首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Breeding for fruit quality traits in strawberry (Fragaria × ananassa, 2n = 8x = 56) is complex due to the polygenic nature of these traits and the octoploid constitution of this species. In order to improve the efficiency of genotype selection, the identification of quantitative trait loci (QTL) and associated molecular markers will constitute a valuable tool for breeding programs. However, the implementation of these markers in breeding programs depends upon the complexity and stability of QTLs across different environments. In this work, the genetic control of 17 agronomical and fruit quality traits was investigated in strawberry using a F1 population derived from an intraspecific cross between two contrasting selection lines, ‘232’ and ‘1392’. QTL analyses were performed over three successive years based on the separate parental linkage maps and a pseudo-testcross strategy. The integrated strawberry genetic map consists of 338 molecular markers covering 37 linkage groups, thus exceeding the 28 chromosomes. 33 QTLs were identified for 14 of the 17 studied traits and approximately 37% of them were stable over time. For each trait, 1–5 QTLs were identified with individual effects ranging between 9.2 and 30.5% of the phenotypic variation, indicating that all analysed traits are complex and quantitatively inherited. Many QTLs controlling correlated traits were co-located in homoeology group V, indicating linkage or pleiotropic effects of loci. Candidate genes for several QTLs controlling yield, anthocyanins, firmness and l-ascorbic acid are proposed based on both their co-localization and predicted function. We also report conserved QTLs among strawberry and other Rosaceae based on their syntenic location.  相似文献   

2.
Identification and stability of QTLs for fruit quality traits in apple   总被引:1,自引:0,他引:1  
Breeding for fruit quality traits is complex due to the polygenic (quantitative) nature of the genetic control of these traits. Therefore, to improve the speed and efficiency of genotype selection, attention in recent years has focused on the identification of quantitative trait loci (QTLs) and molecular markers associated with these QTLs. However, despite the huge potential of molecular markers in breeding programmes, their implementation in practice has been limited by the lack of information on the stability of QTLs across different environments and within different genetic backgrounds. Here, we present the results from a comprehensive analysis of the inheritance of fruit quality traits within a population derived from a cross between the apple cultivars ‘Telamon’ and ‘Braeburn’ over two successive seasons. A total of 74 different QTLs were identified for all the major fruit physiological traits including fruit height, diameter, weight and stiffness, flesh firmness, rate of flesh browning, acidity, the oBrix content and harvest date. Seventeen of these QTLs were ‘major’ QTLs, accounting for over 20% of the observed population variance of the trait. However, only one third (26) of the identified QTLs were stable over both harvest years, and of these year-stable QTLs only one was a major QTL. A direct comparison with published QTL results obtained using other populations (King et al., Theor Appl Genet 102:1227–1235, 2001; Liebhard et al., Plant Mol Biol 52:511–526, 2003) is difficult because the linkage maps do not share a sufficient number of common markers and due to differences in the trait evaluation protocols. Nonetheless, our results suggest that for the six fruit quality traits which were measured in all populations, nine out of a total of 45 QTLs were common or stable across all population × environments combinations. These results are discussed in the framework of the development and application of molecular markers for fruit quality trait improvement.  相似文献   

3.
 A molecular linkage map of Rhododendron has been constructed by using a segregating population from an interspecific cross. Parent-specific maps based on 239 RAPD, 38 RFLP, and two microsatellite markers were aligned using markers heterozygous in both parents. The map of the male parent ‘Cunningham’s White’ comprised 182 DNA markers in 13 linkage groups corresponding to the basic chromosome number. In the female parent ‘Rh 16’ 168 markers were located on 18 linkage groups. An assignment of putative homologous linkage groups was possible for 11 groups of each parent. QTL analyses based on the non-parametric Kruskal-Wallis rank-sum test were performed for the characters “leaf chlorosis” and “flower colour” scored as quantitative traits. For leaf chlorosis, two genomic regions bearing QTLs with significant effects on the trait were identified on two linkage groups of the chlorosis-tolerant parent. RAPD marker analysis of additional lime-stressed genotypes tested under altered environmental conditions verified the relationship between marker allele frequencies and the expression of chlorosis. Highly significant QTL effects for flower colour were found on two chromosomes indicating major genes located in these genome areas. The prospects for utilization of a linkage map in Rhododendron are discussed. Received: 28 September 1998 / Accepted: 5 November 1998  相似文献   

