed that all of these cDNAs were ripening-enhanced.
The expression of many of their corresponding genes was negatively regulated in auxin-treated fruit. These sequences, several
of which are novel to fruits, encode proteins involved in key metabolic events including anthocyanin biosynthesis, cell wall
degradation, sucrose and lipid metabolism, protein synthesis and degradation, and respiration. These findings are discussed
in relation to the role of these genes in determining fruit quality characteristics.
Received: 19 January 1998 / Accepted: 5 February 1998 相似文献
6.
Association mapping has been proposed as an efficient approach to assist in the identification of the molecular basis of agronomical traits in plants. For this purpose, we analyzed the phenotypic and genetic diversity of a large collection of tomato accessions including 44 heirloom and vintage cultivars ( Solanum lycopersicum), 127 S. lycopersicum var. cerasiforme (cherry tomato) and 17 Solanum pimpinellifolium accessions. The accessions were genotyped using a SNPlex? assay of 192 SNPs, among which 121 were informative for subsequent analysis. Linkage disequilibrium (LD) of pairwise loci and population structure were analyzed, and the association analysis between SNP genotypes and ten fruit quality traits was performed using a mixed linear model. High level of LD was found in the collection at the whole genome level. It was lower when considering only the 127 S. lycopersicum var. cerasiforme accessions. Genetic structure analysis showed that the population was structured into two main groups, corresponding to cultivated and wild types and many intermediates. The number of associations detected per trait varied, according to the way the structure was taken into account, with 0–41 associations detected per trait in the whole collection and a maximum of four associations in the S. lycopersicum var. cerasiforme accessions. A total of 40 associations (30 %) were co-localized with previously identified quantitative trait loci. This study thus showed the potential and limits of using association mapping in tomato populations. 相似文献
7.
Key message Coordinated association and linkage mapping identified 25 grain quality QTLs in multiple environments, and fine mapping of the Wx locus supports the use of high-density genetic markers in linkage mapping. AbstractThere is a wide range of end-use products made from cereal grains, and these products often demand different grain characteristics. Fortunately, cereal crop species including sorghum [Sorghum bicolor (L.) Moench] contain high phenotypic variation for traits influencing grain quality. Identifying genetic variants underlying this phenotypic variation allows plant breeders to develop genotypes with grain attributes optimized for their intended usage. Multiple sorghum mapping populations were rigorously phenotyped across two environments (SC Coastal Plain and Central TX) in 2 years for five major grain quality traits: amylose, starch, crude protein, crude fat, and gross energy. Coordinated association and linkage mapping revealed several robust QTLs that make prime targets to improve grain quality for food, feed, and fuel products. Although the amylose QTL interval spanned many megabases, the marker with greatest significance was located just 12 kb from waxy (Wx), the primary gene regulating amylose production in cereal grains. This suggests higher resolution mapping in recombinant inbred line (RIL) populations can be obtained when genotyped at a high marker density. The major QTL for crude fat content, identified in both a RIL population and grain sorghum diversity panel, encompassed the DGAT1 locus, a critical gene involved in maize lipid biosynthesis. Another QTL on chromosome 1 was consistently mapped in both RIL populations for multiple grain quality traits including starch, crude protein, and gross energy. Collectively, these genetic regions offer excellent opportunities to manipulate grain composition and set up future studies for gene validation. 相似文献
8.
The effect of a gene involved in the variation of a quantitative trait may change due to epistatic interactions with the overall genetic background or with other genes through digenic interactions. The classical populations used to map quantitative trait loci (QTL) are poorly efficient to detect epistasis. To assess the importance of epistasis in the genetic control of fruit quality traits, we compared 13 tomato lines having the same genetic background except for one to five chromosome fragments introgressed from a distant line. Six traits were assessed: fruit soluble solid content, sugar content and titratable acidity, fruit weight, locule number and fruit firmness. Except for firmness, a large part of the variation of the six traits was under additive control, but interactions between QTL leading to epistasis effects were common. In the lines cumulating several QTL regions, all the significant epistatic interactions had a sign opposite to the additive effects, suggesting less than additive epistasis. Finally the re-examination of the segregating population initially used to map the QTL confirmed the extent of epistasis, which frequently involved a region where main effect QTL have been detected in this progeny or in other studies. 相似文献
9.
