首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Seiwa K 《Annals of botany》2007,99(3):537-544
BACKGROUND AND AIMS: In spatially heterogeneous environments, a trade-off between seedling survival and relative growth rate may promote the coexistence of plant species. In temperate forests, however, little support for this hypothesis has been found under field conditions, as compared with shade-house experiments. Performance trade-offs were examined over a large resource gradient in a temperate hardwood forest. METHODS: The relationship between seedling survival and seedling relative growth rate in mass (RGR(M)) or height (RGR(H)) was examined at three levels of canopy cover (forest understorey, FU; small gap, SG; and large gap, LG) and at two microsites within each level of canopy cover (presence or absence of leaf litter) for five deciduous broad-leaved tree species with different seed sizes. KEY RESULTS: Within each species, both RGR(M) and RGR(H) usually increased with increasing light levels (in the order FU < SG < LG), whereas little difference was observed based on the presence or absence of litter. Seedling survival in FU was negatively correlated with both RGR(M) and RGR(H) in both LG and SG. The trade-off between high-light growth and low-light survival was more evident in the relationship with LG as compared with SG. An intraspecific trade-off between survival and RGR was observed along environmental gradients in Acer mono, whereas seedlings of Betula platyphylla var. japonica survived and grew better in LG. CONCLUSIONS: The results presented here strongly support the idea of light gradient partitioning (i.e. species coexistence) in spatially heterogeneous light environments in temperate forests, and that further species diversity would be promoted by increased spatial heterogeneity. The intraspecific trade-off between survival and RGR in Acer suggests that it has broad habitat requirements, whereas Betula has narrow habitat requirements and specializes in high-light environments.  相似文献   

2.

We examined differences in the responses of deciduous and evergreen broadleaved trees to fluvial disturbance and light environment near a river-facing forest edge in order to identify the factors limiting the distribution of deciduous trees, which are important components of warm-temperate mountainous riparian forests. Deciduous trees tended to be distributed on lower terraces of less than 2-m relative elevation from the water level, which corresponded with sites suffering from strong bank erosion due to high flood frequency. On the other hand, evergreen trees showed an opposite trend of distribution, indicating that high flood frequency associated with strong erosion-dominated soil disturbances might be a constraint for their establishment and/or survival. Furthermore, crowns of deciduous trees tended to be in the canopy layer at the forest edge, with fewer individuals observed beneath the canopy of evergreen trees, even at the forest edge. In contrast, evergreen trees were concentrated in the understory of the forest interior. These observations suggested that the light environment is the predominant factor affecting the establishment and survival of deciduous trees in warm-temperate mountainous riparian forests; however, the river-facing forest edge beneath the evergreen canopy is not a suitable habitat for deciduous trees. We concluded that erosion-dominated soil disturbance on lower terraces provides suitable habitats for deciduous trees by facilitating their reaching the canopy layer by limiting the establishment and/or survival of evergreen trees.

  相似文献   

3.

Background and Aims

Morphology of crown shoots changes with tree height. The height of forest trees is usually correlated with the light environment and this makes it difficult to separate the effects of tree size and of light conditions on the morphological plasticity of crown shoots. This paper addresses the tree-height dependence of shoot traits under full-light conditions where a tree crown is not shaded by other crowns.

Methods

Focus is given to relationships between tree height and top-shoot traits, which include the shoot''s leaf-blades and non-leafy mass, its total leaf-blade area and the length and basal diameter of the shoot''s stem. We examine the allometric characteristics of open-grown current-year leader shoots at the tops of forest tree crowns up to 24 m high and quantify their responses to tree height in 13 co-occurring deciduous hardwood species in a cool-temperate forest in northern Japan.

Key Results

Dry mass allocated to leaf blades in a leader shoot increased with tree height in all 13 species. Specific leaf area decreased with tree height. Stem basal area was almost proportional to total leaf area in a leader shoot, where the proportionality constant did not depend on tree height, irrespective of species. Stem length for a given stem diameter decreased with tree height.