4.
Self-compatibility in Rosaceous fruit species is based on a single-locus qualitative trait. However, the evidence observed in different species has indicated the presence of modifier genes outside the S locus affecting the expression of self-compatibility/self-incompatibility. The study of a progeny obtained from the cross of the almond genotypes ‘Vivot’× ‘Blanquerna’ has allowed the construction of a genetic map based on microsatellite markers and the identification for the first time in the Rosaceae family of two additional loci located outside the S locus and affecting the expression of self-compatibility/self-incompatibility. A quantitative trait locus (QTL) was located relatively close to the S locus, on linkage group 6 (G6), whereas the second one was located on G8. These QTLs appear to be involved in conferring self-compatibility to genotypes not possessing the S f allele. These results are consistent with almond being a self-incompatible species with a genetic background of pseudo-self-compatibility controlled by modifier genes. The effect of the S f allele and the two QTLs may contribute to explain the wide range of fruit sets observed when self-pollinating different almond genotypes.  相似文献   

5.
In the Western Cape region of South Africa, dormancy release and the onset of growth does not occur normally in apple (Malus x domestica Borkh.) trees during spring due to the mild winter conditions experienced and fluctuations in temperatures experienced during and between winters. In this region, the application of chemicals to induce the release of dormancy forms part of standard orchard management. Increasing awareness of the environmental impact of chemical sprays and global warming has led to the demand for new apple cultivars better adapted to local climatic conditions. We report the construction of framework genetic maps in two F1 crosses using the low chilling cultivar ‘Anna’ as common male parent and the higher chill requiring cultivars ‘Golden Delicious’ and ‘Sharpe’s Early’ as female parents. The maps were constructed using 320 simple sequence repeats, including 116 new markers developed from expressed sequence tags. These maps were used to identify quantitative trait loci (QTL) for time of initial vegetative budbreak (IVB), a dormancy related characteristic. Time of IVB was assessed four times over a 6-year period in ‘Golden Delicious’ x ‘Anna’ seedlings kept in seedling bags under shade in the nursery. The trait was assessed for 3 years on adult full-sib trees derived from a cross between ‘Sharpe’s Early’ and ‘Anna’ as well as for 3 years on replicates of these seedlings obtained by clonal propagation onto rootstocks. A single major QTL for time of IVB was identified on linkage group (LG) 9. This QTL remained consistent in different genetic backgrounds and at different developmental stages. The QTL may co-localize with a QTL for leaf break identified on LG 3 by Conner et al. (1998), a LG that was, after the implementation of transferable microsatellite markers, shown to be homologous to the LG now known to be LG 9 (Kenis and Keulemans 2004). These results contribute towards a better understanding regarding the genetic control of IVB in apple and will also be used to elucidate the genetic basis of other dormancy related traits such as time of initial reproductive budbreak and number of vegetative and reproductive budbreak.  相似文献   

6.
Internal heat necrosis (IHN) is a physiological disorder of potato tubers. We developed a linkage map of tetraploid potato using AFLP and SSR markers, and mapped QTL for mean severity and percent incidence of IHN. Phenotypic data indicated that the distribution of IHN is skewed toward resistance. Late foliage maturity was slightly but significantly correlated with increased IHN symptoms. The linkage map for ‘Atlantic’, the IHN-susceptible parent, covered 1034.4 cM and included 13 linkage groups, and the map for B1829-5, the IHN-resistant parent, covered 940.2 cM and contained 14 linkage groups. QTL for increased resistance to IHN were located on chromosomes IV, V, and groups VII and X of ‘Atlantic’, and on group VII of B1829-5 in at least 2 of 3 years. The QTL explained between 4.5 and 29.4% of the variation for mean severity, and from 3.7 to 14.5% of the variation for percent incidence. Most QTL detected were dominant, and associated with decreased IHN symptoms. One SSR and 13 AFLP markers that were linked to IHN were tested in a second population. One AFLP marker was associated with decreased symptoms in both populations. The SSR marker was not associated with IHN in the second population, but was closely linked in repulsion to another marker that was associated with IHN, and had the same (negative) effect on the trait as the SSR marker did in the first population. The correlation between maturity and IHN may be partially explained by the presence of markers on chromosome V that are linked to both traits. This research represents the first molecular genetic research of IHN in potato.  相似文献   

