首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Several nascent peptides stall ribosomes during their own translation in both prokaryotes and eukaryotes. Leader peptides that induce stalling can regulate downstream gene expression. Interestingly, stalling peptides show little sequence similarity and interact with the ribosome through distinct mechanisms. To explore the scope of regulation by stalling peptides and to better understand the mechanism of stalling, we identified and characterized new examples from random libraries. We created a genetic selection that ties the life of Escherichia coli cells to stalling at a specific site. This selection relies on the natural bacterial system that rescues arrested ribosomes. We altered transfer-messenger RNA, a key component of this rescue system, to direct the completion of a necessary protein if and only if stalling occurs. We identified three classes of stalling peptides: C-terminal Pro residues, SecM-like peptides, and the novel stalling sequence FXXYXIWPP. Like the leader peptides SecM and TnaC, the FXXYXIWPP peptide induces stalling efficiently by inhibiting peptidyl transfer. The nascent peptide exit tunnel and peptidyltransferase center are implicated in this stalling event, although mutations in the ribosome affect stalling on SecM and FXXYXIWPP differently. We conclude that ribosome stalling can be caused by numerous sequences and is more common than previously believed.  相似文献   

2.
3.
Extensive research has provided ample evidences suggesting that protein folding in the cell is a co-translational process1-5. However, the exact pathway that polypeptide chain follows during co-translational folding to achieve its functional form is still an enigma. In order to understand this process and to determine the exact conformation of the co-translational folding intermediates, it is essential to develop techniques that allow the isolation of RNCs carrying nascent chains of predetermined sizes to allow their further structural analysis.SecM (secretion monitor) is a 170 amino acid E. coli protein that regulates expression of the downstream SecA (secretion driving) ATPase in the secM-secA operon6. Nakatogawa and Ito originally found that a 17 amino acid long sequence (150-FSTPVWISQAQGIRAGP-166) in the C-terminal region of the SecM protein is sufficient and necessary to cause stalling of SecM elongation at Gly165, thereby producing peptidyl-glycyl-tRNA stably bound to the ribosomal P-site7-9. More importantly, it was found that this 17 amino acid long sequence can be fused to the C-terminus of virtually any full-length and/or truncated protein thus allowing the production of RNCs carrying nascent chains of predetermined sizes7. Thus, when fused or inserted into the target protein, SecM stalling sequence produces arrest of the polypeptide chain elongation and generates stable RNCs both in vivo in E. coli cells and in vitro in a cell-free system. Sucrose gradient centrifugation is further utilized to isolate RNCs.The isolated RNCs can be used to analyze structural and functional features of the co-translational folding intermediates. Recently, this technique has been successfully used to gain insights into the structure of several ribosome bound nascent chains10,11. Here we describe the isolation of bovine Gamma-B Crystallin RNCs fused to SecM and generated in an in vitro translation system.  相似文献   

4.
5.
As nascent polypeptide chains are synthesized, they pass through a tunnel in the large ribosomal subunit. Interaction between specific nascent chains and the ribosomal tunnel is used to induce translational stalling for the regulation of gene expression. One well-characterized example is the Escherichia coli SecM (secretion monitor) gene product, which induces stalling to up-regulate translation initiation of the downstream secA gene, which is needed for protein export. Although many of the key components of SecM and the ribosomal tunnel have been identified, understanding of the mechanism by which the peptidyl transferase center of the ribosome is inactivated has been lacking. Here we present a cryo-electron microscopy reconstruction of a SecM-stalled ribosome nascent chain complex at 5.6 Å. While no cascade of rRNA conformational changes is evident, this structure reveals the direct interaction between critical residues of SecM and the ribosomal tunnel. Moreover, a shift in the position of the tRNA–nascent peptide linkage of the SecM-tRNA provides a rationale for peptidyl transferase center silencing, conditional on the simultaneous presence of a Pro-tRNAPro in the ribosomal A-site. These results suggest a distinct allosteric mechanism of regulating translational elongation by the SecM stalling peptide.  相似文献   