Conclusions

In the 13 species observed, height-dependent changes in allometry of leader shoots were convergent. This finding suggests that there is a common functional constraint in tree-height development. Under full-light conditions, leader shoots of tall trees naturally experience more severe water stress than those of short trees. We hypothesize that the height dependence of shoot allometry detected reflects an integrated response to height-associated water stress, which contributes to successful crown expansion and height gain.  相似文献   

4.
5.
Phenological events, such as the initiation and the end of seasonal growth, are thought to be under strong evolutionary control because of their influence on tree fitness. Although numerous studies highlighted genetic differentiation in phenology among populations from contrasting climates, it remains unclear whether local adaptation could restrict phenological plasticity in response to current warming. Seedling populations of seven deciduous tree species from high and low elevations in the Swiss Alps were investigated in eight common gardens located along two elevational gradients from 400 to 1,700 m. We addressed the following questions: are there genetic differentiations in phenology between populations from low and high elevations, and are populations from the upper elevational limit of a species’ distribution able to respond to increasing temperature to the same extent as low-elevation populations? Genetic variation of leaf unfolding date between seedlings from low and high populations was detected in six out of seven tree species. Except for beech, populations from high elevations tended to flush later than populations from low elevations, emphasizing that phenology is likely to be under evolutionary pressure. Furthermore, seedlings from high elevation exhibited lower phenological plasticity to temperature than low-elevation provenances. This difference in phenological plasticity may reflect the opposing selective forces involved (i.e. a trade-off between maximizing growing season length and avoiding frost damages). Nevertheless, environmental effects were much stronger than genetic effects, suggesting a high phenological plasticity to enable tree populations to track ongoing climate change, which includes the risk of tracking unusually warm springs followed by frost.  相似文献   

6.
Responses of foliar light-saturated net assimilation rate (Amax), capacity for photosynthetic electron transport (Jmax) and mitochondrial respiration rate (Rd) to long-term canopy light and temperature environment were investigated in a temperate deciduous canopy composed of Populus tremula L. in the upper (17–28 m) and of Tilia cordata Mill. in the lower canopy layer (4–17 m). Climatic measurements indicated that seasonal average daily maximum air temperature (Tmax) was 5·5 °C (range 0·7–10·5 °C) higher in the top than in the bottom of the canopy, and strong positive correlations were observed between Tmax and seasonal average integrated quantum flux density (Qint), as well as between seasonal average daily mean temperature and Qint. Because of changes in leaf dry mass and nitrogen per unit area, Amax, Jmax, and Rd scaled positively with Qint in both species at a common leaf temperature (T). According to Jmax versus T response curves and dark chlorophyll fluorescence transients, photosynthetic electron transport was less heat resistant in P. tremula with optimum temperature of Jmax, Topt, of 33·5 ± 0·6 °C than in T. cordata with Topt of 40·7 ± 0·6 °C. This difference was suggested to manifest evolutionary adaptation of photosynthetic electron transport to cooler environments in P. tremula, the range of which extends farther north than that in T. cordata. Possibly because of acclimation to long-term canopy temperature environment, Topt was positively related to Qint in P. tremula, foliage of which was also exposed to higher irradiances and temperatures, but not in T. cordata, in the canopy of which quantum flux densities and temperatures were lower, and gradients in the environmental factors less pronounced. Parallel to changes in Topt, the activation energy for photosynthetic electron transport decreased with increasing Qint in P. tremula, indicating that Jmax of leaves acclimated to colder environment was more responsive to T in lower temperatures than that of high T acclimated leaves. Similar alterations in the activation energy for mitochondrial respiration rate were also observed, indicating that acclimation to temperature of mitochondrial and chloroplastic electron transport proceeds in a co-ordinated manner, and possibly involves long-term changes in membrane fluidity properties. We conclude that, because of correlations between temperature and light, the shapes of Jmax versus T, and Rd versus T response curves vary within tree canopies, and this needs to be taken account in modelling whole canopy photosynthesis.  相似文献   