7.
Improving the end-use quality of wheat is a key target for many breeding programmes. With the exception of the relationship between glutenin alleles and some dough rheological characters, knowledge concerning the genetic control of wheat quality traits is somewhat limited. A doubled haploid population produced from a cross between two Australian cultivars ‘Trident’ and ‘Molineux’ has been used to construct a linkage map based largely on microsatellite molecular makers. ‘Molineux’ is superior to ‘Trident’ for a number of milling, dough rheology and baking quality characteristics, although by international standards ‘Trident’ would still be regarded as possessing moderately good end-use quality. This population was therefore deemed useful for investigation of wheat end-use quality. A number of significant QTL identified for dough rheological traits mapped to HMW and LMW glutenin loci on chromosomes 1A and 1B. However, QTL associated with dough strength and loaf volume were also identified on chromosome 2A and a significant QTL associated with loaf volume and crumb quality was identified on chromosome 3A. A QTL for flour protein content and milling yield was identified on chromosome 6A and a QTL associated with flour colour reported previously on chromosome 7B was confirmed in this population. The detection of loci affecting dough strength, loaf volume and flour protein content may provide fresh opportunities for the application of marker-assisted selection to improve bread-making quality.  相似文献   

8.
A QTL analysis was performed to determine the genetic basis of 13 horticultural traits conditioning yield in pepper (Capsicum annuum). The mapping population was a large population of 297 recombinant inbred lines (RIL) originating from a cross between the large-fruited bell pepper cultivar ‘Yolo Wonder’ and the small-fruited chilli pepper ‘Criollo de Morelos 334’. A total of 76 QTLs were detected for 13 fruit and plant traits, grouped in 28 chromosome regions. These QTLs explained together between 7% (internode growth time) and 91% (fruit diameter) of the phenotypic variation. The QTL analysis was also performed on two subsets of 141 and 93 RILs sampled using the MapPop software. The smaller populations allowed for the detection of a reduced set of QTLs and reduced the overall percentage of trait variation explained by QTLs. The frequency of false positives as well as the individual effect of QTLs increased in reduced population sets as a result of reduced sampling. The results from the QTL analysis permitted an overall glance over the genetic architecture of traits considered by breeders for selection. Colinearities between clusters of QTLs controlling fruit traits and/or plant development in distinct pepper species and in related solanaceous crop species (tomato and eggplant) suggests that shared mechanisms control the shape and growth of different organs throughout these species.  相似文献   

9.
Loquat [Eriobotrya japonica (Thunb.) Lindl.] is a Rosaceae fruit species of growing interest as an alternative to the main fruit crops. However, only a few genetic studies have been carried out on this species. This paper reports the construction of the first genetic maps of two loquat cultivars based on AFLP and microsatellite markers from Malus, Eriobotrya, Pyrus and Prunus genera. An F1 population consisting of 81 individuals, derived from the cross between ‘Algerie’ and ‘Zaozhong-6’ cultivars, was used to construct both maps. A total of 111 scorable simple sequence repeat (SSR) loci resulted from the testing of 440 SSR primer pairs in the analyzed progeny and the SSR transferability to Eriobotrya was found to be 74% from apple, 58% from pear and 49% from Prunus spp. In addition, 183 AFLP polymorphic bands were produced using 42 primer combinations. The ‘Algerie’ map was organized in 17 linkage groups covering a distance of 900 cM and comprising 177 loci (83 SSRs and 94 AFLPs) with an average marker distance of 5.1 cM. Self-incompatibility trait was mapped at the distal part of the LG17 linkage group, as previously reported in Malus and Pyrus. The ‘Zaozhong-6’ map covered 870 cM comprising 146 loci (64 SSRs and 82 AFLPs) with an average marker distance of 5.9 cM. The 44 SSRs and the 48 AFLPs share in common by both maps were essentially collinear and, moreover, the order of the 75% of apple and pear SSRs mapped in Eriobotrya was shown to be consistent across the Maloideae subfamily. As a whole, these maps represent a useful tool to facilitate loquat breeding and an interesting framework for map comparison in the Rosaceae.  相似文献   