The greenhouse whitefly, Trialeurodes vaporariorum (Westwood), is an important pest of strawberries in California, USA. The adults and nymphs feed on phloem sap of leaves to remove the photo-assimilates. The objective of this study is to test the impact of whitefly management with insecticides on strawberry fruit quality. Applications of imidacloprid, thiamethoxam, buprofezin and pyriproxyfen decreased the mean adult whitefly numbers by 2.80-, 2.17-, 1.69- and 1.39-fold, respectively, compared to the untreated control, Similarly, the mean numbers of first and second instar whiteflies were reduced 4.36-, 2.20-, 1.90- and 2.02-fold, respectively, while the mean numbers of third and fourth instars were reduced 5.48-, 2.28-, 2.71- and 1.43-fold, respectively, in plants treated with imidacloprid, thiamethoxam, buprofezin and pyriproxyfen. The mean soluble solids content in imidacloprid, thiamethoxam, buprofezin and pyriproxyfen treatments was 1.04-, 1.06-, 1.03- and 1.04-fold greater, respectively, than that in the control. The whitefly reduction enhanced the mean fruit titratable acidity by 4%-6%. Mean glucose levels in imidacloprid and thiamethoxam treatments were significantly higher than in other treatments. However, the whitefly management did not affect the mean fructose levels, lmidacloprid, thiamethoxam and pyriproxyfen treatments boosted the ascorbic acid levels by up to 4%. The impact of whitefly management on strawberry fruit nutrition and antioxidant capacity is discussed. 相似文献
10.
Accurate prediction of genetic potential and response to selection in breeding requires knowledge of genetic parameters for important selection traits. Data from breeding trials can be used to obtain estimates of these parameters so that predictions are directly relevant to the improvement program. Here, a factor allocation diagram was developed to describe the sampling design used to assess the quality of fresh and post-storage (2 months) fruit from advanced selection trial in an apple breeding program from which models for analyses were developed. Genetic variation was the largest source of variation for the fruit size, red colour type, proportion of red skin colour and lenticels, and instrumentally assessed fruit diameter, mass, puncture force and titratable acidity. In contrast, residual variation was the largest for fruit shape, juiciness, sweetness, aromatic flavour, eating and overall quality, and instrumental crispness. Genetic effects for traits were generally stable over fixed effects, except for a significant interaction with storage duration for firmness. Genetic correlations among traits were generally weak except between fruit mass (and diameter) and sensory size (0.98), titratable acidity and sensory acidity (0.97), puncture force and sensory firmness (0.96–0.90), crispness and juiciness (0.87), sweetness and aromatic flavour (0.84) and instrumental and sensory crispness (0.75). Predictions of the performance for seven commercial cultivars are presented. This study suggests that the Washington State apple production area can be treated as a single target environment and sufficient diversity exists to generate new elite cultivars. In addition, options for evaluating the efficiency of apple breeding are discussed. 相似文献
11.
Recent progress in the generation of a molecular genetic map and markers for rice has made possible a new phase of mapping individual genes associated with complex traits. This type of analysis is often referred to as quantitative trait locus (QTL) analysis. Increasing numbers of QTL analyses are providing enormous amounts of information about QTLs, such as the numbers of loci involved, their chromosomal locations and gene effects. Clarification of genetic bases of complex traits has a big impact not only on fundamental research on rice plant development, but it also has practical benefits for rice breeding. In this review, we summarize recent progress of QTL analysis of several complex traits in rice. A strategy for positional cloning of genes at QTLs is also discussed. 相似文献
12.
