首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
Liu D  Lu Z  Mao Z  Liu S 《Current microbiology》2009,58(2):129-133
A gene encoding the rice (Oryza sativa L.) 90-kDa heat shock protein (OsHsp90) was introduced into Escherichia coli using the pGEX-6p-3 expression vector with a glutathione-S-transferase (GST) tag to analyze the possible function of this protein under heat stress for the first time. We compared the survivability of E. coli (BL21) cells transformed with a recombinant plasmid containing GST-OsHsp90 fusion protein with control E. coli cells transformed with the plasmid containing GST and the wild type BL21 under heat shock after isopropyl β-d-thiogalactopyranoside induction. Cells expressing GST-OsHsp90 demonstrated thermotolerance at 42, 50, and 70°C, treatments that were more harmful to cells expressing GST and the wild type. Further studies were carried out to analyze the heat-induced characteristics of OsHsp90 at 42, 50, and 70°C in vitro. When cell lysates from E. coli transformants were heated at these heat stresses, expressed GST-OsHsp90 prevented the denaturation of bacterial proteins treated with 42°C heat shocks, and partially prevented that of proteins treated at 50 and 70°C; meanwhile, cells expressing GST-OsHsp90 withstood the duration at 50°C. These results indicate that OsHsp90 functioned as a chaperone, binding to a subset of substrates, and maintained E. coli growth well at high temperatures.  相似文献   

3.

Key message

A novel QTL for grain number, GN4-1, was identified and fine-mapped to an ~ 190-kb region on the long arm of rice chromosome 4.

Abstract

Rice grain yield is primarily determined by three components: number of panicles per plant, grain number per panicle and grain weight. Among these traits, grain number per panicle is the major contributor to grain yield formation and is a crucial trait for yield improvement. In this study, we identified a major quantitative trait locus (QTL) responsible for rice grain number on chromosome 4, designated GN4-1 (a QTL for Grain Number on chromosome 4), using advanced segregating populations derived from the crosses between an elite indica cultivar ‘Zhonghui 8006’ (ZH8006) and a japonica rice ‘Wuyunjing 8’ (WYJ8). GN4-1 was delimited to an ~ 190-kb region on chromosome 4. The genetic effect of GN4-1 was estimated using a pair of near-isogenic lines. The GN4-1 gene from WYJ8 promoted accumulation of cytokinins in the inflorescence and increased grain number per panicle by ~ 17%. More importantly, introduction of the WYJ8 GN4-1 gene into ZH8006 increased grain yield by ~ 14.3 and ~ 11.5% in the experimental plots in 2014 and 2015, respectively. In addition, GN4-1 promoted thickening of the culm and may enhance resistance to lodging. These results demonstrate that GN4-1 is a potentially valuable gene for improvement of yield and lodging resistance in rice breeding.
  相似文献   

4.
5.
6.
The recent cloning of several agronomically important genes has facilitated the development of functional markers. These markers reside within the target genes themselves and can be used with great reliability and efficiency to identify favorable alleles in a breeding program. Bacterial blight (BB) is a severe rice disease throughout the world that is controlled primarily through use of resistant cultivars. xa5 is a race-specific, recessive gene mediating resistance to BB. It is widely used in rice breeding programs throughout the tropics. Due to its recessive nature, phenotypic selection for xa5-mediated resistance is both slow and costly. Previously, marker assisted selection (MAS) for this resistance gene was not efficient because it involved markers that were only indirectly linked to xa5 and ran the risk of being separated from the trait by recombination. Recently, the cloning of the gene underlying this trait made it possible to develop functional markers. Here we present a set of CAPS markers for easy, quick and direct identification of cultivars or progeny carrying xa5-mediated resistance and provide evidence that these markers are 100% predictive of the presence of the xa5 allele. These markers are expected to enhance the reliability and cost-effectiveness of MAS for xa5-mediated resistance.  相似文献   