10.
Raspberry breeding is a long, slow process in this highly heterozygous out-breeder. Selections for complex traits like fruit quality are broad-based and few simple methodologies and resources are available for glasshouse and field screening for key pest and disease resistances. Additionally, the timescale for selection of favourable agronomic traits requires data from different seasons and environmental locations before any breeder selection can proceed to finished cultivar. Genetic linkage mapping offers the possibility of a more knowledge-based approach to breeding through linking favourable traits to markers and candidate genes on genetic linkage maps. To further increase the usefulness of existing maps, a set of 25 polymorphic SSRs derived from expressed sequences (EST-SSRs) have been developed in red raspberry (Rubus idaeus). Two different types of expressed sequences were targeted. One type was derived from a root cDNA library as a first step in assessing sequences which may be involved in root vigour and root rot disease resistance and the second type were ESTs from a gene discovery project examining bud dormancy release and seasonality. The SSRs detect between 2 and 4 alleles per locus and were assigned to linkage groups on the existing ‘Glen Moy’ × ‘Latham’ map following genotyping of 188 progeny and examined for association with previously mapped QTL. The loci were also tested on a diverse range of Rubus species to determine transferability and usefulness for germplasm diversity studies and the introgression of favourable alleles.  相似文献   

11.
Wheat is marketed based on end-use quality characteristics and better knowledge of the underlying genetics of specific quality parameters is essential to enhance the breeding process. A set of 188 recombinant inbred lines from a ‘Louise’ by ‘Penawawa’ mapping population was grown in two crop years at two locations in the Pacific Northwest region of the United States and data were collected on 17 end-use quality traits using established quality analysis protocols. Using an established genetic linkage map, composite interval mapping was used to identify QTL associated with 16 of the 17 quality traits. QTL were found on 13 of the 21 wheat chromosomes. A large number of QTL were located on chromosomes 3B and 4D and coincided with traits for milling quality and starch functionality. Chromosome 3B contained 10 QTL, which were localized to a 26.2 cM region. Chromosome 4D contained 7 QTL, all of which were located on an 18.8 cM region of this chromosome. The majority of the alleles for superior end-use quality were associated with the cultivar Louise. The identified QTL detected remained highly significant independent of grain yield and protein quantity. The identification of these QTL for end-use quality gives key insight into the relationship and complexity of end-use quality traits. It also improves our understanding of these relationships, thereby allowing plant breeders to make valuable gains from selection for these important traits.  相似文献   

12.
Soybean [Glycine max (L.) Merr.] cultivars varied in their resistance to different populations of the soybean cyst nematode (SCN), Heterodera glycines, called HG Types. The rhg1 locus on linkage group G was necessary for resistance to all HG types. However, the loci for resistance to H. glycines HG Type 1.3- (race 14) and HG Type 1.2.5- (race 2) of the soybean cyst nematode have varied in their reported locations. The aims were to compare the inheritance of resistance to three nematode HG Types in a population segregating for resistance to SCN and to identify the underlying quantitative trait loci (QTL). ‘Hartwig’, a soybean cultivar resistant to most SCN HG Types, was crossed with the susceptible cultivar ‘Flyer’. A total of 92 F5-derived recombinant inbred lines (RILs; or inbred lines) and 144 molecular markers were used for map development. The rhg1 associated QTL found in earlier studies were confirmed and shown to underlie resistance to all three HG Types in RILs (Satt309; HG Type 0, P = 0.0001 R 2 = 22%; Satt275; HG Type 1.3, P = 0.001, R 2 = 14%) and near isogeneic lines (NILs; or iso-lines; Satt309; HG Type 1.2.5-, P = 0.001 R 2 = 24%). A new QTL underlying resistance to HG Type 1.2.5- was detected on LG D2 (Satt574; P = 0.001, R 2 = 11%) among 14 RILs resistant to the other HG types. The locus was confirmed in a small NIL population consisting of 60 plants of ten genotypes (P = 0.04). This QTL (cqSCN-005) is located in an interval previously associated with resistance to both SDS leaf scorch from ‘Pyramid’ and ‘Ripley’ (cqSDS-001) and SCN HG Type 1.3- from Hartwig and Pyramid. The QTL detected will allow marker assisted selection for multigenic resistance to complex nematode populations in combination with sudden death syndrome resistance (SDS) and other agronomic traits.  相似文献   