6.
Cotranslational protein maturation is often studied in cell-free translation mixtures, using stalled ribosome-nascent chain complexes produced by translating truncated mRNA. This approach has two limitations: (i) it can be technically challenging, and (ii) it only works in vitro, where the concentrations of cellular components differ from concentrations in vivo. We have developed a method to produce stalled ribosomes bearing nascent chains of a specified length by using a 'stall sequence', derived from the Escherichia coli SecM protein, which interacts with residues in the ribosomal exit tunnel to stall SecM translation. When the stall sequence is expressed at the end of nascent chains, stable translation-arrested ribosome complexes accumulate in intact cells or cell-free extracts. SecM-directed stalling is efficient, with negligible effects on viability. This method is straightforward and suitable for producing stalled ribosome complexes in vivo, permitting study of the length-dependent maturation of nascent chains in the cellular milieu.  相似文献   

7.
Ribosomes catalyze protein synthesis using transfer RNAs and auxiliary proteins. Historically, ribosomes have been considered nonspecific translational machines, having no regulatory functions. However, a new class of regulatory mechanisms has been discovered that is based on interactions occurring within the ribosomal peptide exit tunnel that result in ribosome stalling during translation of an appropriate mRNA segment. These discoveries reveal an unexpectedly dynamic role ribosomes play in regulating their own activity. By using nascent leader peptides in combination with bound specific amino acids or antibiotics, ribosome functions can be altered significantly resulting in regulated expression of downstream coding regions. This review summarizes relevant findings in recent articles and outlines our current understanding of nascent peptide-induced ribosome stalling in regulating gene expression.  相似文献   

8.
SecM, a bacterial secretion monitor protein, contains a specific amino acid sequence at its C-terminus, called arrest sequence, which interacts with the ribosomal tunnel and arrests its own translation. The arrest sequence is sufficient and necessary for stable translation arrest. However, some previous studies have suggested that the nascent chain outside the ribosome affects the stability of translation arrest. To clarify this issue, we performed in vitro translation assays with HaloTag proteins fused to the C-terminal fragment of E. coli SecM containing the arrest sequence or the full-length SecM. We showed that the translation of HaloTag proteins, which are fused to the fragment, is not effectively arrested, whereas the translation of HaloTag protein fused to full-length SecM is arrested efficiently. In addition, we observed that the nascent SecM chain outside the ribosome markedly stabilizes the translation arrest. These results indicate that changes in the nascent polypeptide chain outside the ribosome can affect the stability of translation arrest; the nascent SecM chain outside the ribosome stabilizes the translation arrest.  相似文献   

9.
10.
Muto H  Nakatogawa H  Ito K 《Molecular cell》2006,22(4):545-552
The arrest sequence, FXXXXWIXXXXGIRAGP, of E. coli SecM interacts with the ribosomal exit tunnel, thereby interfering with translation elongation. Here, we studied this elongation arrest in vitro using purified translation components. While a simplest scenario would be that elongation is arrested beyond Pro166, the last arrest-essential amino acid, and that the Pro166 codon is positioned at the P site of the ribosomal peptidyl transferase center (PTC), our toeprint analyses revealed that the ribosome actually stalls when the Pro166 codon is positioned at the A site. Northern hybridization identification of the polypeptide bound tRNA and mass determination showed that the last amino acid of the arrested peptidyl-tRNA is Gly165, which is only inefficiently transferred to Pro166. Also, puromycin does not effectively release the arrested peptidyl-tRNA under the conditions of A site occupancy by Pro166-tRNA. These results reveal that secM-encoded Pro166-tRNA functions as a nonpolypeptide element in fulfilling SecM's role as a secretion monitor.  相似文献   

11.
12.
Ribosome display is a powerful approach for affinity and stability maturation of recombinant antibodies. However, since ribosome display is performed entirely in vitro, there are several limitations to this approach including technical challenges associated with: (i) efficiently expressing and stalling antibodies on ribosomes using cell-free translation mixtures; and (ii) folding of antibodies in buffers where the concentration and composition of factors varies from that found in the intracellular milieu. We have developed a novel method for intracellular ribosome display that takes advantage of the recently discovered Escherichia coli SecM translation arrest mechanism. Specifically, we provide the first evidence that the encoding mRNA of SecM-stalled heterologous proteins remains stably attached to ribosomes, thereby enabling creation of stalled antibody-ribosome-mRNA (ARM) complexes entirely inside of living cells. Since ARM complexes faithfully maintain a genotype-phenotype link between the arrested antibody and its encoding mRNA, we demonstrate that this method is ideally suited for isolating stability-enhanced single-chain variable fragment (scFv) antibodies that are efficiently folded and functional in the bacterial cytoplasm.  相似文献   

