首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
2.
Tall-caespitose basin wildrye (Leymus cinereus) and rhizomatous creeping wildrye (Leymus triticoides) are perennial Triticeae relatives of wheat and barley. Quantitative trait loci (QTLs) controlling rhizome proliferation were previously detected on homoeologous regions of LG3a and LG3b in two full-sib families derived from allotetraploid hybrids. Triticeae homoeologous group 3 aligns to rice chromosome 1, which contains the rice lax panicle and maize barrenstalk1 orthogene responsible for induction of axillary branch meristems, but this gene has not been mapped or sequenced in Triticeae. We developed bacterial artificial chromosome (BAC) libraries representing 6.1 haploid equivalents of the tetraploid Leymus genome (10.7 Mb). Overgo probes designed from the lax-barrenstalk1 orthogene hybridized to 12 Leymus BAC clones. Deduced amino-acid sequences from seven BAC clones were highly conserved with the rice, maize, and sorghum lax-barrenstalk1orthogenes. Gene specific primers designed from two of the most divergent BAC clones map to homoeologous regions of Leymus LG3a and LG3b and align with the lax-barrenstalk1 orthogene on rice 1L. Comparisons of genomic DNA sequences revealed two other conserved regions surrounding the Leymus LG3a, rice, and sorghum lax-barrenstalk1 ortholoci, and one of these regions was also present in maize and Leymus LG3b sequences. Comparisons of Leymus LG3a and LG3b lax-barrenstalk1 coding sequences and flanking genomic regions elucidate molecular differences between subgenomes.  相似文献   

3.
Fusarium head blight (FHB) resistance was identified in the alien species Leymus racemosus, and wheat-Leymus introgression lines with FHB resistance were reported previously. Detailed molecular cytogenetic analysis of alien introgressions T01, T09, and T14 and the mapping of Fhb3, a new gene for FHB resistance, are reported here. The introgression line T09 had an unknown wheat-Leymus translocation chromosome. A total of 36 RFLP markers selected from the seven homoeologous groups of wheat were used to characterize T09 and determine the homoeologous relationship of the introgressed Leymus chromosome with wheat. Only short arm markers for group 7 detected Leymus-specific fragments in T09, whereas 7AS-specific RFLP fragments were missing. C-banding and genomic in situ hybridization results indicated that T09 has a compensating Robertsonian translocation T7AL·7Lr#1S involving the long arm of wheat chromosome 7A and the short arm of Leymus chromosome 7Lr#1 substituting for chromosome arm 7AS of wheat. Introgression lines T01 (2n = 44) and T14 (2n = 44) each had two pairs of independent translocation chromosomes. T01 had T4BS·4BL-7Lr#1S + T4BL-7Lr#1S·5Lr#1S. T14 had T6BS·6BL-7Lr#1S + T6BL·5Lr#1S. These translocations were recovered in the progeny of the irradiated line Lr#1 (T5Lr#1S·7Lr#1S). The three translocation lines, T01, T09, and T14, and the disomic addition 7Lr#1 were consistently resistant to FHB in greenhouse point-inoculation experiments, whereas the disomic addition 5Lr#1 was susceptible. The data indicated that at least one novel FHB resistance gene from Leymus, designated Fhb3, resides in the distal region of the short arm of chromosome 7Lr#1, because the resistant translocation lines share a common distal segment of 7Lr#1S. Three PCR-based markers, BE586744-STS, BE404728-STS, and BE586111-STS, specific for 7Lr#1S were developed to expedite marker-assisted selection in breeding programs.  相似文献   

4.
Negatively orthogeotropic (NOGT) tiller and diageotropic (DGT) rhizome meristems develop from the same type of lateral axillary meristems and phytomer structure. Although subterranean NOGT and DGT buds appear similar, they display different responses to gravity and perhaps other cues governing branch angle and overall growth habit (GH). Leymus wildryes show remarkable variation in GH and include some of the largest native grasses in western North America. Previous studies detected GH QTLs on homoeologous regions of LG3a and LG3b controlling differences between caespitose Leymus cinereus and rhizomatous Leymus triticoides allotetraploids. Heterologous barley and wheat microarrays in conjunction with bulk segregate analysis were used to find gene expression polymorphisms associated with GH QTLs. Approximately 34% and 25% of the probe sets showed detectable signals on the barley and wheat arrays, respectively. Overall gene expression patterns of NOGT and DGT meristems were remarkably similar, consistent with the assertion that Leymus NOGT and DGT buds develop from homologous meristems. Only 28 and 27 genes on barley and wheat gene chips, respectively, showed more than twofold differential expressions between NOGT and DGT tissues. One expression polymorphism genetically mapped in the Leymus LG3 rhizome QTL region.  相似文献   