7.
Two new homothallic species ofPichia, associated with exudates ofPopulus trichocarpa andSalix sp. have been described.Pichia trehalophila sp.n. was isolated from slime exudates in two widely separatedPopulus trichocarpa trees andPichia salictaria sp.n. was isolated from two exudates ofSalix sp. The latter species was previously present as an unidentified strain ofPichia in the culture collection of the Centraalbureau voor Schimmelcultures and had been isolated from a patient in Germany. The natural habitat ofP. salictaria is considered to be in association with willow trees.  相似文献   

8.
广西亚热带落叶阔叶林的分类系统及其管理   总被引:13,自引:2,他引:13  
广西亚热带落叶阔叶林是亚热带地区几类顶极群落遭受破坏后恢复过程的一个演替阶段,类型多种多样。本文研究制定了它的分类系统,包括2个亚群系纲、10个群系组、27个群系和77个群丛,扼要地阐述了它们的地理分布和生境特点,为其科学的管理提供基本依据。  相似文献   

9.
Leaf morphology and macronutrients in broadleaved trees in central Italy   总被引:1,自引:0,他引:1  
As part of an intensive monitoring programme (MON.I.TO, Intensive Monitoring of Forests in Tuscany), a 3-year survey was carried out, which included three tree species (beech, Fagus sylvatica L.; Turkey oak, Quercus cerris L.; holm-oak, Quercus ilex L.) located at six different sites. Leaves were sampled annually and analysed for nutrient concentrations (nitrogen, sulphur, phosphorus, magnesium, calcium, potassium and sodium) and morphological parameters (leaf area, dry weight, leaf mass per area, leaf thickness and leaf density). Results indicated considerable interannual variation of all the parameters. Differences between sampling sites indicated that, of all parameters measured, leaf mass per area could explain best the differences in field performance under conditions of stress. In fact, leaf mass per area was greater in the drier sites or when sea salt deposition occurred. Nevertheless, the variation of leaf mass per area over the 3 years did not reflect the differences in rainfall. Higher leaf mass per area was accompanied by lower concentrations of phosphorus and nitrogen, which could be a dilution effect due to an increase of structural carbon compounds in sclerophyllous leaves, as revealed by the total foliar content of these elements. Leaf mass per area as a measure of sclerophylly reached very high values among mesophile vegetation. Long-range transport of sea salt from coastal areas to mountain areas was mirrored in sodium concentrations of leaves.  相似文献   

10.
To explain why the composition of evergreen and deciduous forests changes along air temperature gradients, we measured several traits of single leaves from temperate deciduous and evergreen broadleaf trees with simultaneous and successive leaf emergence growing at different altitudes in the field. The parameters included seasonal net photosynthetic rate, longevity, mass per area, nitrogen content, and photosynthetic nitrogen-use efficiency. With decreasing altitude, the leaf longevity of deciduous broadleaf trees increased, whereas the maximum net photosynthetic rate decreased. In contrast, leaf longevity of evergreen broadleaf trees decreased, whereas the minimum net photosynthetic rate in winter increased. Along the air temperature gradient, the annual production of deciduous trees with simultaneous leaf emergence may be constant, because the integrated lifetime net photosynthetic rate (ILNPR) of a single leaf changed little. In comparison, deciduous trees with successive leaf emergence may show enhanced annual production with increasing air temperature, by increasing the total leaf number per branch and tree under an extended growing season. Temperate evergreen broadleaf tree species may also show increased annual production with increasing air temperature by sufficiently raising the number of the first-year leaves to the total leaves of branch and tree, which is accelerated by raising the integrated first-year net photosynthetic rate of the single leaf, despite little change in the ILNPR. With increasing air temperature from cool-temperate to warm-temperate zones, evergreen broadleaf tree species gain an advantage of the annual production over deciduous broadleaf tree species with simultaneous leaf emergence.  相似文献   