The blends of flavor compounds produced by fruits serve as biological perfumes used to attract living creatures, including humans. They include hundreds of metabolites and vary in their characteristic fruit flavor composition. The molecular mechanisms by which fruit flavor and aroma compounds are gained and lost during evolution and domestication are largely unknown. Here, we report on processes that may have been responsible for the evolution of diversity in strawberry (Fragaria spp) fruit flavor components. Whereas the terpenoid profile of cultivated strawberry species is dominated by the monoterpene linalool and the sesquiterpene nerolidol, fruit of wild strawberry species emit mainly olefinic monoterpenes and myrtenyl acetate, which are not found in the cultivated species. We used cDNA microarray analysis to identify the F. ananassa Nerolidol Synthase1 (FaNES1) gene in cultivated strawberry and showed that the recombinant FaNES1 enzyme produced in Escherichia coli cells is capable of generating both linalool and nerolidol when supplied with geranyl diphosphate (GPP) or farnesyl diphosphate (FPP), respectively. Characterization of additional genes that are very similar to FaNES1 from both the wild and cultivated strawberry species (FaNES2 and F. vesca NES1) showed that only FaNES1 is exclusively present and highly expressed in the fruit of cultivated (octaploid) varieties. It encodes a protein truncated at its N terminus. Green fluorescent protein localization experiments suggest that a change in subcellular localization led to the FaNES1 enzyme encountering both GPP and FPP, allowing it to produce linalool and nerolidol. Conversely, an insertional mutation affected the expression of a terpene synthase gene that differs from that in the cultivated species (termed F. ananassa Pinene Synthase). It encodes an enzyme capable of catalyzing the biosynthesis of the typical wild species monoterpenes, such as alpha-pinene and beta-myrcene, and caused the loss of these compounds in the cultivated strawberries. The loss of alpha-pinene also further influenced the fruit flavor profile because it was no longer available as a substrate for the production of the downstream compounds myrtenol and myrtenyl acetate. This phenomenon was demonstrated by cloning and characterizing a cytochrome P450 gene (Pinene Hydroxylase) that encodes the enzyme catalyzing the C10 hydroxylation of alpha-pinene to myrtenol. The findings shed light on the molecular evolutionary mechanisms resulting in different flavor profiles that are eventually selected for in domesticated species. 相似文献
13.
The plant hormone abscisic acid (ABA) has been suggested to play a role in fruit development, but supporting genetic evidence has been lacking. Here, we report that ABA promotes strawberry (Fragaria ananassa) fruit ripening. Using a newly established Tobacco rattle virus-induced gene silencing technique in strawberry fruit, the expression of a 9-cis-epoxycarotenoid dioxygenase gene (FaNCED1), which is key to ABA biosynthesis, was down-regulated, resulting in a significant decrease in ABA levels and uncolored fruits. Interestingly, a similar uncolored phenotype was observed in the transgenic RNA interference (RNAi) fruits, in which the expression of a putative ABA receptor gene encoding the magnesium chelatase H subunit (FaCHLH/ABAR) was down-regulated by virus-induced gene silencing. More importantly, the uncolored phenotype of the FaNCED1-down-regulated RNAi fruits could be rescued by exogenous ABA, but the ABA treatment could not reverse the uncolored phenotype of the FaCHLH/ABAR-down-regulated RNAi fruits. We observed that down-regulation of the FaCHLH/ABAR gene in the RNAi fruit altered both ABA levels and sugar content as well as a set of ABA- and/or sugar-responsive genes. Additionally, we showed that exogenous sugars, particularly sucrose, can significantly promote ripening while stimulating ABA accumulation. These data provide evidence that ABA is a signal molecule that promotes strawberry ripening and that the putative ABA receptor, FaCHLH/ABAR, is a positive regulator of ripening in response to ABA. 相似文献
15.
Brassica oleracea comprises several important subspecies, including cabbage, broccoli, cauliflower, Chinese kale, and kohlrabi. The petal color of Chinese kale is mostly white and sometimes yellow. To explore the genetic basis of petal color variation in Chinese kale, F2 and BC1 (backcross) populations were constructed from the cross of two inbred lines, 2114 (yellow petal) and 2116 (white petal). Genetic analysis of the F2 and BC1 populations demonstrated that yellow petal color was controlled by a single recessive nuclear gene, termed cpc-2. Insertion-deletion (InDel) markers, designed based on the parental resequencing data, were used to map cpc-2. The fine mapping results indicated that the cpc-2 gene was located in a 569-kb interval on chromosome C03 flanked by InDel markers ZB636 and ZB692, with genetic distances of 0.3 cM and 0.6 cM, respectively. By analyzing the nucleotide variations and annotations of the genes in this interval, a CCD4 family gene was predicted to be a candidate for cpc-2 and renamed BoCCD4.2. In addition, insertion of the CACTA-like transposable element (TE3) interrupted the function of the BoCCD4 gene, which may have resulted in the loss of function of BoCCD4 and the petal color transition from white to yellow. The TE3 insertion in the BoCCD4 gene was also present in 63 cabbage inbred lines among 159 accessions, which revealed that the TE3-type null allele of BoCCD4 formed before the divergence of the two subspecies cabbage and Chinese kale and that Chinese kale evolved much earlier than cabbage. This study lays the foundation for cloning BoCCD4.2 and revealing the molecular mechanism underlying petal color formation in Chinese kale. 相似文献
17.