5.
Crude protein (CP), neutral detergent fiber (NDF), acid detergent fiber (ADF), and mineral content are important components of forage quality in grasses. Elevated [K]/([Ca] + [Mg]) ratios (KRAT) substantially increase the risk of grass tetany (hypomagnesemia) in grazing animals, which is a serious problem associated with some cool-season grasses. The objectives of this study were to map and compare QTLs controlling concentrations of CP, NDF, ADF, Al, B, Ca, Cl, Cu, Fe, K, Mg, Mn, Na, P, S, Si, Zn, and KRAT in two full-sib Leymus triticoides × (L. triticoides × L. cinereus) TTC1 and TTC2 families. Significant genetic variation and QTLs were detected for all traits, with evidence of conserved QTLs for ADF (LG1a, LG5Xm, LG7a), NDF (LG7a), Ca (LG1b), CP, (LG5Xm), KRAT (LG3b, LG6b, LG7a, LG7b), Mn (LG2b, LG3b, LG4Xm), and S (LG3a) content in both TTC1 and TTC2 families. Moreover, the direction of QTL effects was the same for 13 of the 14 homologous QTLs in both families. The TTC1 and TTC2 KRAT QTLs on LG7a and LG7b were located near markers defining homoeologous relationships between the sub-genomes of allotetraploid Leymus, suggesting possible QTL homoeology. Another 88 QTLs were unique to one family or the other, but many of these clustered in genome regions common between the two families. These results will support development of new Leymus wildrye forages and help characterize genes controlling mineral uptake and fiber synthesis.  相似文献   

6.
Among the cereals, rye (Secale cereale L.) can be grown under extreme climatic and poor soil conditions and, is a major crop in North Europe. In the present paper, we report the development of a genetic linkage map of rye using a pooled F2 mapping population created from a reciprocal cross of two self-fertile inbred lines. The 183 mapped markers consist 139 RFLPs, 19 isozyme and protein markers, 13 microsatellites, 10 known function sequences and two morphological genes. The markers are randomly distributed on the seven chromosomes with a maximum of 38 on chromosome 5R and a minimum of 19 on chromosome 3R. In addition, 23 gene loci and 25 quantitative trait loci were aligned to chromosome regions. For some of the mapped or aligned genes comparable loci are present in other cereals. The homoeologous relationships of these loci are discussed. The potential of the new map for further genetic studies is outlined. Received: 11 May 2000 / Accepted: 12 July 2000  相似文献   

7.
Dioscorea alata is a polyploid species with several ploidy levels and its basic chromosome number has been considered by most authors to be x = 10. Standard chromosome counting and flow cytometry analysis were used to determine the chromosome number of 110 D. alata accessions of the CIRAD germplasm collection. The results revealed that 76% of accessions have 2n = 40 chromosomes, 7% have 2n = 60 chromosomes and 17% have 2n = 80 chromosomes. Progenies were produced from 2n = 40 types of D. alata and the segregation patterns of six microsatellite markers in four different progenies were analysed. The Bayesian method was used to test for diploid versus tetraploid (allo- and autotetraploid) modes of inheritance. The results provided the genetic evidence to establish the diploidy of plants with 2n = 40 chromosomes and to support the hypothesis that plants with 2n = 40, 60 and 80 chromosomes are diploids, triploids and tetraploids, respectively, and that the basic chromosome number of D. alata is x = 20. The findings obtained in the present study are significant for effective breeding programs, genetic diversity analysis and elucidation of the phylogeny and the species origin of D. alata.  相似文献   