11.
Juvenile leaves in high-light environments commonly appear red as a result of anthocyanin pigments, which play a photoprotective role during light-sensitive ontogenetic stages. The loss of anthocyanin during leaf development presumably corresponds to a decreased need for photoprotection, as photosynthetic maturation allows leaves to utilize higher light intensities. However, the relationship between photosynthetic development and anthocyanin decline has yet to be quantitatively described. In this study, anthocyanin concentration was measured against photopigment content, lamina thickness, anatomical development, and photosynthetic CO(2) exchange in developing leaves of three deciduous tree species. In all species, anthocyanin disappearance corresponded with development of c. 50% mature photopigment concentrations, c. 80% lamina thickness, and differentiation of the mesophyll into palisade and spongy layers. Photosynthetic gas exchange correlated positively with leaf thickness and chlorophyll content, and negatively with anthocyanin concentration. Species with more rapid photosynthetic maturation lost anthocyanin earliest in development. Chlorophyll a/b ratios increased with leaf age, and were lower than those of acyanic species, consistent with a shading effect of anthocyanin. These results suggest that anthocyanin reassimilation is linked closely with chloroplast and whole-leaf developmental processes, supporting the idea that anthocyanins protect tissues until light processing and carbon fixation have matured to balance energy capture with utilization.  相似文献   

12.
峨眉山常绿落叶阔叶混交林的生物多样性及植物区系初探   总被引:2,自引:0,他引:2  
谷海燕  李策宏 《植物研究》2006,26(5):618-623
对峨眉山常绿落叶阔叶混交林的群落结构﹑组成﹑生物多样性及植物区系等几方面进行了研究分析。结果显示峨眉山阔叶混交林由226种维管束植物组成,其中被子植物73科137属207种, 占总种数的91.6%,是峨眉山阔叶混交林的重要组成部分;群落分层现象明显,为乔木层﹑灌木层﹑草本层和层外植物4层,其中草本层发育情况差;科分布型是以热带—亚热带﹑热带—温带为主,各占22.7%, 在属的水平上则以温带分布占绝对优势(52.9%),揭示了峨眉山阔叶混交林的区系性质是以温带为主的亚热带类型;生物多样性指数处于较低的水平,在经过人为干扰后,群落处于稳定的恢复阶段。  相似文献   

13.

Key message

Using an extensive dataset for 39 subtropical broadleaved tree species, we found traits of the leaf economics spectrum to be linked to mean stomatal conductance but not to stomatal regulation.

Abstract

The aim of our study was to establish links between stomatal control and functional leaf traits. We hypothesized that mean and maximum stomatal conductance (g s) varies with the traits described by the leaf economics spectrum, such as specific leaf area and leaf dry matter content, and that high g s values correspond to species with tender leaves and high photosynthetic capacity. In addition, we hypothesized that species with leaves of low stomata density have more limited stomatal closure than those with high stomata density. In order to account for confounding site condition effects, we made use of a common garden situation in which 39 deciduous and evergreen species of the same age were grown in a biodiversity ecosystem functioning experiment in Jiangxi (China). Daily courses of g s were measured with porometry, and the species-specific g s~vpd relationships were modeled. Our results show that mean stomatal conductance can be predicted from leaf traits that represent the leaf economics spectrum, with a positive relationship being related to leaf nitrogen content and a negative relationship with the leaf carbon: nitrogen ratio. In contrast, parameters of stomatal control were related to traits unassociated with the leaf economics spectrum. The maximum of the conductance~vpd curve was positively related to leaf carbon content and vein length. The vpd at the point of inflection of the conductance~vpd curve was lower for species with higher stomata density and higher for species with a high leaf carbon content. Overall, stomata size and density as well as vein length were more effective at explaining stomatal regulation than traits used in the leaf economics spectrum.  相似文献   

14.
谌有光 《昆虫知识》2011,48(2):431-434
60年来我国落叶果树叶螨的种群演变反映了果树害虫防治体系的变迁,从而窥见我国果树病虫害防治技术的进步。果树叶螨种群的变化与果园病虫害防治方法及药剂种类的变化有明显的相关性,建议果园管理者一定要合理使用化学农药,积极使用生物农药、植物源农药及矿物源农药,促进果树生产健康、可持续地发展。  相似文献   