7.
Transposable elements (TEs) have a significant impact on the evolution of gene function and genome structures. An endogenous nonautonomous transposable element nDart was discovered in an albino mutant that had an insertion in the Mg-protoporphyrin IX methyltransferase gene in rice. In this study, we elucidated the transposition behavior of nDart, the frequency of nDart transposition and characterized the footprint of nDart. Novel independent nDart insertions in backcrossed progenies were detected by DNA blotting analysis. In addition, germinal excision of nDart occurred at very low frequency compared with that of somatic excision, 0–13.3%, in the nDart1-4(3-2) and nDart1-A loci by a locus-specific PCR strategy. A total of 253 clones from somatic excision at five nDart loci in 10 varieties were determined. nDart rarely caused deletions beyond target site duplication (TSD). The footprint of nDart contained few transversions of nucleotides flanking to both sides of the TSD. The predominant footprint of nDart was an 8-bp addition. Precise excision of nDart was detected at a rate of only 2.2%, which occurred at two loci among the five loci examined. Furthermore, the results in this study revealed that a highly conserved mechanism of transposition is involved between maize Ac/Ds and rice Dart/nDart, which are two-component transposon systems of the hAT superfamily transposons in plant species.  相似文献   

8.
9.
Zhao ZG  Jiang L  Zhang WW  Yu CY  Zhu SS  Xie K  Tian H  Liu LL  Ikehashi H  Wan JM 《Planta》2007,226(5):1087-1096
Partial abortion of female gametes and the resulting semi-sterility of indica × japonica inter-subspecific rice hybrids have been ascribed to an allelic interaction, which can be avoided by the use of wide compatibility varieties. To further understand the genetic mechanism of hybrid sterility, we have constructed two sets of hybrids, using as male parent either the typical japonica variety Asominori, or the wide compatibility variety 02428; and as female, a set of 66 chromosome segment substitution lines in which various chromosomal segments from the indica variety IR24 have been introduced into a common genetic background of Asominori. Spikelet semi-sterility was observed in hybrid between CSSL34 and Asominori, which is known to carry the sterility gene S31 (Zhao et al. in Euphytica 151:331–337, 2006). Cytological analysis revealed that the semi-sterility of the CSSL34 × Asominori hybrid was caused primarily by partial abortion of the embryo sac at the stage of the mitosis of the functional megaspore. A population of 1,630 progeny of the three-way cross (CSSL34 × 02428) × Asominori was developed to map S31. Based on the physical location of linked molecular markers, S31 was thereby delimited to a 54-kb region on rice chromsome 5. This fragment contains eight predicted open reading frames, four of which encode known proteins and four putative proteins. These results are relevant to the map-based cloning of S31, and the development of marker-assisted transfer of non-sterility allele inducing alleles to breeding germplasm, to allow for a more efficient exploitation of heterosis in hybrid rice.  相似文献   

10.
The shoot apical meristem (SAM) produces lateral organs in a regular spacing (phyllotaxy) and at a regular interval (phyllochron) during the vegetative phase. In a Dissociation (Ds) insertion rice population, we identified a mutant, compact shoot and leafy head 1 (csl1), which produced massive number of leaves (∼70) during the vegetative phase. In csl1, the transition from the vegetative to the reproductive phase was delayed by about 2 months under long-day conditions. With a reduced leaf size and severe dwarfism, csl1 failed to produce a normal panicle after the transition to reproductive growth. Instead, it produced a leafy panicle, in which all primary rachis-branches were converted to vegetative shoots. Phenotypically csl1 resembled pla mutants in short plastochron but was more severe in the conversion of the reproductive organs to vegetative organs. In addition, neither the expression nor the coding region of PLA1 or PLA2 was affected in csl1. csl1 is most likely a dominant mutation because no mutant segregant was observed in progeny of 67 siblings of the csl1 mutant. CSL1 may represent a novel gene, which functions downstream of PLA1 and/or PLA2, or alternatively functions in a separate pathway, involved in the regulation of leaf initiation and developmental transition via plant hormones or other mobile signals.  相似文献   