8.
The first microsatellite linkage map of Ae. speltoides Tausch (2n = 2x = 14, SS), which is a wild species with a genome closely related to the B and G genomes of polyploid wheats, was developed based on two F2 mapping populations using microsatellite (SSR) markers from Ae. speltoides, wheat genomic SSRs (g-SSRs) and EST-derived SSRs. A total of 144 different microsatellite loci were mapped in the Ae. speltoides genome. The transferability of the SSRs markers between the related S, B, and G genomes allowed possible integration of new markers into the T. timopheevii G genome chromosomal maps and map-based comparisons. Thirty-one new microsatellite loci assigned to the genetic framework of the T. timopheevii G genome maps were composed of wheat g-SSR (genomic SSR) markers. Most of the used Ae. speltoides SSRs were mapped onto chromosomes of the G genome supporting a close relationship between the G and S genomes. Comparative microsatellite mapping of the S, B, and G genomes demonstrated colinearity between the chromosomes within homoeologous groups, except for intergenomic T6AtS.1G, T4AL.5AL.7BS translocations. A translocation between chromosomes 2 and 6 that is present in the T. aestivum B genome was found in neither Ae. speltoides nor in T. timopheevii. Although the marker order was generally conserved among the B, S, and G genomes, the total length of the Ae. speltoides chromosomal maps and the genetic distances between homoeologous loci located in the proximal regions of the S genome chromosomes were reduced compared with the B, and G genome chromosomes.  相似文献   

9.
The genome sequences of rice (Oryza sativa L.) and Brachypodium distachyon and the comprehensive Triticeae EST (Expressed Sequence Tag) resources provide invaluable information for comparative genomics analysis. The powdery mildew resistance gene, Pm6, which was introgressed into common wheat from Triticum timopheevii, was previously mapped to the wheat chromosome bin of 2BL [fraction length (FL) 0.50–1.00] with limited DNA markers. In this study, we saturated the Pm6 locus in wheat using the collinearity-based markers by extensively exploiting these genomic resources. All wheat ESTs located in the bin 2BL FL 0.50–1.00 and their corresponding orthologous genes on rice chromosome 4 were firstly used to develop STS (Sequence Tagged Site) markers. Those identified markers that flanked the Pm6 locus were then used to identify the collinear regions in the genomes of rice and Brachypodium. Triticeae ESTs with orthologous genes in these collinear regions were further used to develop new conserved markers for the fine mapping of Pm6. Using two F2 populations derived from crosses of IGVI-465 × Prins and IGVI-466 × Prins, we mapped a total of 29 markers to the Pm6 locus. Among them, 14 markers were co-segregated with Pm6 in the IGVI-466/Prins population. Comparative genome analysis showed that the collinear region of the 29 linked markers covers a ~5.6-Mb region in chromosome 5L of Brachypodium and a ~6.0-Mb region in chromosome 4L of rice. The marker order is conserved between rice and Brachypodium, but re-arrangements are present in wheat. Comparative mapping in the two populations showed that two conserved markers (CINAU123 and CINAU127) flanked the Pm6 locus, and an LRR-receptor-like protein kinase cluster was identified in the collinear regions of Brachypodium and rice. This putative resistance gene cluster provides a potential target site for further fine mapping and cloning of Pm6. Moreover, the newly developed conserved markers closely linked to Pm6 can be used for the marker-assisted selection (MAS) of Pm6 in wheat breeding programs.  相似文献   

10.

Key message

A cytogenetic map of wheat was constructed using FISH with cDNA probes. FISH markers detected homoeology and chromosomal rearrangements of wild relatives, an important source of genes for wheat improvement.

Abstract

To transfer agronomically important genes from wild relatives to bread wheat (Triticum aestivum L., 2n = 6x = 42, AABBDD) by induced homoeologous recombination, it is important to know the chromosomal relationships of the species involved. Fluorescence in situ hybridization (FISH) can be used to study chromosome structure. The genomes of allohexaploid bread wheat and other species from the Triticeae tribe are colinear to some extent, i.e., composed of homoeoloci at similar positions along the chromosomes, and with genic regions being highly conserved. To develop cytogenetic markers specific for genic regions of wheat homoeologs, we selected more than 60 full-length wheat cDNAs using BLAST against mapped expressed sequence tags and used them as FISH probes. Most probes produced signals on all three homoeologous chromosomes at the expected positions. We developed a wheat physical map with several cDNA markers located on each of the 14 homoeologous chromosome arms. The FISH markers confirmed chromosome rearrangements within wheat genomes and were successfully used to study chromosome structure and homoeology in wild Triticeae species. FISH analysis detected 1U-6U chromosome translocation in the genome of Aegilops umbellulata, showed colinearity between chromosome A of Ae. caudata and group-1 wheat chromosomes, and between chromosome arm 7S#3L of Thinopyrum intermedium and the long arm of the group-7 wheat chromosomes.  相似文献   