Fruit quality is a major focus for most conventional and innovative tomato breeding strategies, with particular attention being paid to fruit antioxidant compounds. Tomatoes represent a major contribution to dietary nutrition worldwide and a reservoir of diverse antioxidant molecules. In a previous study, we identified two Solanum pennellii introgression lines (IL7-3 and IL12-4) harbouring quantitative trait loci (QTL) that increase the content of ascorbic acid (AsA), phenols and soluble solids (degrees Brix; °Bx) in tomato fruit. The purpose of the present work was to pyramid into cultivated varieties the selected QTL for enhanced antioxidant and °Bx content. To better understand the genetic architecture of each QTL, the two ILs were crossed to the recurrent parent M82 (ILH7-3 and ILH12-4) and between them (ILH7-3+12-4). F1 hybrids (ILH7-3+12-4) were then selfed up to obtain F3 progenies in order to stabilize the favourable traits at the homozygous condition. Species-specific molecular markers were identified for each introgressed region and allowed us to select four F2 genotypes carrying both introgressions at the homozygous condition. The F3 double homozygous plants displayed AsA, total phenols and °Bx content significantly higher than M82. Therefore, they may represent suitable genetic material for breeding schemes aiming to increase antioxidant content in tomato fruit. 相似文献
18.
Breeding for fruit quality traits is complex due to the polygenic (quantitative) nature of the genetic control of these traits.
Therefore, to improve the speed and efficiency of genotype selection, attention in recent years has focused on the identification
of quantitative trait loci (QTLs) and molecular markers associated with these QTLs. However, despite the huge potential of
molecular markers in breeding programmes, their implementation in practice has been limited by the lack of information on
the stability of QTLs across different environments and within different genetic backgrounds. Here, we present the results
from a comprehensive analysis of the inheritance of fruit quality traits within a population derived from a cross between
the apple cultivars ‘Telamon’ and ‘Braeburn’ over two successive seasons. A total of 74 different QTLs were identified for
all the major fruit physiological traits including fruit height, diameter, weight and stiffness, flesh firmness, rate of flesh
browning, acidity, the oBrix content and harvest date. Seventeen of these QTLs were ‘major’ QTLs, accounting for over 20%
of the observed population variance of the trait. However, only one third (26) of the identified QTLs were stable over both
harvest years, and of these year-stable QTLs only one was a major QTL. A direct comparison with published QTL results obtained
using other populations (King et al., Theor Appl Genet 102:1227–1235, 2001; Liebhard et al., Plant Mol Biol 52:511–526, 2003)
is difficult because the linkage maps do not share a sufficient number of common markers and due to differences in the trait
evaluation protocols. Nonetheless, our results suggest that for the six fruit quality traits which were measured in all populations,
nine out of a total of 45 QTLs were common or stable across all population × environments combinations. These results are
discussed in the framework of the development and application of molecular markers for fruit quality trait improvement. 相似文献
19.
Changes in messenger RNA during the development of the strawberry ( Fragaria ananassa Duch.), a non-climacteric fruit, were analysed by extracting total RNA and separating the in-vitro translated products by two-dimensional polyacrylamide gel electrophoresis. Alterations in numerous messenger RNAs accompanied fruit development between the immature green stage and the overripe stage, with prominent changes detected at or before the onset of ripening. A number of messenger RNAs undetectable in immature green fruit increased as the fruit matured and ripened. Others showed a marked decrease in advance of the ripening phase. A further group of messenger RNAs was prominent in immature and ripe fruit but absent just prior to the turning stage. Removing the achenes from a segment of the fruit accelerated anthocyanin accumulation in the de-achened portion and produced a pattern of translated polypeptides similar to normal ripe fruit. Application of the synthetic auxin 1-naphthaleneacetic acid to the de-achened receptacle produced a translation pattern similar to that in mature green fruit. These findings indicate that ripening in strawberry is associated with the expression of specific genes. 相似文献
|