11.
Plant architecture, a collection of the important agronomic traits that determine grain production in rice, is mainly affected by factors including tillering, plant height and panicle morphology. Recently, significant progress has been made in isolating and collecting of mutants that are defective in rice plant architecture. Although our understanding of the molecular mechanisms that control rice tillering, panicle development and plant height are still limited, new findings have begun to emerge. This review, therefore, summarizes the recent progress in exploring the mechanisms that control rice plant architecture.  相似文献   

12.
Lin Z  Griffith ME  Li X  Zhu Z  Tan L  Fu Y  Zhang W  Wang X  Xie D  Sun C 《Planta》2007,226(1):11-20
  相似文献   

13.
The ZRT-and IRT-like proteins (ZIP) comprise a large family of transition metal transporters in plants that have diverse functions to transport zinc, iron, copper, etc. Here, we provided a complete overview of this gene family in rice (Oryza sativa L.). Based on the hidden Markov model and BLAST analysis, a total of 17 ZIP-coding genes were identified and further studied by semi-quantitative RT-PCR analysis. Sequence analysis revealed 17 putative genes distributed randomly on eight chromosomes. Although most of the predicted proteins had typical characteristics of the ZIP protein family, the extent of their sequence similarity varied considerably. The expression patterns of OsZIP1, OsZIP3, and OsZIP4, which encode Zn2+ transporters in rice, were studied in the Zn-efficient and Zn-inefficient rice genotypes (IR8192 and Erjiufeng) by semi-quantitative RT-PCR analysis of roots, shoots, and panicle from the plants grown under Zn deficiency and normal conditions. OsZIP1 was expressed only in the roots and very weakly if at all in the panicles, while the other two genes were expressed in all parts of plants under study. The Zn-deficient conditions up-regulated the expression of OsZIP1, OsZIP3, and OsZIP4 in the roots and that of OsZIP4 in the shoots of both genotypes, indicating that all these genes may participate in rice zinc nutrition. Furthermore, the expression of OsZIP3 and OsZIP4 was found to be much stronger in the roots of IR8192 than those of Erjiufeng, which suggests that these genes may contribute to high Zn efficiency in rice. The expression patterns and the roles of other OsZIPs are also discussed on the basis of the phylogenetic tree of ZIP proteins and RT-PCR analysis of the two rice genotypes with different zinc efficiency.  相似文献   

14.
Ryoo N  Yu C  Park CS  Baik MY  Park IM  Cho MH  Bhoo SH  An G  Hahn TR  Jeon JS 《Plant cell reports》2007,26(7):1083-1095
To elucidate the role of SSIIIa during starch synthesis in rice (Oryza sativa L.) endosperm, we characterized null mutants of this gene, generated by T-DNA insertions. Scanning electron microscope (SEM) analysis revealed that the starch granules in these mutants are smaller and rounder compared with the wild type controls, and that the mutant endosperm is characterized by a loosely packed central portion exhibiting a floury-like phenotype. Hence, the OsSSIIIa (Oryza sativa SSIIIa) mutations are referred to as white-core floury endosperm 5-1 (flo5-1) and flo5-2. Based upon their X-ray diffraction patterns, the crystallinity of the starch in the flo5 mutant endosperm is decreased compared with wild type. Through determination of the chain-length distribution of the mutant endosperm starch, we found that flo5-1 and flo5-2 mutants have reduced the content of long chains with degree of polymerization (DP) 30 or greater compared with the controls. This suggests that OsSSIIIa/Flo5 plays an important role in generating relatively long chains in rice endosperm. In addition, DP 6 to 8 and DP 16 to 20 appeared to be reduced in endosperm starch of flo5-1 and flo5-2, whereas DP 9 to 15 and DP 22 to 29 were increased in these mutants. By the use of differential scanning calorimetry (DSC), the gelatinization temperatures of endosperm starch were found to be 1–5°C lower than those of the control. We propose a distinct role for OsSSIIIa/Flo5 and the coordinated action of other SS isoforms during starch synthesis in the seed endosperm of rice.  相似文献   