11.
Sugarcane (Saccharum spp.) is probably the crop with the most complex genome. Modern cultivars (2n = 100–120) are highly polyploids and aneuploids derived from interspecific hybridization between Saccharum officinarum (2n = 80) and Saccharum spontaneum (2n = 40–128). Chromosome‐specific oligonucleotide probes were used in combination with genomic in situ hybridization to analyze the genome architecture of modern cultivars and representatives of their parental species. The results validated a basic chromosome number of x = 10 for S. officinarum. In S. spontaneum, rearrangements occurred from a basic chromosome of x = 10, probably in the Northern part of India, in two steps leading to x = 9 and then x = 8. Each step involved three chromosomes that were rearranged into two. Further polyploidization led to the wide geographical extension of clones with x = 8. We showed that the S. spontaneum contribution to modern cultivars originated from cytotypes with x = 8 and varied in proportion between cultivars (13–20%). Modern cultivars had mainly 12 copies for each of the first four basic chromosomes, and a more variable number for those basic chromosomes whose structure differs between the two parental species. One?four of these copies corresponded to entire S. spontaneum chromosomes or interspecific recombinant chromosomes. In addition, a few inter‐chromosome translocations were revealed. The new information and cytogenetic tools described in this study substantially improve our understanding of the extreme level of complexity of modern sugarcane cultivar genomes.  相似文献   

12.
Genetic mapping using molecular markers such as restriction fragment length polymorphisms (RFLPs) has become a powerful tool for plant geneticists and breeders. Like many economically important polyploid plant species, detailed genetic studies of hexaploid tall fescue (Festuca arundinacea Schreb.) are complicated, and no genetic map has been established. We report here the first tall fescue genetic map. This map was generated from an F2 population of HD28-56 by Kentucky-31 and contains 108 RFLP markers. Although the two parental plants were heterozygous, the perennial and tillering growth habit, high degree of RFLP, and disomic inheritance of tall fescue enabled us to identify the segregating homologous alleles. The map covers 1274 cM on 19 linkage groups with an average of 5 loci per linkage group (LG) and 17.9 cM between loci. Mapping the homoeologous loci detected by the same probe allowed us to identify five homoeologous groups within which the gene orders were found to be generally conserved among homoeologous chromosomes. An exception was homoeologous group 5, in which only 2 of the 3 homoeologous chromosomes were identified. Using 12 genome-specific probes, we were able to assign several linkage groups to one of the three genomes (PG1G2) in tall fescue. All the loci detected by the 11 probes specific to the G1 and/or G2 genomes, with one exception, identified loci located on 4 chromosomes of two homoeologous groups (LG2a, LG2c, LG3a, and LG3c). A P-genome-specific probe was used to map a locus on LG5c. Comparative genome mapping with maize probes indicated that homoeologous group 3 and 2 chromosomes in tall fescue corresponded to maize chromosome 1. Difficulties and advantages of applying RFLP technology in polyploids with high levels of heterozygosity are discussed.Journal Series No. 12, 190  相似文献   

13.
Although ferns have been developed by hybridization and chromosome doubling, no natural polyploidy has yet been recorded in Osmundaceae. So, we produced hybrids artificially by crosses between Osmunda banksiifolia (2n = 2x = 44) and Osmunda lancea (2n = 2x = 44), and investigated their sporogenesis. From the O. banksiifolia × O. lancea hybrid with 44 univalent chromosomes, allotetraploids with 44 bivalent chromosomes were produced by chromosome doubling, and allotriploids with 22 univalent chromosomes and 22 bivalent chromosomes were then produced by back crosses. The results show when and how chromosome doubling occurs in hybrids. The success of artificial hybridization between O. banksiifolia and O. lancea, did not, however, reflect any product of natural hybridization between the two species.  相似文献   

14.
Intergeneric hybridizations were made betweenT. elongatum, and twoPsathyrostachys and fiveLeymus species. The seed set obtained onT. elongatum ×Leymus hybrids ranged from 5.65% to 20.00%, depending onLeymus species. The seed set obtained onT. elongatum ×Psathyrostachys hybrids ranged from 16.07% to 19.70%. Meiotic pairing at metaphase-I in JN diploid hybrids ofT. elongatum ×Psathyrostachys species revealed a very low level homology between the basic J and N genomes, and further demonstrated that the two genomes are quite diverged. Chromosome pairing in theT. elongatum ×Leymus secalinus hybrid averaged 15.19 univalents + 2.62 rod bivalents + 0.26 ring bivalents + 0.02 trivalents, suggesting that the partial Je chromosomes ofT. elongatum has homology withLeymus secalinus genomes.L. secalinus might have 3–4 chromosomes originating from Je genome.  相似文献   