15.
Abstract. 1. The seasonal distribution of macrolepidopteran species richness on Finnish deciduous trees vaned from positively skewed (peak in spring) to negatively skewed (peak in autumn).
2. The skewness values of species richness had a significant negative correlation ( r = - 0.98) with the duration of the seasonal shoot-growth period of the tree species.
3. Trees which complete their shoot growth early in the season ( Quercus type) produce new leaves only during spring, while trees whose shoot growth continues to autumn ( Populus type) do so throughout the summer.
4. Consequently, there is a difference in the number of available resources in the late summer foliage of different tree species, Trees ceasing leaf production early such as oak ( Quercus robur ) and bird cherry ( Prunus padus ) have one major resource type (mature leaves) in late-season foliage while trees like birches and alders have two Ooung and mature leaves).
5. Because young leaves formed late in the season are preferred to mature ones by some species of herbivores and because other species prefer mature leaves at the same time, the species richness of Populus-type trees is higher later in the season than the species richness of Quercus-type of trees, which have just one type of resource available.  相似文献   

16.
Local adaptation enhances performance of common plant species   总被引:9,自引:2,他引:7  
Geographic variation can lead to the evolution of different local varieties, even in widespread forage plants. We investigated the performance of common forage plants in relation to their genetic diversity and local adaptation at a continental scale using reciprocal transplants at eight field sites across Europe over a 2-year period. The overall performance of the three test species, Trifolium pratense , Dactylis glomerata , Plantago lanceolata , was generally highest for plants replanted at their home site and declined with increasing transplanting distance. The three species differed in the fitness components responsible for the increased overall performance and selection advantage at home sites. In addition to the effects of local adaptation, the majority of measured traits in all three species also showed ecotypic variation. However, no single ecotype of any species was able to outperform the locally adapted strains and do best at all sites, highlighting the importance of maintaining these plant genetic resources.  相似文献   

17.
This paper reports seasonal data regarding leaf number, leaf length and width, leaf area, leaf angle, and SPAD (leaf chlorophyll content index) for 11 genera (12 species) in a cool-temperate deciduous broadleaved forest in Japan. Knowing the leaf phenology of tree species is important for accurately evaluating the temporal variability of ecosystem functions (e.g., photosynthesis and evapotranspiration) under rapid climate change. However, there is a lack of freely available long-term observation data regarding leaf phenological characteristics for many tree species. We collected leaf phenological data from tagged shoots every 1–4 weeks from April or May to October or November each year from 2005 to 2014 in Takayama, Japan (36°08′46″N, 137°25′23″E, 1420 m a.s.l.). We targeted typical dominant, codominant, and understory tree species at the site. To evaluate differences among individuals and between sunlit and shaded leaves, we measured one to four shoots of some species and individuals. Our data provide input, calibration, and validation parameters for a terrestrial ecosystem and for radiative-transfer models and remote-sensing observations.  相似文献   

18.
19.
20.
Summary The temperatures at which chlorophyll fluorescence yield is substantially increased and the temperatures at which the quantum yield for CO2 uptake is irreversibly inhibited were measured for three shortgrass prairie species. The experimental taxa include, a cool season species (Agropyron smithii), a warm season species (Bouteloua gracilis), and a species which grows throughout the cool and warm seasons (Carex stenophylla). Agropyron smithii exhibited lower high temperature damage thresholds (43°C in cool grown plants, 46°C in warm grown plants), relative to the other two species. Bouteloua gracilis exhibited the highest tolerance to high temperature, with threshold values being 44–49°C for cool grown plants and 53–55°C for warm grown plants. Carex stenophylla exhibited threshold values which were intermediate to the other two species (43–47°C for cool grown plants, and 51–53°C for warm grown plants). Seasonal patterns in the fluorescence rise temperatures of field grown plants indicated acclimation to increased temperatures in all three species. The results demonstrate a correlation between the high temperature thresholds for damage to the photosynthetic apparatus, and in situ seasonal phenology patterns for the three species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号