13.
Cell cultures of Linum album Kotschy ex Boiss. (Linaceae) showing high accumulation of the lignan podophyllotoxin (PTOX) were established. Enzymological studies revealed highest activities of phenylalanine ammonia-lyase, cinnamyl alcohol dehydrogenase, 4-hydroxycinnamate:CoA ligase and cinnamoyl-CoA:NADP oxidoreductase immediately prior to PTOX accumulation. To investigate PTOX biosynthesis, feeding experiments were performed with [2-13C]3′,4′-dimethoxycinnamic acid, [2-13C]3′,4′-methylenedioxycinnamic acid (MDCA), [2-13C]3′,4′,5′-trimethoxycinnamic acid, [2-13C]sinapic acid, [2-13C]- and [2,3-13C2]ferulic acid. Analysis of the metabolites by HPLC coupled to tandem mass spectrometry revealed incorporation of label from ferulic acid into PTOX and deoxypodophyllotoxin (DOP). In addition, MDCA was also unambiguously incorporated intact into PTOX. These observations suggest that in L. album both ferulic acid and methylenedioxy-substituted cinnamic acid can be incorporated into lignans. Furthermore, it appears that, in this species, the hydroxylation of DOP is a rate-limiting point in the pathway leading to PTOX. Electronic supplementary material to this article is available at and is accessible for authorized users. Electronic Publication  相似文献   

14.
Translational arrest peptides (APs) are short stretches of polypeptides that induce translational stalling when synthesized on a ribosome. Mechanical pulling forces acting on the nascent chain can weaken or even abolish stalling. APs can therefore be used as in vivo force sensors, making it possible to measure the forces that act on a nascent chain during translation with single-residue resolution. It is also possible to score the relative strengths of APs by subjecting them to a given pulling force and ranking them according to stalling efficiency. Using the latter approach, we now report an extensive mutagenesis scan of a strong mutant variant of the Mannheimia succiniciproducens SecM AP and identify mutations that further increase the stalling efficiency. Combining three such mutations, we designed an AP that withstands the strongest pulling force we are able to generate at present. We further show that diproline stretches in a nascent protein act as very strong APs when translation is carried out in the absence of elongation factor P. Our findings highlight critical residues in APs, show that certain amino acid sequences induce very strong translational arrest and provide a toolbox of APs of varying strengths that can be used for in vivo force measurements.  相似文献   

15.
16.
The ribosomes stalled at the end of non‐stop mRNAs must be rescued for productive cycles of cellular protein synthesis. Escherichia coli possesses at least three independent mechanisms that resolve non‐productive translation complexes (NTCs). While tmRNA (SsrA) mediates trans‐translation to terminate translation, ArfA (YhdL) and ArfB (YaeJ) induce hydrolysis of ribosome‐tethered peptidyl‐tRNAs. ArfB is a paralogue of the release factors (RFs) and directly catalyses the peptidyl‐tRNA hydrolysis within NTCs. In contrast, the mechanism of the ArfA action had remained obscure beyond its ability to bind to the ribosome. Here, we characterized the ArfA pathway of NTC resolution in vitro and identified RF2 as a factor that cooperates with ArfA to hydrolyse peptidyl‐tRNAs located in the P‐site of the stalled ribosome. This reaction required the GGQ (Gly–Gly–Gln) hydrolysis motif, but not the SPF (Ser–Pro–Phe) codon–recognition sequence, of RF2 and was stimulated by tRNAs. From these results we suggest that ArfA binds to the vacant A‐site of the stalled ribosome with possible aid from association with a tRNA, and then recruits RF2, which hydrolyses peptidyl‐tRNA in a GGQ motif‐dependent but codon‐independent manner. In support of this model, the ArfA‐RF2 pathway did not act on the SecM‐arrested ribosome, which contains an aminoacyl‐tRNA in the A‐site.  相似文献   