15.
A strategy is described for rapid chromosome region-specific mapping in hexaploid wheat (Triticum aestivum L. em. Thell., 2n=6x=42, AABBDD). The method involves allocation of markers to specific chromosome regions by deletion mapping and ordering of probes by high resolution genetic mapping in Triticum tauschii, the D-genome progenitor species. The strategy is demonstrated using 26 chromosome deletion lines for wheat homoeologous group-6. Twenty-five DNA probes from the T. tauschii genetic linkage map and six wheat homoeologous group-6 specific probes were mapped on the deletion lines. Twenty-four of the 25 probes from 6D of T. tauschii also mapped on wheat homoeologous group-6 chromosomes, and their linear order in wheat is the same as in T. tauschii. A consensus physical map of wheat group-6 was constructed because the linear order and the relative position of the probe loci was the same among the three group-6 chromosomes. Comparison of the consensus physical map with the genetic map demonstrated that most of the recombination occurs in the distal ends of the wheat chromosomes. Most of the loci mapped in the distal regions of the chromosomes. The probes were mostly either PstI genomic clones or cDNA clones indicating that the undermethylated single-copy sequences are concentrated in the distal ends of the wheat chromosomes. Fifteen loci are uniformly distributed in the distal 11% of the group-6 chromosomes. Physically, the region spans only 0.58 m, which in wheat translates to about 40 Mb of DNA. The average distance between the markers is, therefore, less than 2.7 Mb and is in the range of PFGE (pulsed-field gel electrophoresis) resolution. Any gene present in the region can be genetically ordered with respect to the markers since the average recombination frequency in the region is very high (>90 cM genetic distance).  相似文献   

16.
Genomic rearrangements arising during polyploidization are an important source of genetic and phenotypic variation in the recent allopolyploid crop Brassica napus. Exchanges among homoeologous chromosomes, due to interhomoeologue pairing, and deletions without compensating homoeologous duplications are observed in both natural B. napus and synthetic B. napus. Rearrangements of large or small chromosome segments induce gene copy number variation (CNV) and can potentially cause phenotypic changes. Unfortunately, complex genome restructuring is difficult to deal with in linkage mapping studies. Here, we demonstrate how high‐density genetic mapping with codominant, physically anchored SNP markers can detect segmental homoeologous exchanges (HE) as well as deletions and accurately link these to QTL. We validated rearrangements detected in genetic mapping data by whole‐genome resequencing of parental lines along with cytogenetic analysis using fluorescence in situ hybridization with bacterial artificial chromosome probes (BAC‐FISH) coupled with PCR using primers specific to the rearranged region. Using a well‐known QTL region influencing seed quality traits as an example, we confirmed that HE underlies the trait variation in a DH population involving a synthetic B. napus trait donor, and succeeded in narrowing the QTL to a small defined interval that enables delineation of key candidate genes.  相似文献   

17.
Red clover is a hermaphroditic allogamous diploid (2n = 2x = 14) with a homomorphic gametophytic self-incompatibility (GSI) system (Trifolium pratense L.). Red clover GSI has long been studied, and it is thought that the genetic control of GSI constitutes a single locus. Although GSI genes have been identified in other species, the genomic location of the red clover GSI-locus remains unknown. The objective of this study was to use a mapping-based approach to identify simple sequence repeats (SSR) that were closely linked to the GSI-locus. Previously published SSR markers were used in this effort (Sato et al. in DNA Res 12:301–364, 2005). A bi-parental cross was initiated in which the parents were known to have one self-incompatibility allele (S-allele) in common. S-allele genotypes of 100 progeny were determined through test crosses and pollen compatibility. Pseudo F1 linkage analysis isolated the GSI-locus on red clover linkage-group one within 2.5 cM of markers RCS5615, RCS0810, and RCS3161. A second 256 progeny mapping testcross population of a heterozygous self-compatible mutant revealed that this specific self-compatible mutant mapped to the same location as the GSI-locus. Finally, 82 genotypes were identified whose parents putatively shared one S-allele in common from maternal halfsib families derived from two random mating populations in which paternal identity was determined using molecular markers. Unique S-allele identity in the two random mating populations was tentatively inferred based on haplotypes of two highly allelic linkage-group one SSR (RCS0810 and RCS4956), which were closely linked to each other and the GSI-locus. Paternally derived pollen haplotype linkage analysis of RCS0810 and RCS4956 SSR and the GSI-locus again revealed tight linkage at 2.5 and 4.7 cM between the GSI-locus and RCS0810 and RCS4956, respectively. The map-based location of the GSI-locus in red clover has many immediate applications to red clover plant breeding and could be useful in helping to sequence the GSI-locus.  相似文献   