15.
16.
Summary Catenaria anguillulae parasitized and killed the eggs and second stage juveniles (J2) of Meloidogyne graminicola under natural conditions. The percentage of infection in eggs was higher than J2 of M.␣graminicola, which ranged between 0–50.3% and 0–18.9% in 2004 and 0–46.6% and 0–21.7% in 2005, respectively. The higher parasitism of eggs and J2 was recorded from those fields in which plants were severely infected with M. graminicola. The degree of parasitism of eggs and J2 by C. anguillulae varied with severity of root knot disease. The fields with a higher root gall index recorded a higher percentage of infection in eggs and J2 of M. graminicola. In general, old galls when teased and incubated, recorded higher parasitism of eggs and juveniles than young galls.  相似文献   

17.
Heading date is one of the importance agronomic traits. A library consisting of 1,123 single segment substitution lines (SSSLs) in the same genetic background of an elite rice variety Huajingxian 74 (HJX74) was evaluated for heading date (HD). From this library, the SSSL W06-26-35-1-5-2 with the substituted interval of PSM152–PSM154–PSM155–RM25–RM547–RM72–RM404 was found having a gene, which performed stable and late heading in the different environments of Shandong and Hainan provinces. To map the gene governing heading date, the SSSL W06-26-35-1-5-2 was crossed with the recipient HJX74 to develop an F2 segregating population. The distribution of late and early heading plants in this population fitted a segregation ratio of 3:1, indicating the late heading was controlled by a dominant gene. The gene locus for heading date was tentatively designated as qHD8-1. Using a random sample of 460 individuals from the F2 population, the qHD8-1 was narrowed down to a region flanking by two SSR markers PSM155 and RM547. For fine mapping of qHD8-1, a large F2:3 segregating population of 3,000 individuals were developed from F2 plants heterozygous in the PSM155–RM547 region. Recombinants analysis further mapped qHD8-1 to an interval of region 26 kb with markers RM22492 and P23 bounded on the left and right sides, respectively. Sequence analysis of this 26-kb fragment revealed that it contains five putative open reading frames, which were regarded as candidates of qHD8-1. These results will be useful in cloning of the qHD8-1 gene.  相似文献   

18.
19.
The chromogen gene C is critical for anthocyanin regulation in rice, and apiculus color is an important agronomic trait in selective breeding and variety purification. Mapbased cloning and in-depth functional analysis of the C gene will be useful for understanding the molecular mechanism of anthocyanin biosynthesis and for rice breeding. Japonica landrace Lijiangxintuanheigu (LTH) has red apiculi and purple stigmas. Genetic analysis showed that red apiculus and purple stigma in LTH co-segregated indicating control by a single dominant gene, or by two completely linked genes. Using 1,851 recessive individuals from two F2 populations, the target gene OsC was delimited to a 70.8 kb interval on chromosome 6 that contains the rice homologue of the maize anthocyanin regulatory gene C1. When the entire OsC gene and its full-length cDNA cloned from LTH were transformed into japonica cultivar Kitaake with colorless apiculi and stigmas all positive transformants had red apiculi but non-colored stigmas, validating that OsC alone was responsible for the apiculus color and represented the functional C gene. OsC was constitutively expressed in all tissues examined, with strongest expression in leaf blades. These results set a foundation to clarify the regulatory mechanisms of OsC in the anthocyanin biosynthetic pathway.  相似文献   

20.
New combinations are proposed in anticipation of the Polygonaceae treatment in the forthcoming volume of Intermountain Flora: Polygonum kelloggii var. esotericum, P. kelloggii var. watsonii , Rumex densiflorus var. pycnanthus , R. salicifolius var. utahensis, and R. occidentalis var. tomentellus. Typifications are proposed to facilitate ongoing studies in Polygonaceae and to maintain current usage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号