13.
The goal of the present study was to identify candidate genes (CGs) involved in fruit quality in peach that can be transferred to other Rosaceae species. Two cDNA libraries from fruit of the “Fantasia” peach cultivar, constructed at two stages of development, were used to generate a set of expressed sequence tag sequences. A total of 1,730 peach unigenes were obtained after clustering. Sequences and corresponding annotations were stored in a relational database and are available through a web interface. Fifty-nine CGs involved in fruit growth and development or fruit quality at maturity, focusing on sweetness, acidity, and phenolic compound content, were selected according to their annotation. Fifty-five primer pairs, designed from peach CG sequences and giving PCR products in peach, were tested in strawberry and 36 gave amplified products. Eight CGs were mapped in peach, 14 in strawberry, four in both species and confirmed the pattern of synteny already proposed using comparative mapping. In peach, the CGs are located in three linkage groups (3, 5, 7), and in strawberry they are distributed in all seven Fragaria linkage groups. Colocalization between some of these CGs and quantitative trait loci for fruit quality traits were identified and are awaiting confirmation in further analyses.  相似文献   

14.
Interval mapping of quantitative trait loci (QTL) for 16 yield, agronomic and quality traits in potato was performed on a tetraploid full-sib family comprising 227 clones from a cross between processing clone 12601ab1 and table cultivar Stirling. Thirty-eight AFLP primer combinations and six SSRs provided 514 informative markers which formed a molecular marker map comprising 12 linkage groups (LGs) in 12601ab1 (nine with four homologous chromosomes) which were aligned with 12 in Stirling (11 with four homologous chromosomes), with four partial groups remaining in 12601ab1. Two LGs were identified unequivocally as chromosomes IV and V and eight others were tentatively assigned with chromosomes VII and X unidentified. All of the traits scored had moderately high heritabilities with 54–92% of the variation in clone means over 3 years and two replicates being due to genetic differences. A total of 39 QTLs were identified. A QTL for maturity was identified on chromosome V which explained 56% of the phenotypic variance, whereas the other QTLs individually explained between 5.4 and 16.5%. However, six QTLs were detected for after-cooking blackening and four for each of regularity of tuber shape, fry colour both after storage at 4 and 10°C and sprouting. Just two QTLs were found for each of yield, the two ‘overall’ scores, crop emergence, tuber size and common scab and just one QTL was detected for each of dry matter content, keeping quality, growth cracks and internal condition. The implications for practical potato breeding and for practical linkage and QTL analysis in autotetraploids are discussed.  相似文献   

15.
The inheritance of yield-related traits in melon (Cucumis melo L.; 2n = 2x = 24) is poorly understood, and the mapping of quantitative trait loci (QTL) for such traits has not been reported. Therefore, a set of 81 recombinant inbred lines (RIL) was developed from a cross between the monoecious, highly branched line USDA 846-1 and a standard vining, andromonoecious cultivar, ‘Top Mark’. The RIL, parental lines, and three control cultivars (‘Esteem’, ‘Sol Dorado’, and ‘Hales Best Jumbo’) were grown at Hancock, WI and El Centro, CA in 2002, and evaluated for primary branch number (PB), fruit number per plant (FN), fruit weight per plant (FW), average weight per fruit (AWF), and percentage of mature fruit per plot (PMF). A 190-point genetic map was constructed using 114 RAPD, 43 SSR, 32 AFLP markers, and one phenotypic trait. Fifteen linkage groups spanned 1,116 cM with a mean marker interval of 5.9 cM. A total of 37 QTL were detected in both locations (PB = 6, FN = 9, FW = 12, AWF = 5, and PMF = 5). QTL analyses revealed four location-independent factors for PB (pb1.1, pb1.2, pb2.3, and pb10.5), five for FN (fn1.1, fn1.2, fn1.3, fn2.4, and fn8.8), four for FW (fw5.8, fw6.10, fw8.11, and fw8.12), two for AWF (awf1.3 and awf8.5), and one for PMF (pmf10.4). The significant (P ≤ 0.05) positive phenotypic correlations observed among PB, FN, and FW, and negative phenotypic correlations between PB and AWF and between FN and AWF were consistent with the genomic locations and effects (negative vs. positive) of the QTL detected. Results indicate that genes resident in highly branched melon types have potential for increasing yield in US Western Shipping type germplasm via marker-assisted selection.  相似文献   