18.
A study of homoeologous recombination along almost the complete genetic length of two homoeologous chromosomes in the Triticeae was conducted. Sears' phlb mutant was used to induce homoeologous pairing between chromosomes 7A of common wheat and 7Ai–l of Agropyron intermedium. 390 ph1b ph1b homozygous F3 progeny were screened using six co-dominant DNA markers (RFLP loci). 63 of the progeny (16%) were putative recombinants, showing dissociation of RFLP markers within the arm(s). Progeny tests of self-fertile putative recombinants confirmed the dissociation phenotypes observed in the F3 progeny. No recombination could be confirmed in 117 F3 progeny plants having the Ph1– allele (control population). Frequencies and distribution of chiasmata along the chromosome arm 7AS were analysed using additional RFLP markers. The patterns of recombination between the two homoeologous chromosomes were found similar to those reported for homologous recombination between the same markers on short arms of group 7 chromosomes of Triticeae.  相似文献   

19.
Procedures for the transfer of genes for drought resistance from Festuca glaucescens (2n=4x=28) into Lolium multiflorum (2n=2x=14) are described. Following the initial hybridisation of a synthetic autotetraploid of L. multiflorum (2n=4x=28) with F. glaucescens, the F1 hybrid was backcrossed twice onto diploid L. multiflorum (2n=2x=14) to produce a diploid Lolium genotype with a single F. glaucescens introgression located distally on the nucleolar organiser region arm of chromosome 3. The transmission of F. glaucescens-derived amplified fragment length polymorphisms and a sequence-tagged-site (STS) marker was monitored throughout the breeding programme. Those genotypes of a mapping population of backcross 3 that survived combined severe drought and heat stress all contained the F. glaucescens-derived markers. The STS marker provided a prototype for a PCR-based system for high-throughput screening during cultivar development for the presence of the F. glaucescens-derived genes for drought resistance. The frequency of intergeneric recombination between L. multiflorum and F. glaucescens is described. During the initial stages of the breeding programme, preferential intraspecific chromosome pairing between Lolium homologues and Festuca homoeologues dominated with low frequencies of intergeneric chromosome associations. However, these increased in the backcross 1 due to the absence of opportunities for intraspecific chromosome pairing between homoeologous Festuca chromosomes following the loss of half of the Festuca chromosomes. Once transferred to Lolium, F. glaucescens sequences recombined with Lolium at high frequencies, thereby enabling the loss of potentially deleterious gene combinations that might reduce the forage quality of Lolium.  相似文献   

20.
The effect of para-fluorophenylalanine (PFP) on the production of trisomic plants of Agave tequilana Weber var. Azul produced through somatic embryogenesis was investigated. Normal diploid plants with 2n = 2x = 60 were obtained in the control treatment and with 4 mg L−1 PFP exposure, while use of 8 and 12 mg L−1 PFP led to production of trisomics with 2n = 2x = 61. Normal diploid plants showed a bimodal karyotype with five pairs of large chromosomes and 25 pairs of small chromosomes. Trisomic plants also had a bimodal karyotype with a group of three chromosomes in position five of the chromosome set. More than 13 homologous chromosome pairs exhibited structural changes. Differences in chromosome arm ratio (long arm/short arm) were also found in eight chromosome pairs; all these aberrations in the chromosome complement of trisomic plants were probably caused by inversions, deletions, and/or duplications produced by high concentrations of PFP. The gross chromosome structural changes and the presence of a single extra chromosome could have been induced by the effect of PFP on the mitotic spindle by inducing nondisjunction of sister chromatids, resulting in hyperploids (2n + x) and hypoploids (2nx). Flow cytometric analysis of nuclear DNA content was performed using nuclei isolated from young leaves of normal and trisomic plants. The 2C DNA content of 8.635 pg (1Cx = 4,223 Mbp of trisomic plants was different (p < 0.001) than that of normal plants (2C DNA = 8.389 pg (1Cx = 4,102 Mbp). The difference in genome size was correlated with the large structural changes in the trisomic plant genomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号