17.
The polymerization of amino acids into proteins occurs on ribosomes, with the rate influenced by the amino acids being polymerized. The imino acid proline is a poor donor and acceptor for peptide-bond formation, such that translational stalling occurs when three or more consecutive prolines (PPP) are encountered by the ribosome. In bacteria, stalling at PPP motifs is rescued by the elongation factor P (EF-P). Using SILAC mass spectrometry of Escherichia coli strains, we identified a subset of PPP-containing proteins for which the expression patterns remained unchanged or even appeared up-regulated in the absence of EF-P. Subsequent analysis using in vitro and in vivo reporter assays revealed that stalling at PPP motifs is influenced by the sequence context upstream of the stall site. Specifically, the presence of amino acids such as Cys and Thr preceding the stall site suppressed stalling at PPP motifs, whereas amino acids like Arg and His promoted stalling. In addition to providing fundamental insight into the mechanism of peptide-bond formation, our findings suggest how the sequence context of polyproline-containing proteins can be modulated to maximize the efficiency and yield of protein production.  相似文献   

18.
In Escherichia coli, secA expression is regulated at the translational level by an upstream gene (secM) that encodes a presecretory protein. SecM contains a C-terminal sequence motif that induces a transient translation arrest. Inhibition of SecM membrane targeting prolongs the translation arrest and increases SecA synthesis by concomitantly altering the structure of the secM-secA mRNA. Here we show that the SecM signal peptide plays an essential role in this regulatory process by acting as a molecular timer that co-ordinates membrane targeting with the synthesis of the arrest motif. We found that signal peptide mutations that alter targeting kinetics and insertions or deletions that change the distance between the SecM signal peptide and the arrest motif perturb the balance between the onset and release of arrest that is required to regulate SecA synthesis. Furthermore, we found that the strength of the interaction between the ribosome and the SecM arrest motif is calibrated to ensure the release of arrest upon membrane targeting. Our results strongly suggest that several distinctive features of the SecM protein evolved as a consequence of constraints imposed by the ribosome and the Sec machinery.  相似文献   

19.
Phosphorylation of the α subunit of eukaryotic initiation factor 2 (elF-2α) is one of the best-characterized mechanisms for down-regulating total protein synthesis in mammalian cells in response to various stress conditions. Recent work indicates that regulation of the GCN4 gene of Saccharomyces cerevisiae by amino acid availability represents a gene-specific case of translational control by phosphorylation of elF-2α, Four short open reading frames in the leader of GCN4 mRNA (uORFs) restrict the flow of scanning ribosomes from the cap site to the GCN4 initiation codon. When amino acids are abundant, ribosomes translate the first uORF and reinitiate at one of the remaining uORFs in the leader, after which they dissociate from the mRNA. Under conditions of amino acid starvation, many ribosomes which have translated uORFI fail to reinitiate at uORFs 2-4 and utilize the GCN4 start codon instead. Failure to reinitiate at uORFs 2-4 in starved cells results from a reduction in the GTP-bound form of elF-2 that delivers charged initiator tRNAiMet to the ribosome. When the levels of elF-2·GTP·Met-tRNAiMet ternary complexes are low, many ribosomes will not rebind this critical initiation factor following translation of uORF1 until after scanning past uORF4, but before reaching GCN4. Phosphorylation of elF-2 by the protein kinase GCN2 decreases the concentration of elF-2·GTP·Met-tRNAiMet complexes by inhibiting the guanine nucleotide exchange factor for elF-2, which is the same mechanism utilized in mammalian cells to inhibit total protein synthesis by phosphorylation of elF-2.  相似文献   

20.
Multiple effects of kanamycin on translational accuracy   总被引:4,自引:0,他引:4  
Summary We have studied the effects of kanamycin on the accuracy of translation in vitro by wild-type and mutant ribosomes from Escherichia coli. Kanamycin stimulates the leucine missense error of poly(U) translation by wild-type, Ram, and streptomycin-resistant ribosomes in characteristic ways; in particular, the streptomycin-resistant ribosomes are significantly less error-prone than wild-type or Ram ribosomes at all concentrations of the antibiotic. Kinetic analysis of the effects of kanamycin on the translational accuracy of wild-type ribosomes reveals a different concentration dependence for the perturbation of the initial selectivity and for the proofreading. Furthermore, the initial selectivity of streptomycin-resistant ribosomes is not affected by kanamycin; the drug enhances only the error of proofreading by this mutant ribosome. We suggest that the multiple effects of kanamycin on the errors of translation are due to separate effects at different ribosomal sites.Abbreviations N-AcPhe N-acetylphenylalanine - Km Kanamycin (used in the Figures and Tables only) - Str streptomycin (-'-) - EF elongation factor - TCA trichloroacetic acid - Ram ribosome ambiguity mutant  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号