16.
Kernel hardness or texture, used to classify wheat (Triticum aestivum L.) into soft and hard classes, is a major determinant of milling and baking quality. Wheat genotypes in the soft class that are termed ‘extra-soft’ (with kernel hardness in the lower end of the spectrum) have been associated with superior end-use quality. In order to better understand the relationship between kernel hardness, milling yield, and various agronomic traits, we performed quantitative trait mapping using a recombinant inbred line population derived from a cross between a common soft wheat line and a genotype classified as an ‘extra-soft’ line. A total of 47 significant quantitative trait loci (QTL) (LOD ≥ 3.0) were identified for nine traits with the number of QTL affecting each trait ranging from three to nine. The percentage of phenotypic variance explained by these QTL ranged from 3.7 to 50.3%. Six QTL associated with kernel hardness and break flour yield were detected on chromosomes 1BS, 4BS, 5BS, 2DS, 4DS, and 5DL. The two most important QTL were mapped onto orthologous regions on chromosomes 4DS (Xbarc1118Rht-D1) and 4BS (Xwmc617Rht-B1). These results indicated that the ‘extra-soft’ characteristic was not controlled by the Hardness (Ha) locus on chromosome 5DS. QTL for eight agronomic traits occupied two genomic regions near semi-dwarf genes Rht-D1 on chromosome 4DS and Rht-B1 on chromosome 4BS. The clustering of these QTL is either due to the pleiotropic effects of single genes or tight linkage of genes controlling these various traits.  相似文献   

17.
Sweetpotato genomic research is minimal compared to most other major crops despite its worldwide importance as a food crop. The development of a genetic linkage map in sweetpotato will provide valuable information about the genomic organization of this important species that can be used by breeders to accelerate the introgression of desired traits into breeding lines. We developed a mapping population consisting of 240 individuals of a cross between ‘Tanzania’, a cream-fleshed African landrace, and ‘Beauregard’, an orange-fleshed US sweetpotato cultivar. The genetic linkage map of this population was constructed using Amplified Fragment Length Polymorphism (AFLP) markers. A total of 1944 (‘Tanzania’) and 1751 (‘Beauregard’) AFLP markers, of which 1511 and 1303 were single-dose markers respectively, were scored. Framework maps consisting of 86 and 90 linkage groups for ‘Tanzania’ and ‘Beauregard’ respectively, were developed using a combination of JoinMap 3.0 and MAPMAKER/EXP 3.0. A total of 947 single-dose markers were placed in the final framework linkage map for ‘Tanzania’. The linkage map size was estimated as 5792 cM, with an average distance between markers of 4.5 cM. A total of 726 single-dose markers were placed in the final framework map for ‘Beauregard’. The linkage map length was estimated as 5276 cM, with an average distance between markers of 4.8 cM. Duplex and triple-dose markers were used to identify the corresponding homologous groups in the maps. Our research supports the hypothesis that sweetpotato is an autopolyploid. Distorted segregation in some markers of different dosages in this study suggests that some preferential pairing occurs in sweetpotato. However, strict allopolyploid inheritance in sweetpotato can be ruled out due to the observed segregation ratios of the markers, and the proportion of simplex to multiple-dose markers. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. This paper is a portion of a dissertation submitted by Jim C. Cervantes-Flores.  相似文献   

18.
Maximizing fruit size is critical for profitable sweet cherry (Prunus avium L.) production. Yet, despite its importance, little is known about the genetic control of fruit size. The objective of this study was to identify quantitative trait loci (QTLs) for fruit size and two essential components of fruit size, mesocarp cell number and size. This study utilized a double pseudo-testcross population derived from reciprocal crosses between a sweet cherry cultivar with ~8 g fruit, “Emperor Francis” (EF), and a wild forest sweet cherry selection with ~2 g fruit, “New York 54” (NY). A total of 190 F1 progeny previously utilized for the construction of the linkage maps were evaluated in 2006 and 2007 for fruit weight, length, and diameter; mesocarp cell number and length; and pit length and diameter. In 2008, a subset of this population was again evaluated for fruit weight. Correlation analysis revealed that the three fruit size traits were highly correlated with each other, and mesocarp cell number, not cell length, was correlated with fruit size. Three QTLs were identified for each fruit size trait, and one QTL was identified for mesocarp cell number. Fruit size QTLs were found on linkage group 2 on the EF map (EF 2) and linkage groups 2 and 6 on the NY map (NY 2 and NY 6). On EF 2, the cell number QTL clustered with the fruit size QTL, suggesting that the underlying basis of the fruit size increase associated with this QTL was an increase in mesocarp cell number. On NY 6, pit length and diameter QTLs clustered with those for fruit size, suggesting that the underlying morphological basis of this fruit size QTL is the difference in pit size.  相似文献   

19.
Two apple genetic linkage maps were constructed using amplified fragment length polymorphisms (AFLPs), simple sequence repeats (SSRs), random amplified polymorphic DNAs (RAPDs), and expressed sequence tag (EST)-derived markers in combination with a pseudo-testcross mapping strategy in which the cultivars ‘Ralls Janet’ and ‘Delicious’ were used as the respective seed parents. Mitsubakaido (Malus sieboldii) was used as the pollen parent for each of the segregating F1 populations. Expressed sequence tag data were obtained from the random sequencing of cDNA libraries constructed from in vitro cultured shoots and maturing fruits of cv ‘Fuji’, which is the offspring of a cross between ‘Ralls Janet’ and ‘Delicious’. In addition, a number of published gene sequences were used to develop markers for mapping. The ‘Ralls Janet’ map consisted of 346 markers (178 AFLPs, 95 RAPDs, 54 SSRs, 18 ESTs, and the S locus) in 17 linkage groups, with a total length of 1082 cM, while that of ‘Delicious’ comprised 300 markers (120 AFLPs, 81 RAPDs, 64 SSRs, 32 ESTs, and the S, Rf, and MdACS-1 loci) on 17 linkage groups spanning 1031 cM. These maps are amenable to comparisons with previously published maps of ‘Fiesta’ and ‘Discovery’ (Liebhard et al., Mol Breed 10:217–241, 2002; Liebhard et al., Theor Appl Genet 106:1497–1508, 2003a) because several of the SSRs (one to three markers per linkage group) were used in all of the maps. Distorted marker segregation was observed in three and two regions of the ‘Ralls Janet’ and ‘Delicious’ maps, respectively. These regions were localized in different parts of the genome from those in previously reported apple linkage maps. This marker distortion may be dependent on the combinations of cultivars used for map construction.  相似文献   

20.
Typical linkage and quantitative trait locus (QTL) analyses in forest trees have been conducted in single pedigrees with sex-averaged linkage maps. The results of a QTL analysis for wood quality and growth traits of coastal Douglas-fir using eight full-sib families, each consisting of 40 progeny, replicated on four sites are presented. The resulting map of segregating genetic markers consisted of 120 amplified fragment length polymorphism (AFLP) loci distributed across 19 linkage groups. The wood quality traits represent the widest suite of traits yet examined for QTL analysis in a tree species in a single study. Wood fiber traits showed the lowest number of QTLs (3) with relatively small effect (ca. 4%); wood density traits also showed just three QTLs but with slightly larger effect; wood chemistry traits showed more QTLs (7), while ring density traits showed many QTLs with large numbers of QTLs (78) and interesting patterns of temporal variation. Growth traits gave just five QTLs but of major effect (10–16%). Trees, with their long generation times, provide a rich resource for studies of temporal variation of QTL expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号